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Abstracts. Real neutrosophic nilpotent matrices are a special class of matrices 

characterized by their neutrosophic components, which quantify the indeterminacy in their 

elements. This paper explores the properties and important results related to real 

neutrosophic nilpotent matrices. Specifically, it investigates their structure, determinacy 

indices, and relationships under matrix multiplication. The rank, index, and linear 

transformations associated with these matrices are analyzed in the context of neutrosophic 

logic, highlighting their implications in mathematical modeling and decision-making under 

uncertainty. Furthermore, the study extends to Green’s relations and semigroups, 

elucidating how neutrosophic nilpotent matrices contribute to the understanding of 

algebraic structures with indeterminate elements. The findings provide a comprehensive 

framework for applying neutrosophic logic in matrix theory and its broader applications in 

diverse fields. 
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 Abbreviation  Meaning  

NSs  Neutrosophic set  

SVNS  Single valued neutrosophic set  

NNs  Neutrosophic number  

NFM  Neutrosophic fuzzy matrix  

RNM  Real neutrosophic matrix  
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1. Introduction 

After the establishment of fuzzy set (FS) theory, it became clear that while FS effectively 

addressed many problems involving non-random uncertainty, it had limitations in handling 

cases where information was incomplete or inconsistent. In 1983, Atanassov introduced 

intuitionistic fuzzy sets (IFS) as an extension of FS, incorporating membership and non-

membership values that sum up to less than or equal to 1. When these values sum exactly 

to 1 for all members, IFS reduces back to FS. This extension aimed to address situations 

where FS fell short due to inadequate information. 

However, IFS itself proved insufficient in scenarios involving more complex 

uncertainties. To tackle these challenges, Smarandache introduced neutrosophic sets (NS) 

in the late 1990s. NS are characterized by three parameters: truth membership function (t), 

indeterminacy membership function (i), and falsity membership function (f), which are 

subsets of the non-standard unit interval. This framework goes beyond IFS by 

accommodating uncertainties that extend beyond what IFS can manage effectively. 

Neutrosophic sets generalize classical fuzzy sets, interval-valued fuzzy sets, and 

intuitionistic fuzzy sets, among others. They have been extended into various branches, 

such as interval neutrosophic sets and generalized neutrosophic soft sets, demonstrating 

their versatility in handling diverse real-world scenarios involving indeterminate and 

inconsistent information. 

The concept of single-valued neutrosophic sets (SVNS) was introduced to provide 

a more flexible representation where truth, indeterminacy, and falsity can be independently 

quantified for each element. This framework is particularly suited for modeling human 

reasoning processes, accommodating imperfect knowledge and uncertainties inherent in 

decision-making. 

In recent years, there has been significant research interest in neutrosophic sets and 

their applications, leading to developments like neutrosophic fuzzy numbers (NFN) and 

corresponding matrices. These extensions build upon the foundations laid by FS and IFS, 

offering robust tools to address complex decision-making scenarios across various 

domains. 

For further details on neutrosophic sets, numbers, and matrices, interested readers 

can refer to comprehensive resources on the subject. 

 

2. Literature review 

The concept of neutrosophic logic, introduced by [36], has broadened the scope of 

mathematical and logical frameworks by incorporating degrees of truth, falsity, and 

indeterminacy. This extension facilitates the handling of uncertainty and incomplete 

information, which classical fuzzy logic often struggles with. In this context, the notion of 

a real nilpotent neutrosophic matrix represents an intriguing convergence of matrix theory 

and neutrosophic logic, merging the properties of nilpotent matrices with the capabilities 

of neutrosophic structures. 

A real nilpotent neutrosophic matrix is a specialized matrix that not only adheres 

to the characteristics of nilpotent matricesâ€”having a power that equals the zero 

matrixâ€”but also operates within the framework of neutrosophic logic. This combination 

introduces unique properties and challenges, making it a significant topic in contemporary 

mathematical research. 

Neutrosophic logic expands on classical Boolean logic by including three 
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components: truth membership, falsity membership, and indeterminacy membership. A 

neutrosophic set 𝐴  is characterized by these three functionsâ€” 𝑇𝐴(𝑥) , 𝐹𝐴(𝑥) , and 

𝐼𝐴(𝑥)â€”where 𝑇𝐴(𝑥) denotes the degree of truth, 𝐹𝐴(𝑥) denotes the degree of falsity, and 

𝐼𝐴(𝑥) represents the degree of indeterminacy. The sum 𝑇𝐴(𝑥) + 𝐹𝐴(𝑥) + 𝐼𝐴(𝑥) does not 

necessarily equal 1, which differentiates it from traditional fuzzy sets where this sum is 

constrained to equal 1[36] . 

Nilpotent matrices, on the other hand, are matrices for which there exists a positive 

integer 𝑘 such that the matrix raised to the power 𝑘 results in the zero matrix. These 

matrices are characterized by their eigenvalues being zero and their Jordan canonical form 

consisting of Jordan blocks with zeros on the diagonal [34] . The concept of nilpotency 

plays a crucial role in various areas of linear algebra, including matrix theory and control 

theory. 

The real nilpotent neutrosophic matrix merges these two concepts. For such a 

matrix, not only must the matrix be nilpotent (i.e., 𝐴𝑘 = 0 for some 𝑘), but it must also 

be expressed in terms of neutrosophic numbers. These neutrosophic numbers have 

components that are not simply real numbers but include degrees of truth, falsity, and 

indeterminacy. This fusion of properties allows for a more nuanced representation of 

uncertainty and transformation properties in matrix theory. 

Recent research has delved into characterizing the properties of real nilpotent 

neutrosophic matrices.[38] provided significant insights into the spectral properties of 

these matrices. They explored how the spectral characteristics of nilpotent matrices are 

preserved within the neutrosophic framework. Their work established criteria for 

nilpotency within the neutrosophic context and introduced algorithms for verifying 

nilpotency, expanding the practical applications of these matrices in handling uncertain and 

imprecise data. 

The computational aspects of real nilpotent neutrosophic matrices are also a focal 

point of recent studies. The development of algorithms for matrix decomposition and 

similarity transformations has been crucial for practical applications.[35] introduced an 

efficient algorithm for computing the Jordan canonical form of real nilpotent neutrosophic 

matrices. This advancement addresses the complexity inherent in working with these 

matrices and provides a more streamlined approach for computations involving real 

nilpotent neutrosophic matrices. In practical applications, real nilpotent neutrosophic 

matrices have shown promise in various domains, including decision-making and control 

systems. In decision-making, these matrices can model complex systems with inherent 

uncertainties.[39] applied real nilpotent neutrosophic matrices to multi-criteria decision-

making problems, demonstrating their effectiveness in scenarios characterized by 

vagueness and incomplete information. Their research illustrated how these matrices can 

be used to optimize decisions in environments where traditional methods may fall short. 

In the realm of control systems, real nilpotent neutrosophic matrices offer a 

framework for designing controllers when faced with incomplete or uncertain information. 

[40] explored how these matrices can be utilized in control system design, particularly in 

situations where conventional linear matrix methods are inadequate. Their findings 

indicate that real nilpotent neutrosophic matrices can enhance the robustness and flexibility 

of control systems in the presence of uncertainty. 

