Annals of Pure and Applied Mathematics

Vol. 30, No. 1, 2024, 53-66

ISSN: 2279-087X (P), 2279-0888(online)

Published on 30 September 2024

www.researchmathsci.org

DOI: http://dx.doi.org/10.22457/apam.v30n1a05943

Annals of Pure and Applied Mathematics

Forgotten Index of k-Splitting Graphs

Shafiqahmed Yellur^{1*} and Prashant V. Patil²

1,2 Department of Mathematics
Jain College of Engineering, Belagavi- 590014
and Visvesvaraya Technological University,
Belagavi-590018, Karnataka, India.

1Email: shafiqmath15@gmail.com

2Email: prashant66.sdm@gmail.com

*Corresponding author

Received 31 August 2024; accepted 30 September 2024

Abstract. The objective of this paper is to derive explicit formulas for the forgotten index of k-splitting of generalized transformation graphs denoted as $spl_k(G^{ab})$. Subsequently, we also derived analogous expressions for the complements of $spl_k(G^{ab})$.

Keywords: Forgotten index, Generalized transformation graphs, k-Splitting of graphs

AMS Mathematics Subject Classification (2010): 05C05, 05C07, 05C35

1. Introduction

Throughout this paper, we examine undirected, simple, and finite graphs. Let G be (n,m)—graph defined as a graph characterized by the vertex set V(G) and the edge set E(G), where |V(G)| = n and |E(G)| = m, with the elements of V(G) referred to as vertices and the elements of E(G) designated as edges of the graph G. Two vertices are considered adjacent in G if they are connected by a common edge, which is described as being incident to those two vertices. The degree of a vertex u in V(G), represented by $d_G(u)$, quantifies the number of edges that are incident to u. The complement \overline{G} of graph G constitutes a simple graph that retains the same vertex set as G, whereby two vertices u and v are adjacent in \overline{G} if and only if they are non-adjacent in G. For additional graph-theoretic terminologies and definitions, we direct the reader to the reference [13].

The vertices within the molecular graph are representative of the atoms constituting the molecule, while the edges signify the covalent bonds that interconnect these atoms. A topological index is defined as a graph invariant that assigns a unique real number to each molecular graph. A plethora of such descriptors has been examined in the realm of theoretical chemistry and has demonstrated practical applications, particularly within the contexts of Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR)[14, 20]. Topological indices are classified into two principal categories, specifically degree-based indices and distance-based indices. Noteworthy examples of degree-based indices include the first Zagreb index, the second Zagreb index, the forgotten index, the hyper Zagreb index, the Randic index,

the harmonic index, the geometric-arithmetic index, and the redefined third Zagreb index, among others. For a comprehensive exploration of degree-based topological indices, we direct the reader to reference [6, 7, 8, 9, 10]. Among the diverse array of degree-based indices, the first and second Zagreb indices have garnered substantial scholarly attention. In the year 1972, Gutman et al. [7] formally introduced the first and second Zagreb indices pertaining to a graph G. To date, numerous researchers worldwide are delving into these indices, pushing the boundaries of knowledge to advanced methodologies. Subsequently, in 2008, Došlić [5] articulated the definitions of the first and second Zagreb coindices, which pertain to all non-adjacent pairs of vertices. For further insights regarding the Zagreb indices and coindices, as well as their various applications, refer to [2, 10, 15, 16, 17, 19, 23]. In the year 2015, Basavanagoud et al. [3] introduced novel graph operations referred to as generalized transformations denoted as G^{ab} , and derived the formulations for both the first and second Zagreb indices as well as the coindices pertaining to these graphs and their corresponding complements. In 2017, Vaidya et al. [22] proposed a new graph operation termed k-splitting of a graph G and conducted an analysis on the energy associated with this operation.

In the current study, we concentrate on deriving explicit formulations for the forgotten index pertaining to the k-splitting of generalized transformation graphs $spl_k(G^{ab})$. Subsequently, we also derive comparable expressions for the complements of $spl_k(G^{ab})$.

2. Preliminaries

The first Zagreb index $M_1(G)$ [7] and second Zagreb index $M_2(G)$ [7] are defined as

$$M_1(G) = \sum_{u \in V(G)} d_G(u)^2$$
 and $M_2(G) = \sum_{uv \in E(G)} d_G(u) \ d_G(v)$

respectively.

