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Abstract. Differential equations are essential in the field of mathematics, as they can 

describe a wide variety of real-world situations. One of the key benefits of numerical 

methods, in contrast to analytical approaches, is their straightforward application on 

contemporary computers, which facilitates faster solutions than those achieved through 

analytical methods. Moreover, Wavelet analysis has emerged as an exciting area within 

applied and computational numerical studies. The weighted residual methods represent a 

broader set of approaches that encompasses Galerkin's technique. This paper introduces 

the weighted residual method, specifically highlighting Galerkin’s approach for solving 

one-dimensional differential equations, utilizing Euler wavelets as weight functions. The 

effectiveness and validity of the proposed method are illustrated through its application to 

several test problems. 
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                  dimensional differential equations; boundary conditions 
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1. Introduction 

Differential equations are capable of representing almost all systems that experience 

change. For centuries, numerous mathematicians have explored the characteristics of these 

equations, leading to the development of various effective solution methods. Frequently, 

the systems represented by differential equations are either highly intricate or extensive in 

scale, rendering a purely analytical solution impractical. In such complex scenarios, 

computer simulations and numerical techniques prove to be helpful.  In the literature, these 

equations are solved.  Many researchers have attempted to obtain higher accuracy rapidly 

by using numerous methods. Solving such types of equations analytically is possible only 

in very rare cases [1].  Various methods are available in the literature concerning their 

numerical solution [2 – 4]. 

Wavelets represent a recent innovation in signal processing, facilitating the 

examination for local characteristics of complex signals across multiple time scales, 
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particularly in regions that may exhibit non-stationary. Their versatility has led to 

numerous applications across diverse domains, including geophysics, astrophysics, 

telecommunications, imaging, and video compression. Wavelets serve as a fundamental 

basis for innovative techniques in both signal analysis and synthesis, addressing significant 

challenges such as data compression and denoising. The widespread adoption of wavelets 

within both academic and industrial sectors is noteworthy, primarily due to their ability to 

address a wide array of theoretical and practical issues [5]. 

In the field of applied mathematics, the Galerkin method is highly esteemed for its 

efficiency and practicality. Incorporating wavelets into the Galerkin method presents 

significant benefits compared to traditional finite difference and finite element techniques, 

leading to extensive uses in various domains of science and technology.  Thus, the wavelet 

technique serves as a robust alternative to the finite element method to a certain degree. 

Furthermore, the wavelet method provides a valuable option for numerically solving 

differential equations [6–7]. 

This study presents the development of the weighted residual method utilizing 

Euler Wavelets (WRMEW) for addressing one-dimensional differential equations 

numerically. The approach involves representing the solution through Euler wavelets 

characterized by unknown coefficients.  

Galerkin's approach and the characteristics of Euler wavelets allow us to identify the 

unknown coefficients, which in turn leads to the differential equations numerical solution. 

The paper is organized into five main sections. Section 2 focuses on Euler wavelets and 

their application in function approximation. In section 3, the weighted residual method that 

employs Euler wavelets is detailed. Section 4 presents a numerical illustration to support 

the concepts discussed. Finally, section 5 offers a discussion that encapsulates the 

conclusions drawn from the research findings. 

 

2. Euler wavelets and function approximation 

Euler wavelets and Function approximation 
Euler wavelets are defined [8 – 9] as,  
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The following generating functions can be used to define the well-known Euler 

polynomials  mE t
 
of order m. [13] 
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 In perticular, the rational numbers 
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 are the familiar Euler numbers. 

Additionally, the following relation can be used to create the first kind Euler polynomials 

for m 0,1, 2, 3, .. , N   
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 is a binomial coefficient.  

The first few fundamental polynomials are represented explicitly by 
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The following formula is satisfied by these polynomials  
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Over the interval  0 , 1 , Euler polynomials form a full basis. 

If 0t  , the Euler polynomials are  
1 1

(0) 1, (0) , (0) , .......
0 1 32 4

E E E     

For 1 & 3k M  in (2.1) and (2.2), then the Euler wavelets are given by 
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  and so on. 

Function approximation: 

Suppose   2( ) 0 , 1u t L  is expressions of Euler wavelets as: 

 ( ) , ,
1 0

u t c tn m n m
n m




  
 

                                 (2.5) 

Truncating the above infinite series, we get  
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3. Method of solution 

Consider one-dimensional equation of the form, 
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and  boundary conditions :         0 , 1u a u b 
                                           

(3.2) 

Here  f t  is a continuous function  t  and &   are constants. 

From Eq. (3.1),  residual is   written as  
2

( )
2

u u
R t u f t

tt
 

 
   


       (3.3) 

The residual of the equation  R t  is found here. The boundary conditions will be satisfied 

and if   0R t   for the exact solution ( )u t .  