Despite these advancements, there are still challenges associated with real 

nilpotent neutrosophic matrices. The primary challenge lies in the complexity of 
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computations involving these matrices, particularly as the dimensions of the matrices 

increase. Future research is likely to focus on developing more efficient algorithms and 

expanding the theoretical understanding of these matrices to address such challenges. 

Additionally, exploring new applications in emerging fields such as artificial intelligence 

and big data analytics represents a promising avenue for future work. 

 

3. Neutrosophic number 

Samrandche first proposed a concept of neutrosophic number which consists of the 

determinant part and the indeterminate part. It is usually denoted by 𝑁 = 𝑎 + 𝑏𝐼, where 𝑎 

and 𝑏 are real numbers and 𝐼  is the indeterminacy such that 𝐼2 = 𝐼, 𝐼. 0 = 0 and 
𝐼

𝐼
 is 

undefined. We call 𝑁 = 𝑎 + 𝑏𝐼 as a pure neutrosophic number if 𝑎 = 0. 

For example, we consider a neutrosophic number 𝑁 = 5 + 3𝐼. If 𝐼 ∈ [0,0.02], 
then it is equivalent to 𝑁 ∈ [5,5.06] for 𝑁 ≥ 5. This means the determinant part is 5, 

whereas the indeterminacy part is 3𝐼 for 𝐼 ∈ [0,0.02], which means the possibility for 

number 𝑁 to be a little bigger than 5. 

Note that this number looks like a complex number, but, see that here 𝐼2 = 𝐼, not 

−1 like a complex number. 

The three basic operators  defined on neutrosophic numbers 𝑃 = 𝑝1 + 𝑞1𝐼 and 

𝑄 = 𝑝2 + 𝑞2𝐼 are as follows: 

(i) 𝑃 + 𝑄 = (𝑝1 + 𝑝2) + (𝑞1 + 𝑞2)𝐼 
(ii) 𝑃 − 𝑄 = (𝑝1 − 𝑝2) + (𝑞1 − 𝑞2)𝐼 
(iii) 𝑃 × 𝑄 = 𝑝1𝑝2 + (𝑝1𝑞2 + 𝑞1𝑝2 + 𝑞1𝑞2)𝐼 
 In real neutrosophic algebra, we denote 𝐾 as the neutrosophic field over some 

neutrosophic vector spaces. We call the smallest field generated by 𝐾 ∪ 𝐼 or 𝐾(𝐼) to be 

the neutrosophic field for it involves the indeterminacy factor in it, where 𝐼 has the special 

property that 𝐼𝑛 = 𝐼, 𝐼 + 𝐼 = 𝐼 and if 𝑡 ∈ 𝐾 be some scalar then 𝑡. 𝐼 = 𝑡𝐼, 0. 𝐼 = 0. Thus, 

we generally denote neutrosophic field 𝐾(𝐼) generated by 𝐾 ∪ 𝐼, i.e. 𝐾(𝐼) = 〈𝐾 ∪ 𝐼〉. 
Thus, for different fields of algebra, we can define several types of neutrosophic 

field generated by the field of neutrosophic vector space. 

 

1. 𝐑 be the field of real numbers, then the neutrosophic field generated by 〈𝑅 ∪ 𝐼〉 is 

𝑅(𝐼) and 𝑅 ⊂ 𝑅(𝐼). 
2. 𝐐 be the field of rational number, then the neutrosophic field generated by 〈𝑄 ∪ 𝐼〉 

is 𝑄(𝐼) and 𝑄 ⊂ 𝑄(𝐼). 
3. 𝐙 be the field of integers, then the neutrosophic field generated by 〈𝑍 ∪ 𝐼〉 is 𝐙(𝐼).  

 

Thus, we can formulate the following set of neutrosophic numbers as given below:   

 𝐑(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝐑} 
 𝐐(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝐐} 
 𝐙(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ 𝐙} 
 𝐈(𝐼) = {𝑎 + 𝑏𝐼: 𝑎, 𝑏 ∈ [0,1]}. 

So several types of neutrosophic numbers are available in the literature. However, many 

authors are confused about this classification. In this chapter, we will discuss first 𝐈(𝐼), the 

fuzzy neutrosophic numbers (referred to as FNNs), and then we consider the matrix over 

real neutrosophic numbers (RNN) 𝐑(𝐼). 
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3.1. Real neutrosophic matrix 

Here we consider the neutrosophic matrix over real numbers based on the work of 

Smarandache [15]. So it is referred to as a real neutrosophic matrix and is abbreviated by 

RNM. For details of this matrix see [8]. 

The neutrosophic number over the field of real/complex numbers is defined in the 

form 𝑎 = 𝑎1 + 𝑏1𝐼, where 𝑎1, 𝑎2 are real or complex numbers and 𝐼 is the indeterminacy 

[5]. 

An RNM is defined as in FNM, i.e. of the form 𝑀 = 𝑀1 +𝑀2𝐼 where 𝑀1 and 

𝑀2 are real matrices. The set of real matrices of order 𝑚 × 𝑛 is denoted by ℳ𝑚𝑛
𝑅  and that 

of order 𝑛 × 𝑛 by ℳ𝑛
𝑅. The identity RNM of order 𝑛 × 𝑛 is denoted by 𝑈𝑛, all diagonal 

elements are 1 and all other elements are 0. 

The null and identity matrices of order 3 × 3 are  

 𝑂3 = (

0 0 0
0 0 0
0 0 0

) ,   𝑎𝑛𝑑   𝑈3 = (

1 0 0
0 1 0
0 0 1

). 

The basic operations on RNMs 𝑀 = 𝑀1 +𝑀2𝐼 and 𝑁 = 𝑁1 +𝑁2𝐼 are 

(i) 𝑀 +𝑁 = (𝑀1 +𝑁1) + (𝑀2 +𝑁2)𝐼 
(ii) 𝑀−𝑁 = (𝑀1 −𝑁1) + (𝑀2 −𝑁2)𝐼 
(iii) 𝑀𝑁 = (𝑀1𝑁1) + (𝑀2𝑁1 +𝑀1𝑁2 +𝑀2𝑁2)𝐼. In this case also, 𝐼𝑛 = 𝐼2 = 𝐼 

for any positive integer 𝑛. 

Assumed that the order of RNMs is compatible with the appropriate operations. 

This matrix looks like a complex matrix, but see that here 𝐼  represents 

indeterminacy, not complex 𝑖 = √−1. Also, 𝐼𝑛 = 𝐼 for all positive integer 𝑛, which is 

not true for complex numbers. 

Let 𝑀 = 𝑀1 +𝑀2𝐼 be a RNM, where 𝑀1,𝑀2 ∈ ℳ𝑛
𝑅 . Then its determinant is 

denoted by 𝑑𝑒𝑡(𝑀) or |𝑀| and its value is given by  

 𝑑𝑒𝑡(𝑀) = 𝑑𝑒𝑡(𝑀1) + 𝐼[𝑑𝑒𝑡(𝑀1 +𝑀2) − 𝑑𝑒𝑡(𝑀1)]. (1) 

 

Note that this formula is unlike to the determinant of conventional matrix. But, this 

definition follows the rules of conventional matrices. 