The first Zagreb can also be expressed as [4]

$$M_1(G) = \sum_{uv \in E(G)} [d_G(u) + d_G(v)].$$

Boris Furtula and Ivan Gutman [6] have put forward a degree based topological indices viz., a forgotten topological index which is defined as

$$F(G) = \sum_{u \in V(G)} d_G(u)^3 = \sum_{uv \in E(G)} [d_G(u)^2 + d_G(v)^2].$$

3. Generalized transformation graph G^{ab} and the k-splitting graph

Let G denote a graph characterized by the vertex set V(G) and the edge set E(G), and let α and β represent two elements belonging to the union $V(G) \cup E(G)$. The associativity of the elements α and β is defined as + if they exhibit adjacency or incidence within the graph G; conversely, it is denoted as - in the absence of such a relationship. Let ab signify a 2-permutation of the set $\{+,-\}$. The elements α and β are said to correspond to the initial term a of ab if both entities reside within V(G) or E(G), whereas they

correspond to the subsequent term b of ab if one of the entities is contained in V(G) and the other is situated in E(G). The generalized transformation graph G^{ab} is formulated on the vertex set $V(G) \cup E(G)$. A pair of vertices α and β in G^{ab} is connected by an edge if and only if their associativity within G aligns with the corresponding term of ab. In this context, there exist four distinct graphical transformations of graphs, specifically G^{++} , G^{+-} , G^{-+} , and G^{--} , corresponding to the four unique 2-permutations of the set $\{+,-\}$.

In an alternative formulation, the generalized transformation graph G^{ab} constitutes a graph characterized by the vertex set $V(G) \cup E(G)$, where $\alpha, \beta \in V(G^{ab})$ are considered to be adjacent within G^{ab} if and only if the conditions (i) and (ii) are satisfied:

- (i) $\alpha, \beta \in V(G^{ab})$, with α and β being adjacent in G under the condition that a = +, whereas α and β are non-adjacent in G when a = -.
- (ii) If $\alpha \in V(G)$ and $\beta \in E(G)$, then α and β are incident in G when b = +, while α and β are not incident in G if b = -.

The vertex u of G^{ab} that corresponds to a vertex u of G is designated as a point vertex. Conversely, the vertex e of G^{ab} that corresponds to an edge e of G is termed a line vertex.

The k-splitting of a graph G, denoted as $spl_k(G)$, is derived by augmenting each vertex u of G with k additional vertices, labeled as u', u'', ..., $u^{(k)}$, in such a manner that $u^{(i)}$, where $1 \le i \le k$, is adjacent to every vertex that shares adjacency with u in the original graph G.

Now we present the main results of our work through following sections.

4. Results

4.1. Forgotten Index of $spl_k(G^{++})$

Let G be a (n, m)-graph and $spl_k(G^{++})$ represents k-splitting of G^{++} .

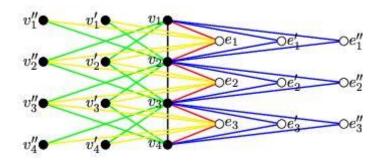


Figure 1: $spl_k(P_4^{++})$: 2-splitting of P_4^{++}

Proposition 1. Let G be a (n, m)-graph. Then

- $(i)d_{spl_k(G^{++})}(v) = 2(k+1)d_G(v)$ where $v \in V(G)$
- $(ii)d_{spl_k(G^{++})}(e) = 2(k+1)$ where $e \in E(G)$
- $(iii)d_{spl_{\nu}(G^{++})}(v') = 2d_{G}(v)$ where $v' \in G^{++}$ due to vertex v in G
- $(iv)d_{snl_k(G^{++})}(e') = 2$ where e' is vertex in k splitting of G^{++} due to edge e in G.

Proposition 2. Let G be a (n,m)-graph. Then order and size of $spl_k(G^{++})$ are (n+m)(k+1) and 3m(2k+1).

Theorem 1. Let G be a (n,m)-graph. Then

$$F(spl_k(G^{++})) = 8(k+1)^2 F(G) + [4+4k^2(k+1)+4k(k+1)^2+4k]F(G) + 8m(k+1)^2 + 8mk + 8mk(k+1)$$

Proof: Partitioning edge set of $spl_k(G^{++})$ as follows:

$$E(spl_k(G^{++})) = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5$$

where,

 $E_1 = \{uv: uv \in E(G)\}$

 $E_2 = \{ue: vertex \ u \ in \ G \ is incident \ to \ edge \ e \ in \ G\}$

 $E_3 = \{uv': vertex\ u\ in\ G\ is\ adjacent\ to\ vertex\ v' \in G^{++}due\ to\ vertex\ v\ inG\}$ $E_4 = \{ue': vertex\ u\ in\ G\ is\ incident\ to\ vertex\ e' \in G^{++}due\ to\ edge\ e\ in\ G\}$ $E_5 = \{u'e: vertex\ u' \in G^{++}due\ to\ vertex\ u\ in\ G\ incident\ to\ edge\ e\ in\ G\}$

Clearly
$$|E_1| = m$$
, $|E_2| = 2m$, $|E_3| = 2mk$, $|E_4| = 2mk$ and $|E_5| = 2mk$