Here, ( )u t  is the trial series solution of Eq. (3.1) in terms of modified Euler wavelets 

defined in [0, 1] and satisfies the boundary conditions. This involves the following 

unknown coefficients 
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where  , 'n mc s  are unknown coefficients are need to be determined. 

By selecting Euler wavelet polynomials of higher degree, the precision of the solution is 

superior.  

Now, differentiate Eq. (3.4) twice w.r.t. t  and in Eq. (3.4) put these values i.e.  

2

, ,
2

u u
u

t t

 

 
.  

To determine the values of , 'n mc s ,  by selecting the weight functions as assumed base 

elements and integrating the residual to zero together with the boundary values [10]. 

i.e.                 
1

0 , 0 , 1 , 2 , ........
1,

0
t R t d t m

m
    

 

From the above equation, the system of linear algebraic equations is derived from the 

equation above and by solving this system, the unknown coefficients are obtained.  The 

numerical solution of Eq. (3.1) was then produced by substituting the unknown coefficients 

in Eq. (3.4). 

To determine the correctness of WRMEW for one-dimensional equations, employ 

the error measure and it will be computed as 

                              
max ( ) ( )maxE u t u tnumer exact  ,  ( )numeru t  and 

( )e xactu t are respectively the numerical and exact solutions. 

 

4. Numerical illustration 

Test problem 4.1. The differential equation is of the form [11],          
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                                      (4.1) 

BCs:     0 0 , 1 0u u                                                        (4.2) 

The method of solution for Eq. (4.1) is described in section 3 as follows: 

The residual of Eq. (4.1) is given by:   
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Here, the weight function should be selected for Euler wavelet bases    1w t t t   

in order to satisfies the boundary conditions i.e. Eq. (4.2), 
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Differentiating Eq. (4.5) . . .w r t t twice and substituting 

2

,
2

u
u

t




 into Eq. (4.3), residual of 

Eq. (4.1) is found. Using the weighted residual approach to go to the subsequent 

considerations if the weight functions in the trial solution are equal to the basis functions: 
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Eq. (4.7) gives a system of algebraic equations with unknown coefficients such as   
1,0

c , 

1,1
c and 

1,2
c .   By solving this system, then find the values for  

1,0
0.2329c  , 

1,1
0.0461c   and 

1,2
0.0027c   .  Obtained the numerical solution on 
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substituting 
1,0

c , 
1,1

c and 
1,2

c in Eq. (4.5).   Table 1 gives the approximate solution, 

exact solution and absolute error, where, as figure 1, shows the approximate and exact 

solution of Eq. (4.1) 
sin( )

( )
sin(1)

t
u t t  . 

Table 1:  Comparison of exact, Ref [11] , WRMEW solution and the absolute 

errors of test problem 4.1 

 
Figure 1: Graphical representation of WRMEW solution with the exact solution for 

test problem 4.1. 

 

Test problem 4.2. Another differential equation of the form [12],  
2

16 72 2
sin( ), 0 1

2 9 9

u
u t t

t
  


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
                    (4.8) 

BCs :     0 0, 1 0u u                                                                     (4.9) 

t Ref [11] WRMEW 
Exact solution Absolute error 

 Ref [11] WRMEW 

0.1 0.0186708 0.0185968 0.0186420 2.88e-05 4.50e-05 

0.2 0.0361655 0.0360428 0.0360977 6.78e-05 5.50e-05 

0.3 0.0512714 0.0511785 0.0511948 7.66e-05 1.60e-05 

0.4 0.0628316 0.0627884 0.0627829 4.87e-05 5.50e-06 

0.5 0.0697452 0.0697454 0.0697470 1.84e-06 1.60e-06 

0.6 0.0709672 0.0710047 0.0710184 5.12e-05 1.40e-05 

0.7 0.0655087 0.0655570 0.0655851 7.64e-05 2.80e-05 

0.8 0.0524367 0.0524753 0.0525025 6.58e-05 2.70e-05 

0.9 0.0308742 0.0308913 0.0309019 2.77e-05 1.10e-05 
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As per explained in section 3 and in test problem 4.1, obtained the values of 

1,0
3.5566c  , 

1,1
0.4401c   and 

1,2
0.3594c   . The numerical solution was 

then derived by substituting the values of  
1,0

c , 
1,1

c and 
1,2

c in Eq. (4.5). The numerical 

solution, the exact solution and absolute error of  Eq. (4.8)  ( ) sinu t t  is presented in 

table 2, where figure 2 gives the graphical representation of the numerical and exact 

solution. 