 

Lemma 1. Let 𝑀 = 𝑀1 +𝑀2𝐼 and 𝑁 = 𝑁1 +𝑁2𝐼 be two RNMs, where 𝑀1, 𝑀2, 𝑁1,
𝑁2 ∈ ℳ𝑛

𝑅. Then 𝑑𝑒𝑡(𝑀𝑁) = 𝑑𝑒𝑡(𝑀)𝑑𝑒𝑡(𝑁).  

Proof: By definition of product 

𝑀𝑁 = 𝑀1𝑁1 + [𝑀1𝑁2 +𝑀2𝑁1 +𝑀2𝑁2]𝐼. 
Now, by Definition (1) of determinant,  

𝑑𝑒𝑡(𝑀𝑁) = 𝑑𝑒𝑡(𝑀1𝑁1) + [𝑑𝑒𝑡(𝑀1𝑁1 +𝑀1𝑁2 +𝑀2𝑁1 +𝑀2𝑁2) − 𝑑𝑒𝑡(𝑀1𝑁1)]𝐼 
= 𝑑𝑒𝑡(𝑀1𝑁1) + [𝑑𝑒𝑡(𝑀1 +𝑀2)(𝑁1 +𝑁2) − 𝑑𝑒𝑡(𝑀1𝑁1)]𝐼. 

Again, 

 𝑑𝑒𝑡(𝑀)𝑑𝑒𝑡(𝑁) = 𝑑𝑒𝑡(𝑀1𝑁1) + [𝑑𝑒𝑡{(𝑀1 +𝑀2)𝑁1} − 𝑑𝑒𝑡(𝑀1𝑁1) 
 +𝑑𝑒𝑡{𝑀1(𝑁1 +𝑁2)} − 𝑑𝑒𝑡(𝑀1𝑁1) + 𝑑𝑒𝑡{(𝑀1 +𝑀2)(𝑁1 +𝑁2)} 
 −𝑑𝑒𝑡{𝑀1(𝑁1 +𝑁2)} − 𝑑𝑒𝑡{𝑁1(𝑀1 +𝑀2)} + 𝑑𝑒𝑡(𝑀1𝑁1)]𝐼 
 = 𝑑𝑒𝑡(𝑀1𝑁1) + [𝑑𝑒𝑡(𝑀1 +𝑀2)(𝑁1 +𝑁2) − 𝑑𝑒𝑡(𝑀1𝑁1)]𝐼 
 = 𝑑𝑒𝑡(𝑀𝑁). 
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The orthogonal RNM can also be defined like conventional matrices. Let 𝑀 =
𝑀1 +𝑀2𝐼 , where 𝑀1,𝑀2 ∈ ℳ𝑛

𝑅  be an RNM. The RNM 𝑀  is called orthogonal if 

𝑀𝑀𝑇 = 𝑈𝑛. 

If 𝑀𝑀𝑇 = 𝑈𝑛 , then 𝑀𝑀𝑇 = 𝑀1𝑀1
𝑇 + (𝑀1

𝑇𝑀2 +𝑀1𝑀2
𝑇 +𝑀2𝑀2

𝑇)𝐼.  The 

necessary condition is that 𝑀1
𝑇𝑀2 +𝑀1𝑀2

𝑇 +𝑀2𝑀2
𝑇 = 0 and 𝑀1  is orthogonal. Also, 

𝑑𝑒𝑡(𝑀𝑀𝑇) = 𝑑𝑒𝑡(𝑈𝑛) = 1. This implies 𝑑𝑒𝑡(𝑀1) = 1 and 𝑑𝑒𝑡(𝑀1 +𝑀2) = 1. 

 

4. Real neutrosophic nilpotent matrix 

Let 𝐴 be a neutrosophic matrix, where 

𝐴 = 𝐴1 + 𝐴2𝐼 
then, 

𝐴2 = (𝐴1 + 𝐴2𝐼)(𝐴1 + 𝐴2𝐼)  

= 𝐴1
2 + [𝐴1𝐴2 + 𝐴2𝐴1 + 𝐴2

2]𝐼 
= 𝐴1

2 + [(𝐴1 + 𝐴2)
2 − 𝐴1

2]𝐼 
Again, 

𝐴3 = 𝐴2 ⋅ 𝐴 

= 𝐴1
3 + [𝐴1

2𝐴2𝐴1 + 𝐴2𝐴1
2 + 𝐴2

2𝐴1 + 𝐴1
2𝐴2 + 𝐴1𝐴2

2 + 𝐴2𝐴1𝐴2 + 𝐴2
3]𝐼 

= 𝐴1
3 + [(𝐴1 + 𝐴2)

3 − 𝐴1
3]𝐼  

In this way it can be shown that 

𝐴𝑛 = 𝐴1
𝑛 + [(𝐴1 + 𝐴2)

𝑛 − 𝐴1
𝑛]𝐼  

This expression shows that if 𝐴1 and (𝐴1 + 𝐴2) are nilpotent then A is nilpotent 

with same index. 

Recall that a neutrosophic square matrix is nilpotent is some positive power of it 

is the zero matrix. 

Let F be a field.then the following results is holds 

(1) (a) Suppose that (𝐴1 + 𝐴2𝐼) ∈ 𝐹
𝑛 × 𝑛 has a nonzero eigenvalue (𝜆1 + 𝜆2𝐼). 

Find a vector (𝑥1 + 𝑥2𝐼) such that (𝐴1 + 𝐴2𝐼)
𝐾(𝑥1 + 𝑥2𝐼) ≠ 0 for all 𝑘 ∈ 𝑁. Deduce 

that (𝐴1 + 𝐴2𝐼) is not nilpotent. 

(b) Show that all neutrosophic eigenvalues of a nilpotent neutrosophic matrix are 

0. 

(c) Deduce, by proving the converse to (b), that a matrix (𝐴1 + 𝐴2𝐼) ∈ 𝐹 is 

nilpotent neutrosophic if and only if all its eigenvalues are 0. (Hint: Cayley-

Hamilton) 

(d) Deduce that if (𝐴1 + 𝐴2𝐼) ∈ 𝐹  satisfies𝐴1 + 𝐴2𝐼=0 for some𝑚 ∈ 𝑁  then 

(𝐴1 + 𝐴2𝐼)
𝑛=0. 

Proof: 

(a)Take(𝑥1 + 𝑥2𝐼)to be an neutrosophic eigenvector of (𝐴1 + 𝐴2𝐼) with neutrosophic 

eigenvalue (𝜆1 + 𝜆2𝐼) . Then (𝐴1 + 𝐴2𝐼)(𝑥1 + 𝑥2𝐼) = (𝜆1 + 𝜆2𝐼)(𝑥1 + 𝑥2𝐼) 
or, 𝐴1𝑥1 + [𝐴1𝑥2 + 𝐴2𝑥1 + 𝐴2𝑥2]𝐼 = 𝜆1𝑥1 + [𝜆1𝑥2 + 𝜆2𝑥1 + 𝜆2𝑥1]𝐼 

This implies that ,𝐴1𝑥1 = 𝜆1𝑥1 and 𝐴1𝑥2 + 𝐴2𝑥1 + 𝐴2𝑥2 = 𝜆1𝑥2 + 𝜆2𝑥1 + 𝜆2𝑥1 

(𝐴1 + 𝐴2)(𝑥1 + 𝑥2) − 𝐴1𝑥1 = (𝜆1 + 𝜆2)(𝑥1 + 𝑥1) − 𝜆1𝑥1  

Since 𝐴1𝑥1 = 𝜆1𝑥1 and (𝐴1 + 𝐴2)(𝑥1 + 𝑥2) = (𝜆1 + 𝜆2)(𝑥1 + 𝑥2) 
and by induction, 𝐴1

𝑘𝑥1 = 𝜆1
𝑘𝑥1 and (𝐴1 + 𝐴2)

𝑘(𝑥1 + 𝑥2) = (𝜆1 + 𝜆2)
𝑘(𝑥1 + 𝑥2) 

Now, (𝐴1 + 𝐴2𝐼)
𝐾(𝑥1 + 𝑥2𝐼) = {𝐴1

𝑘 + [(𝐴1 + 𝐴2)
𝑘 − 𝐴1

𝑘]𝐼}(𝑥1 + 𝑥2𝐼) 
= 𝐴1

𝐾𝑥1 + [(𝐴1 + 𝐴2)(𝑥1 + 𝑥2) − 𝐴1
𝐾𝑥1 + 𝐴1

𝐾𝑥2 − 𝐴1
𝐾𝑥2]𝐼 
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= 𝐴1
𝐾𝑥1 + [(𝐴1 + 𝐴2)(𝑥1 + 𝑥2) − 𝐴1

𝐾𝑥1]𝐼 
= 𝜆1

𝑘𝑥1 + [(𝜆1 + 𝜆2)
𝑘(𝑥1 + 𝑥2) − 𝜆1

𝑘𝑥1] 
= (𝜆1 + 𝜆2𝐼)

𝑘(𝑥1 + 𝑥2𝐼) 
Therefore, (𝐴1 + 𝐴2𝐼)

𝐾(𝑥1 + 𝑥2𝐼) = (𝜆1 + 𝜆2𝐼)
𝑘(𝑥1 + 𝑥2𝐼) for each 𝑘 ∈ 𝑁. So 

no power of (𝐴1 + 𝐴2𝐼) can be the zero matrix. So (𝐴1 + 𝐴2𝐼) is not nilpotent. 

 

(b) By (a), a nilpotent neutrosophic matrix can have no nonzero neutrosophic eigenvalues, 

i.e., all its neutrosophic eigenvalues are 0. 

 

(c) Suppose (𝐴1 + 𝐴2𝐼)has all neutrosophic eigenvalues equal to 0. Then the characteristic 

polynomial of (𝐴1 + 𝐴2𝐼)  is 𝑥(𝑥) = [(𝑥1 + 𝑥2𝐼) − (𝜆11 + 𝜆21𝐼)]… [(𝑥1 + 𝑥2𝐼) −
(𝜆1𝑛 + 𝜆2𝑛𝐼)] = (𝑥1 + 𝑥2𝐼)

𝑛  so, by the Cayley-Hamilton Theorem, 𝑥(𝐴1 + 𝐴2𝐼) =
(𝐴1 + 𝐴2𝐼)

𝑛 = 0, making (𝐴1 + 𝐴2𝐼) nilpotent. Then, using (b), we have (c) in full. 

 

(d) Follows from (c), as nilpotentcy implies(𝐴1 + 𝐴2𝐼)
𝑛 = 0. 

For a nilpotent neutrosophic matrix (𝐴1 + 𝐴2𝐼) ∈ 𝐹
𝑛 × 𝑛 , denote by 𝑣(𝐴1 + 𝐴2𝐼) the 

least exponent m such that (𝐴1 + 𝐴2𝐼) = 0. From Q1, we know that 𝑣(𝐴1 + 𝐴2𝐼) ≤ 𝑛. 

We investigate whether (𝐴1 + 𝐴2𝐼) can take all integer values 1,2... n. 

(a) Describe the (i, j)th entry of (𝐴1 + 𝐴2𝐼)
𝑚 in terms of the entries of  

(𝐴1 + 𝐴2𝐼) = (𝑎1𝑖𝑘1 + 𝑎2𝑖𝑘1𝐼). 

(b) Use your description in (a) to show that the neutrosophic companion matrix- 

call it (𝐶1𝑛 + 𝐶2𝑛𝐼) of the polynomial (𝑥1 + 𝑥2𝐼)
𝑛  has (𝐶1𝑛 + 𝐶2𝑛𝐼)

𝑛−1 ≠ 0 . Hence 

write down 𝑣(𝐶1𝑛 + 𝐶2𝑛𝐼)𝐼). (Maybe try some small values of n first.) 

(a)The (i,j)th entry of (𝐴1 + 𝐴2𝐼)
𝑚 is a sum of all possible nonzero products 

(𝑎1𝑖𝑘1 + 𝑎2𝑖𝑘1𝐼)(𝑎1𝑘1𝑘2 + 𝑎2𝑘1𝐾2𝐼)(𝑎1𝑘2𝑘3 + 𝑎2𝑘2𝑘3𝐼). . . . . (𝑎1𝑘(𝑚−1)𝑗 +

𝑎2𝑘(𝑚−1)𝑗𝐼). 

(b) The (1,n)th term of (𝐶1𝑛 + 𝐶2𝑛𝐼)
𝑛−1 is (𝑐112 + 𝑐212𝐼)(𝑐123 + 𝑐223𝐼)(𝑐134 +

𝑐234𝐼). . . . . (𝑐1(𝑛−1)𝑛 + 𝑐2(𝑛−1)𝑛𝐼) = 1 ⋅ 1 ⋅ 1 ⋅ 1 = 1 this being the only nonzero product, 

and so giving a nonzero term. Hence 𝑣(𝐶1𝑛 + 𝐶2𝑛𝐼) = 𝑛. 

(3) (a) For (𝐴1 + 𝐴2𝐼) ∈ ℂ
𝑛×𝑛 define 𝑒𝑥𝑝(𝐴1 + 𝐴2𝐼), Show that if (𝐴1 + 𝐴2𝐼) 

is nilpotent neutrosophic then 𝑒𝑥𝑝(𝐴1 + 𝐴2𝐼) = ∑
𝑛−1
𝑖=0 (𝐴1 + 𝐴2𝐼)

𝑖/𝑖! 
(b) For (𝐴1 + 𝐴2𝐼) ∈ ℂ

𝑛×𝑛 and nilpotent neutrosophic , show that 

[𝑈 − (𝐴1 + 𝐴2𝐼)]
−1 = 𝑈 + (𝐴1 + 𝐴2𝐼) + (𝐴1 + 𝐴2𝐼)

2+. . . . . +(𝐴1 + 𝐴2𝐼)
𝑛−1 

where (as usual) 𝑈 is thenxn neutrosophic identity matrix. 

(a) We have 𝑒𝑥𝑝(𝐴1 + 𝐴2𝐼) We have 𝑒𝑥𝑝(𝐴1 + 𝐴2𝐼) = ∑
∞
𝑖=0 (𝐴1 + 𝐴2𝐼)

𝑖/𝑖!, 
which reduces to ∑𝑛−1𝑖=0 (𝐴1 + 𝐴2𝐼)

𝑖/𝑖! as (𝐴1 + 𝐴2𝐼)
𝑛 = 0. 