 

Table 2: Comparison of Ref [12], WRMEW solution with exact solution and the absolute 

errors for test problem 4.2 

 

 
Figure 2: Graphical representation of the WRMEW solution with the exact solution for 

test problem 4.2. 

 

t Ref [12] WRMEW 
Exact solution Absolute error 

 Ref [11] WRMEW 

0.1 0.308930 0.3090056 0.309016 8.69e-05 1.00e-05 

0.2 0.588656 0.5887781 0.588772 8.71e-04 6.10e-06 

0.3 0.809599 0.8095397 0.809016 5.82e-04 5.20e-04 

0.4 0.950632 0.9507637 0.951056 4.25e-04 2.90e-04 

0.5 0.999072 0.9991750 1.000000 9.28e-04 8.20e-04 

0.6 0.950687 0.9507496 0.951056 3.69e-04 3.10e-04 

0.7 0.809697 0.8096150 0.809016 6.80e-04 6.00e-04 

0.8 0.588766 0.5887500 0.587785 9.81e-04 9.60e-04 

0.9 0.309113 0.3089845 0.309016 9.70e-05 3.20e-05 
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Test problem 4.3. One more differential equation of the form [13],  

 
2

4 4cosh 1 , 0 1
2

u
u t

t


   


                    (4.10) 

BCs:     0 0, 1 0u u                                                                    (4.11) 

Section 3 and the earlier problems are followed in order to obtain the values of the unknown 

coefficients i.e. 
1,0

2.2600c   , 
1,1

0.0882c   and 
1,2

0.0720c   . Enter 

the values of 
1,0

c , 
1,1

c and 
1,2

c  in Eq. (4.5) then obtained numerical solution. Figure 3 

shows a graphical representation of the numerical solution with the exact solution of Eq. 

(4.10)    ( ) cosh 2 1 cosh 1u t t   . The numerical solution to the absolute errors is 

represented in Table 3.    

 

Table 3: Comparison of  WRMEW solution and absolute error with the exact solution for 

test problem 4.3. 

 
Figure 3: Graphical representation of the WRMEW solution with the exact solution for 

test problem 4.3. 

 

t WRMEW Exact solution Absolute error 

0.1 -0.2056232 -0.2056457 2.20e-05 

0.2 -0.3576501 -0.3576124 3.80e-05 

0.3 -0.4620069 -0.4620083 1.40e-06 

0.4 -0.5229269 -0.5230139 8.70e-05 

0.5 -0.5429500 -0.5430806 1.30e-04 

0.6 -0.5229233 -0.5230139 9.10e-05 

0.7 -0.4620007 -0.4620083 7.60e-06 

0.8 -0.3576430 -0.3576124 3.10e-05 

0.9 -0.2056179 -0.2056457 2.80e-05 
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Test problem 4.4. Finally, the non-linear differential equation of the form [14] 

   
2

2 2 4
2 cos 2 sin 2 , 0 1

2

u
u t t t

t
  


    


 

     (4.12) 

BCs:          0 0, 1 0u u                                                              (4.13) 

The table 4 represents the WRMEW solution and absolute error with the exact solution of 

Eq. (4.11)  2
( ) sinu t t . The graphical representation of the numerical solution with 

the exact solution is given in figure 4, which was derived as described in section 3. 

 

Table 4: Comparison of  WRMEW solution and absolute error with the exact solution for 

test problem 4.4. 

 
Figure 4: Graphical representation of the WRMEW solution with the exact solution for 

test problem 4.4. 

 

5. Conclusion  

This study introduces a numerical solution for one-dimensional differential equations using 

a weighted residual method that incorporates Euler wavelets. The findings demonstrate that 

t WRMEW Exact solution Absolute error 

0.1 0.096578 0.0954920 1.09E-03 

0.2 0.350889 0.3454920 5.40E-03 

0.3 0.656662 0.6545082 2.15E-03 

0.4 0.9057864 0.9045082 1.28E-03 

0.5 0.9989985 1 1.00E-03 

0.6 0.910045 0.9045082 5.54E-03 

0.7 0.656598 0.6545082 2.09E-03 

0.8 0.346989 0.3454920 1.50E-03 

0.9 0.096834 0.0954920 1.34E-03 



L. M. Angadi 

76 

 

 

this method yields superior numerical solutions compared to previously established 

techniques (Ref [11] and [12]). The results indicate a closer alignment with the exact 

solutions, highlighting the effectiveness of the proposed approach. Additionally, the 

absolute error associated with the weighted residual method utilizing Euler wavelets is 

significantly lower than that of the existing methods, underscoring its potential as a highly 

effective tool for solving one-dimensional differential equations. 
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