(b) We have, 

[𝑈 − (𝐴1 + 𝐴2𝐼)][𝑈 + (𝐴1 + 𝐴2𝐼) + (𝐴1 + 𝐴2𝐼)
2+. . . . . +(𝐴1 + 𝐴2𝐼)

𝑛−1] 
= 𝑈 + [(𝐴1 + 𝐴2𝐼) − (𝐴1 + 𝐴2𝐼)] + [(𝐴1 + 𝐴2𝐼)

2 − (𝐴1 + 𝐴2𝐼)
2] + ⋯+ [(𝐴1

+ 𝐴2𝐼)
𝑛−1 − (𝐴1 + 𝐴2𝐼)

𝑛−1] 
= 𝑈,  

as(𝐴1 + 𝐴2𝐼)
𝑛 = 0.This gives the result. 

(4) For (𝐴1 + 𝐴2𝐼)  and (𝐵1 + 𝐵2𝐼)𝑖𝑛𝐹
𝑛×𝑛  with (𝐴1 + 𝐴2𝐼)  nilpotent and 

(𝐵1 + 𝐵2𝐼) nonsingular, show in two different ways that (𝐵1 + 𝐵2𝐼)
−1(𝐴1 + 𝐴2𝐼)(𝐵1 +
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𝐵2𝐼) is nilpotent. 

(i) By direct multiplication;  

(ii) By considering the eigenvalues of(𝐵1 + 𝐵2𝐼)
−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼) . 

 

We have 

{(𝐵1 +𝐵2𝐼)
−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼)} ⋅ {(𝐵1 + 𝐵2𝐼)

−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼)} ⋅⋅⋅ {(𝐵1
+ 𝐵2𝐼)

−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼)} 
= (𝐵1 +𝐵2𝐼)

−1(𝐴1 + 𝐴2𝐼)
𝑛(𝐵1 + 𝐵2𝐼) 

= (𝐵1 + 𝐵2𝐼)
−10(𝐵1 + 𝐵2𝐼) = 0. 

But also, we know from lectures that(𝐵1 +𝐵2𝐼)
−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼)  and 

(𝐴1 + 𝐴2𝐼) have the same eigenvalues, so by Q1, the neutrosophic eigenvalues of (𝐴1 +
𝐴2𝐼) are all 0, and thus so are all the neutrosophic eigenvalues of(𝐵1 + 𝐵2𝐼)

−1(𝐴1 +
𝐴2𝐼)(𝐵1 + 𝐵2𝐼) . Hence (again by Q1)(𝐵1 + 𝐵2𝐼)

−1(𝐴1 + 𝐴2𝐼)(𝐵1 + 𝐵2𝐼) is nilpotent. 

 

5. Product of two real neutrosophic nilpotent matrix 

5.1. Neutrosophic nilpotent transformation 

In the notation established in [29], 𝑉  denotes a vector space of dimension n over an 

arbitrary field, and 𝐿(𝑉) represents the semigroup of linear transformations from 𝑉 to 

itself. Elements of 𝐿(𝑉) are denoted by symbols like (𝛼1 + 𝛼2𝐼),(𝛽1 + 𝛽2𝐼), (𝛾1 + 𝛾2𝐼) 
, etc., and are written on the right of the argument to maintain consistency with 

transformation semigroup theory. If (𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉) , then𝑘𝑒𝑟(𝛼1 + 𝛼2𝐼)  and ran 

(𝛼1 + 𝛼2𝐼 )denote the kernel and range (or image) of 𝛼1 + 𝛼2𝐼, respectively;and we write 

𝑛(𝛼1 + 𝛼2𝐼) = 𝑑𝑖𝑚𝑘𝑒𝑟(𝛼1 + 𝛼2𝐼)  for the nullity of 𝛼1 + 𝛼2𝐼  and 𝑟(𝛼1 + 𝛼2𝐼) =
𝑑𝑖𝑚𝑟𝑎𝑛(𝛼1 + 𝛼2𝐼), for the rank of 𝛼1 + 𝛼2𝐼 . If (𝛼1 + 𝛼2𝐼) ∈ L(V) and there exists 

𝑚 ≥ 1  such that (𝛼1 + 𝛼2𝐼)
𝑚 = 0  but (𝛼1 + 𝛼2𝐼)

𝑚−1 ≠ 0 , we say (𝛼1 + 𝛼2𝐼) is 

nilpotent with index m, and we denote by N(V) the subsemigroup of 𝐿(𝑉) generated by 

all nilpotent elements of 𝐿(𝑉). 
Following [29], we adopt the convention from [22], where {𝑒1𝑖 + 𝑒2𝑖𝐼} stands for 

{(𝑒1𝑖 + 𝑒2𝑖𝐼):𝑖 ∈ 𝑈}, with the subscript i representing an index set U. The subspace of V 

generated by a linearly independent subset {(𝑒1𝑖 + 𝑒2𝑖𝐼)} of V is denoted by 〈𝑒𝑖〉 . 

Sometimes, it is necessary to construct a transformation (𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉)  by first 

choosing a basis {𝑒𝑖}  for V and some elements {𝑢𝑖}  V, and then defining (𝛼1 +
𝛼2𝐼)(𝑒1𝑖 + 𝑒2𝑖𝐼) = (𝑢1𝑖 + 𝑢2𝑖𝐼) for each 𝑖 ∈ 𝑈 and extending this action by linearity to 

the whole of V. To simplify, within context, we say (𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉) is defined by 

letting  

 (𝛼1 + 𝛼2𝐼) = (
(𝑒1𝑖 + 𝑒2𝑖𝐼)
(𝑢1𝑖 + 𝑢2𝑖𝐼)) (2) 

 

given {(𝑒1𝑖 + 𝑒2𝑖𝐼)} and {(𝑢1𝑖 + 𝑢2𝑖𝐼)}. 
Green’s relations are crucial in semigroup theory. Specifically, Green’s 𝒥 relation on L(V) 

satisfies the property: (𝛼1 + 𝛼2𝐼) 𝒥  (𝛽1 + 𝛽2𝐼) if and only if 𝑟(𝛼1 + 𝛼2𝐼) = 𝑟(𝛽1 +
𝛽2𝐼)  ([22], Vol. 1, p. 57, Exercise 6). For each 𝑟 = 1,… , 𝑛 , we denote the 𝒥 -class 

corresponding to 𝑟 as 𝐽𝑟, so 

𝐽𝑟 = {(𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉): 𝑟(𝛼1 + 𝛼2𝐼) = 𝑟}. 
Thus, 𝐽𝑛 equals G(V), the group of all nonsingular elements of L(V). According 
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to [23] Lemma 3.2, every (𝛼1 + 𝛼2𝐼) ∈ 𝐽𝑛 − 1  can be expressed as a product of 

idempotents, each with rank n - 1. Our initial result extends this concept to 1 ≤ 𝑟 ≤ 𝑛 −
2,  T(X), the semigroup of all total transformations of a set X, where |𝑋| = 𝑛  ([26] 

Lemma 5). The proof of this result draws heavily from that of [29] Theorem 3. 

 

Theorem 1. For 1 ≤ 𝑟 ≤ 𝑛 − 1 , every (𝛼1 + 𝛼2𝐼) ∈ 𝐽𝑟 can be expressed as a product 

of idempotents with in 𝐽𝑟.  

 

Theorem 2. Let 𝐽 be an neutrosophic idempotent matrix and 𝑟 ≤ 𝑛 − 1. If 2𝑟 ≤ 𝑛, then 

(𝛼1 + 𝛼2𝐼) can be expressed as the product of two nilpotent neutrosophic matrices with 

rank𝑟 and index 2. However, if 2𝑟 > 𝑛, we can write 𝑟 = 𝑞(𝑛 − 𝑟) + 𝑠, where 𝑞 ≥ 1 

and 0 ≤ 𝑠 ≤ 𝑛 − 𝑟. In this case, (𝛼1 + 𝛼2𝐼) can be expressed as the product of two 

nilpotent neutrosophic matrices with rank 𝑟, each with index 𝑞 + 1 if 𝑠 = 0, or 𝑞 + 2 if 

𝑠 > 0.  

Proof: Let 𝑘𝑒𝑟(𝛼1 + 𝛼2𝐼) = {(𝑒11 + 𝑒21𝐼), … , (𝑒𝑛−𝑟 + 𝑒𝑛−𝑟𝐼)}  and 𝑟𝑎𝑛(𝛼1 + 𝛼2𝐼) =
{(𝑎11 + 𝑎21𝐼))… (𝑎1𝑟 + 𝑎2𝑟𝐼)} . If 2𝑟 ≤ 𝑛  (hence 𝑟 ≤ 𝑛 − 𝑟 ) the required 

decomposition is: 

(𝛼1 + 𝛼2𝐼) = (
{𝐸1,𝑛−𝑟} (𝑎11 + 𝑎21𝐼)) … (𝑎1𝑟 + 𝑎2𝑟𝐼)

0 (𝑎11 + 𝑎21𝐼) … (𝑎1𝑟 + 𝑎2𝑟𝐼)
) 

= (
{𝐸1,𝑟} {𝐸𝑟+1,𝑛−𝑟} (𝑎11 + 𝑎21𝐼) … (𝑎1𝑟 + 𝑎2𝑟𝐼)

0 0 (𝑒11 + 𝑒21𝐼) … (𝑒1𝑟 + 𝑒2𝑟𝐼)
) ∘ 

(
{𝐴1,𝑟} {𝐸𝑟+1,𝑛−𝑟} (𝑒11 + 𝑒21𝐼), … , (𝑒1𝑟 + 𝑒2𝑟𝐼)

0 0 (𝑎11 + 𝑎21𝐼) … (𝑎1𝑟 + 𝑎2𝑟𝐼)
) (3) 

 

where, 𝐸𝑖,𝑗 = (𝑒1𝑖 + 𝑒2𝑖𝐼), … , (𝑒1𝑗 + 𝑒2𝑗𝐼)  and similarly, 𝐴𝑖,𝑗 = (𝑎1𝑖 + 𝑎2𝑖𝐼), … , (𝑎1𝑗 +

𝑎2𝑗𝐼) However,we write (𝛼1 + 𝛼2𝐼) = (𝜆1 + 𝜆2𝐼)(𝜇1 + 𝜇2𝐼) if 𝑟 = 𝑞(𝑛 − 𝑟) + 𝑠  and 

0 ≤ 𝑠 < 𝑛 − 𝑟 ,where (𝜆1 + 𝜆2𝐼), (𝜇1 + 𝜇2𝐼) are defined as follows (and we use 𝑚 =
𝑛 − 𝑟 as an abbreviation):  
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 (𝜆1 + 𝜆2𝐼) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

{𝐸1,𝑚} 0

(𝑎11 + 𝑎21𝐼) (𝑒11 + 𝑒21𝐼)

⋮
(𝑎1𝑚 + 𝑎2𝑚𝐼) (𝑒1𝑚 + 𝑒2𝑚𝐼)
(𝑎1(𝑚+1) + 𝑎2(𝑚+1)𝐼 (𝑎11 + 𝑎21𝐼)

⋮ ⋮
(𝑎2𝑚 + 𝑎2𝑚𝐼) (𝑎1𝑚 + 𝑎2𝑚𝐼)
⋮ ⋮
(𝑎1(𝑞−1)𝑚+1 + 𝑎2(𝑞−1)𝑚+1𝐼) (𝑎1(𝑞−2)𝑚+1 + 𝑎2(𝑞−2)𝑚+1𝐼)

⋮ ⋮
(𝑎1(𝑞−1)𝑚+𝑠 + 𝑎2(𝑞−1)𝑚+𝑠𝐼) (𝑎1(𝑞−2)𝑚+𝑠 + 𝑎2(𝑞−2)𝑚+𝑠𝐼)

⋮ ⋮
(𝑎1𝑞𝑚 + 𝑎2𝑞𝑚𝐼) (𝑎1(𝑞−1)𝑚 + 𝑎2(𝑞−1)𝑚𝐼)

(𝑎1(𝑞𝑚+1 + 𝑎2(𝑞𝑚+1)𝐼) (𝑎1(𝑞−1)𝑚+1 + 𝑎2(𝑞−1)𝑚+1𝐼)

(𝑎1(𝑞𝑚+𝑠) + 𝑎2(𝑞𝑚+𝑠)𝐼) (𝑎1(𝑞−1)𝑚+𝑠 + 𝑎2(𝑞−1)𝑚+𝑠𝐼)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇

  (4) 

 

 

 (𝜇1 + 𝜇2𝐼) =

(

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐴(𝑞−1)𝑚+𝑠+1,𝑞𝑚+𝑠 0

(𝑒11 + 𝑒21𝐼) (𝑎11 + 𝑎21𝐼)

(𝑎1𝑚 + 𝑎2𝑚𝐼) (𝑒1𝑚 + 𝑒2𝑚𝐼)
(𝑎11 + 𝑎21𝐼) (𝑎1(𝑚+1) + 𝑎2(𝑚+1)𝐼

⋮ ⋮
(𝑎1𝑚 + 𝑎2𝑚𝐼) (𝑎2𝑚 + 𝑎2𝑚𝐼)
⋮ ⋮
(𝑎1(𝑞−2)𝑚+1 + 𝑎2(𝑞−2)𝑚+1𝐼) (𝑎1(𝑞−1)𝑚+1 + 𝑎2(𝑞−1)𝑚+1𝐼)

⋮ ⋮
(𝑎1(𝑞−2)𝑚+𝑠 + 𝑎2(𝑞−2)𝑚+𝑠𝐼) (𝑎1(𝑞−1)𝑚+𝑠 + 𝑎2(𝑞−1)𝑚+𝑠𝐼)

⋮ ⋮
(𝑎1(𝑞−1)𝑚 + 𝑎2(𝑞−1)𝑚𝐼) (𝑎1𝑞𝑚 + 𝑎2𝑞𝑚𝐼)

(𝑎1(𝑞−1)𝑚+1 + 𝑎2(𝑞−1)𝑚+1𝐼) (𝑎1(𝑞𝑚+1 + 𝑎2(𝑞𝑚+1)𝐼)

(𝑎1(𝑞−1)𝑚+𝑠 + 𝑎2(𝑞−1)𝑚+𝑠𝐼) (𝑎1(𝑞𝑚+𝑠) + 𝑎2(𝑞𝑚+𝑠)𝐼)

)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇

  (5) 

 

It has been verified that each of these nilpotent neutrosophic elements has an index 

of 𝑞 + 1 or 𝑞 + 2, depending on whether 𝑠 = 0 or 𝑠 > 0. 

We assert that in the aforementioned context, the indices 𝑞 + 1 and 𝑞 + 2 are 

optimal when 2𝑟 > 𝑛 . Specifically, if (𝛼1 + 𝛼2𝐼) ∈ 𝐽𝑟  is a product of nilpotent 

neutrosophic elements in 𝐽𝑟, then their indices must be at least 𝑞 + 1 or 𝑞 + 2, contingent 

upon whether 𝑛 − 𝑟 divides 𝑟 or not. To elaborate, we cite the following result from [28], 

Theorem 11.10. 
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Theorem 3. If (𝐵1 +𝐵2𝐼) is an 𝑛 × 𝑛 nilpotent neutrosophic matrix, then there exists a 

nonsingular neutrosophic matrix (𝑃1 + 𝑃2𝐼) such that 

(𝑃1 + 𝑃2𝐼)(𝐵1 + 𝐵2𝐼)(𝑃1 + 𝑃2𝐼)
−1 = 𝑑𝑖𝑎𝑔(𝐻11 +𝐻21𝐼, 𝐻21 +𝐻22𝐼, … , 𝐻1𝑘 +𝐻2𝐾𝐼) 

where each 𝐻1𝑖 + 𝐻2𝑖𝐼 1 ≤ 𝑖 ≤ 𝑘 is an 𝑛 × 𝑛 upper triangular Jordan matrix with zeros 

on its main diagonal. In particular, the index of 𝐵1 + 𝐵2𝐼 equals the order of the largest 

𝐻1𝑖 +𝐻2𝑖𝐼. 
 

In this way, let (𝐵1 + 𝐵2𝐼) be a 𝑛 × 𝑛 nonzero nilpotent neutrosophic matrix . 

Using the previous notation, the rank of each 𝐻1𝑖 +𝐻2𝑖𝐼 equals 0 (if 𝑛𝑖 = 1) or𝑛𝑖 − 1 

(if𝑛𝑖 > 1 ). Suppose 𝐻11 +𝐻21𝐼, 𝐻12 +𝐻22𝐼, … , 𝐻1𝑘 +𝐻2𝑘𝐼  are the nonzero (𝐻1𝑖 +
𝐻2𝑖𝐼)′𝑠. Then, 

∑
𝑘

𝑖=1
(𝑛𝑖 − 1) = 𝑟 = 𝑟(𝐵1 + 𝐵2𝐼) ≤ 𝑛 − 𝑟. 

that is, 𝑘 ≤ (𝑛 − 𝑟) Furthermore, if the index of each (𝐻1𝑖 +𝐻2𝑖𝐼) is at most 𝑞, then 

𝑟(𝐻1𝑖 +𝐻2𝑖𝐼) ≤ 𝑞 − 1 for 1 ≤ 𝑖 ≤ 𝑘, and we obtain 

𝑟 = 𝑟(𝐵1 + 𝐵2𝐼) ≤∑
𝑘

𝑖=1
(𝑞 − 1) ≤ (𝑞 − 1) ⋅ (𝑛 − 𝑟). 

which is a contradiction if 𝑟 = 𝑞(𝑛 − 𝑟).that is if 𝑟 = 𝑞(𝑛 − 𝑟), then there must exist 

some 𝐻1𝑖 +𝐻2𝑖𝐼 such that its index is at least 𝑞 + 1. Similarly, if 𝑟 = 𝑞(𝑛 − 𝑟) + 𝑠 and 

0 < 𝑠 < 𝑛 − 𝑟, then there must exist some 𝐻1𝑖 +𝐻2𝑖𝐼 such that its index is at least 𝑞 +
2. 

Suppose 𝐴1 + 𝐴2𝐼 is an 𝑛 × 𝑛 nutrosophic matrix with rank 𝑟 ≤ 𝑛 − 1, which 

can be expressed as a product of nilpotent neutrosophic matrices 𝐵1𝑗 + 𝐵2𝑗𝐼, each with 

rank 𝑟 . Based on the earlier remark, consider the following: If 𝑟 = 𝑞(𝑛 − 𝑟) , then 

according to Theorem 3, the Jordan form of 𝐵1𝑗 + 𝐵2𝑗𝐼 must contain some block with 

index at least 𝑞 + 1. Consequently, the index of each 𝐵1𝑗 + 𝐵2𝑗𝐼 in this case is at least 

𝑞 + 1. 

Similarly, if 𝑟 = 𝑞(𝑛 − 𝑟) + 𝑠  where 0 < 𝑠 < 𝑛 − 𝑟  each nilpotent 

neutrosophic matrix 𝐵1𝑗 + 𝐵2𝑗𝐼  must have an index of at least 𝑞 + 2. Therefore, the 

indices 𝑞 + 1 and 𝑞 + 2 in Theorem 2 are shown to be the best possible values under 

these conditions. 

As discussed in Section 1, the structure of the semigroup generated by nilpotent 

matrices in 𝑃1(𝑋) + 𝑃2(𝑋)𝐼 was established in [32], and its characterization depends on 

whether 𝑋 contains an even or odd number of elements. Interestingly, this dependence 

does not arise in the context of 𝐿(𝑉) when dim𝑉 = 𝑛 < 𝒩0. 

 

Corollary 1. If 𝑉 has dimension 𝑛 < 𝒩0, then an element (𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉) is a 

product of neutrosophic nilpotent matrices in 𝐿(𝑉) if and only if the rank of 𝛼1 + 𝛼2𝐼 is 

less than 𝑛. 

 

Incidentally, Hannah and O’Meara [25] demonstrated that in any regular ring, 

every nilpotent element can be expressed as a product of idempotent elements. 

Consequently, in the regular ring 𝐿(𝑉), every nilpotent element belongs to 𝐿𝑛−1 = {𝛼1 +
𝛼2𝐼 ∈ 𝐿(𝑉): 𝑟𝑎𝑛𝑘(𝛼1 + 𝛼2𝐼) ≤ 𝑛 − 1} , indicating 𝑁(𝑉) ⊆ 𝐿𝑛−1 .  𝑁(𝑉) = 𝐿𝑛−1 ,  
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Corollary 1. 

However, it’s important to note that Hannah and O’Meara’s result relies on a 

significant theorem from the theory of regular rings. This method of proving Corollary 1 

does not specify the precise rank and index conditions of the nilpotent elements required 

for the decomposition of an (𝛼1 + 𝛼2𝐼) ∈ 𝐿𝑛−1.  

 

Corollary 2. Every finite neutrosophic semigroup 𝑁(𝑆) containting 𝑛 can be embedded 

into a regular nilpotent-generated semigroup formed by linear transformations of an (𝑛 +
1)-dimensional vector space.  

Proof: Let 𝑁(𝑆)1 (if 𝑁(𝑆)𝑁(𝑆)1 as a basis for an (𝑛 + 1) -dimensional vector space 𝑣. 

Write 𝑁(𝑆) = {(𝑠11 + 𝑠21𝐼), … , (𝑠1𝑛 + 𝑠2𝑛𝐼)}.  𝑡 ∈ 𝑁(𝑆),  𝑝𝑡 ∈ 𝐿(𝑉) 

 𝑝𝑡 = (
(𝑠11 + 𝑠21𝐼) (𝑠12 + 𝑠22𝐼) … (𝑠1𝑛 + 𝑠2𝑛𝐼) 1
0 (𝑠12 + 𝑠22𝐼)𝑡 … (𝑠1𝑛 + 𝑠2𝑛𝐼)𝑡 𝑡 ) (6) 

Clearly, 𝑘𝑒𝑟𝑝𝑡  contains 〈(𝑠11 + 𝑠21𝐼)〉, the subspace generated by 𝑡 , so 𝑝𝑡 ∈
𝑁(𝑉) (the nilpotent elements of 𝐿(𝑉) by Corollary 1. , 〈𝑁(𝑉), {𝑝𝑡}𝑡∈𝑆〉 is the required 

embedding. 

 

Lemma 2. If (𝛼1 + 𝛼2𝐼), (𝛽1 + 𝛽2𝐼) ∈ 𝐿(𝑉) where 𝑑𝑖𝑚𝑉 = 𝑛 < 𝒩0, then 

𝑟𝑎𝑛𝑘((𝛼1 + 𝛼2𝐼)(𝛽1 + 𝛽2𝐼)) ≥ 𝑟𝑎𝑛𝑘(𝛼1 + 𝛼2𝐼) + 𝑟𝑎𝑛𝑘((𝛽1 + 𝛽2𝐼) − 𝑛). 
 

 

 {(𝑐11 + 𝑐21𝐼), … , (𝑐1𝑟 + 𝑐2𝑟𝐼)}   𝑟𝑎𝑛((𝛼1 + 𝛼2𝐼)(𝛽1 + 𝛽2𝐼)) ,  (𝑎1𝑖 + 𝑎2𝑖𝐼)(𝛼1 +
𝛼2𝐼) = (𝑏1𝑖 + 𝑏2𝑖𝐼)  (𝛽1 + 𝛽2𝐼)(𝑏1𝑖 + 𝑏2𝑖𝐼) = (𝑐1𝑖 + 𝑐2𝑖)  1 ≤ 𝑖 ≤ 𝑟. 
 (𝑟𝑎𝑛((𝛼1 + 𝛼2𝐼)(𝛽1 + 𝛽2𝐼))  (𝑟𝑎𝑛((𝛽1 + 𝛽2𝐼))),  (dim𝑊 = 𝑠). 
(𝑠𝑝𝑎𝑛({(𝑏11 + 𝑏21𝐼), … , (𝑏1𝑟 + 𝑏2𝑟}))   (𝑟𝑎𝑛((𝛼1 + 𝛼2𝐼))) ,  (dim𝑄 = 𝑡 .  (𝑛 = 𝑟 +
𝑠 + 𝑝) 𝑛 = dim𝑉  𝑛((𝛽1 + 𝛽2𝐼)) = 𝑝. 

Also, if 𝑊 = 〈{(𝑑11 + 𝑑21𝐼), … , (𝑑1𝑠 + 𝑑2𝑠}〉  and (𝑒1𝑗 + 𝑒2𝑗𝐼)(𝛽1 + 𝛽2𝐼) =

(𝑒1𝑗 + 𝑒2𝑗𝐼) for1 ≤ 𝑗 ≤ 𝑠 then  

𝑄 ∩ 〈{(𝑒11 + 𝑒21𝐼), … , (𝑒1𝑠 + 𝑒2𝑠𝐼), (𝑏11 + 𝑏21𝐼), … , (𝑏1𝑟 + 𝑏2𝑟𝐼)}〉 = 0  

if (𝑢1 + 𝑢2𝐼) ∈ 𝑄  satisfies (𝛼1 + 𝛼2𝐼)(𝑢1 + 𝑢2𝐼) = ∑ (𝑥1𝑗 + 𝑥2𝑗𝐼)(𝑑1𝑗 +

𝑑2𝑗𝐼) + ∑ (𝑦1𝑖 + 𝑦2𝑖𝐼)(𝑏1𝑖 + 𝑏2𝑖𝐼) for some (𝑢1 + 𝑢2𝐼) ∈ 𝑄 and some scalars (𝑥1𝑗 +

𝑥2𝑗𝐼)  and (𝑦1𝑖 + 𝑦2𝑖𝐼) , then ∑ (𝑥1𝑗 + 𝑥2𝑗𝐼)(𝑑1𝑗 + 𝑑2𝑗𝐼) ∈ 𝑟𝑎𝑛((𝛼1 + 𝛼2𝐼)(𝛽1 +

𝛽2𝐼)), (𝑥1𝑗 + 𝑥2𝑗𝐼) = 0  𝑗. ,(𝑢1 + 𝑢2𝐼) ∈ 𝑠𝑝𝑎𝑛({(𝑏11 + 𝑏21𝐼), … , (𝑏1𝑟 + 𝑏2𝑟}), (𝑢1 +

𝑢2𝐼) = 0. ,𝑛 ≥ 𝑟 + 𝑠 + 1, and so 𝑝 ≥ 𝑡. 
 𝑟𝑎𝑛𝑘((𝛼1 + 𝛼2𝐼)) + 𝑟𝑎𝑛𝑘((𝛽1 + 𝛽2𝐼)) − 𝑛 

= (𝑟 + 𝑝) + (𝑠 + 𝑝) − 𝑛 

= 𝑟 + 1 − 𝑝 ≤ 𝑟 
= 𝑟𝑎𝑛𝑘((𝛼1 + 𝛼2𝐼)(𝛽1 + 𝛽2𝐼)). 

 (𝛼1 + 𝛼2𝐼) ∈ 𝐿(𝑉) , let (𝑖(𝛼1 + 𝛼2𝐼))  (𝛼1 + 𝛼2𝐼) . [24],  dim𝑉 = 𝑛   (𝛼1 +
𝛼2𝐼) ∈ 𝐿(𝑉)  𝑖(𝛼1 + 𝛼2𝐼) ≤ 𝑛: ([28],). 

 

Theorem 4. If 𝑎 ∈ 𝐿(𝑉) is a nilpotent operator with rank 𝑟, then 𝑖(𝛼1 + 𝛼2𝐼) ≥
𝑛

𝑛−𝑟
. In 

particular, any nilpotent operator in 𝐽𝑛 has index 𝑛.  
The previous result contrasts sharply with the infinite-dimensional case as shown 



Real Neutrosophic Matrix and Real Nilpotent Neutrosophic Matrix 

99 

 

in ([33], Theorem 3.3), where nilpotent operators with index 2 are adequate to generate 
N (V ). 

 

6. Conclusion 
In conclusion, the study of real nilpotent neutrosophic matrices reveals intriguing 
insights into ma- trix theory and its applications in handling indeterminate data. The 
analysis of their important properties, such as rank, index, and linear transformations, 
underscores their utility in modeling uncertainty and ambiguity. The multiplication of 
two real nilpotent neutrosophic matrices demon- strates complex interactions where 
indeterminacy propagates and impacts the resultant matrix structure. 

Moreover, exploring Green’s relations and their implications within semigroups 
highlights how neutrosophic logic can enrich our understanding of algebraic structures. 
These matrices provide a nuanced approach to representing and manipulating uncertain 
information, offering a flexible tool for decision-making in various fields, including 
economics, engineering, and artificial intelligence. 
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