Consider,

$$\begin{split} F \big(spl_k(G^{++}) \big) &= \sum_{uv \in \left(E \left(spl_k(G^{++}) \right) \right)} \left[d_{spl_k(G^{++})}(u)^2 + d_{spl_k(G^{++})}(v)^2 \right] \\ &= \sum_{uv \in E_1} \left[d_{spl_k(G^{++})}(u)^2 + d_{spl_k(G^{++})}(v)^2 \right] \\ &+ \sum_{ue \in E_2} \left[d_{spl_k(G^{++})}(u)^2 + d_{spl_k(G^{++})}(e)^2 \right] \\ &+ \sum_{uv' \in E_3} \left[d_{spl_k(G^{++})}(u)^2 + d_{spl_k(G^{++})}(v')^2 \right] \\ &+ \sum_{ue \in E_4} \left[d_{spl_k(G^{++})}(u)^2 + d_{spl_k(G^{++})}(e')^2 \right] \\ &+ \sum_{u'e \in E_5} \left[d_{spl_k(G^{++})}(u')^2 + d_{spl_k(G^{++})}(e')^2 \right] \end{split}$$

$$\begin{split} F \big(spl_k(G^{++}) \big) &= \sum_{uv \in E_1} \left[4(k+1)^2 d_G(u)^2 + 4(k+1)^2 d_G(v)^2 \right] \\ &+ \sum_{uv \in E_2} \left[4(k+1)^2 d_G(u)^2 + 4(k+1)^2 \right] \end{split}$$

$$\begin{split} &+\sum_{uv\in E_3}\left[4(k+1)^2d_G(u)^2+4d_G(v)^2\right]+\sum_{uv\in E_4}\left[4(k+1)^2d_G(u)^2+4\right]\\ &+\sum_{ue\in E_5}\left[4d_G(u)^2+4(k+1)^2\right]\\ &=4(k+1)^2\sum_{uv\in E_1}\left[d_G(u)^2+d_G(v)^2\right]+4(k+1)^2\sum_{uv\in E_2}d_G(u)^2\\ &+4(k+1)^2\sum_{uv\in E_2}1+\sum_{uv\in E_3}\left[4(k^2+2k+1)d_G(u)^2+4d_G(v)^2\right]\\ &+4(k+1)^2\sum_{uv\in E_4}d_G(u)^2+4\sum_{uv\in E_4}1+4\sum_{uv\in E_5}d_G(u)^2+4(k+1)^2\sum_{uv\in E_5}1\\ &=4(k+1)^2\sum_{uv\in E_G}\left[d_G(u)^2+d_G(v)^2\right]+4(k+1)^2\sum_{u\in V(G)}d_G(u)^2\cdot d_G(u)\\ &+4(k+1)^2\sum_{uv\in E_2}1+4\sum_{uv\in E(G)}\left[d_G(u)^2+d_G(v)^2\right]\\ &+4k(k+2)(k)\sum_{u\in V(G)}d_G(u)^2\cdot d_G(u)+4k(k+1)^2\sum_{u\in V(G)}d_G(u)^2\cdot d_G(u)\\ &+4\sum_{uv\in E_4}1+4k\sum_{u\in V(G)}d_G(u)^2\cdot d_G(u)+4(k+1)^2\sum_{u\in V(G)}1\\ &=4(k+1)^2F(G)+4(k+1)^2F(G)+8m(k+1)^2+4F(G)\\ &+4k^2(k+1)F(G)+4k(k+1)^2F(G)+8m(k+1)^2+4k(G)+8mk(k+1)\\ &=8(k+1)^2F(G)+[4+4k^2(k+1)+4k(k+1)^2+4k]F(G)\\ &+8m(k+1)^2+8mk+8mk(k+1) \end{split}$$

4.2. Forgotten Index of $spl_k(G^{+-})$

Let G be a (n, m)-graph and $spl_k(G^{+-})$ represent k-splitting of G^{+-} .

Proposition 3. Let G be a (n,m)-graph. Then

$$(i)d_{spl_{\nu}(G^{+-})}(v) = m(k+1)$$
 where $v \in V(G)$

$$(ii)d_{spl_{\nu}(G^{+-})}(e) = (n-2)(k+1)$$
 where $e \in E(G)$

$$(iii)d_{spl_k(G^{+-})}(v') = m$$
 where $v' \in G^{+-}$ due to vertex v in G

$$(iv)d_{spl_k(G^{+-})}(e') = (n-2)$$
 where $e' \in k$ – splitting of G^{+-} due to edge e in G .

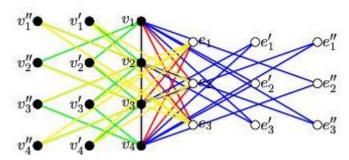


Figure 2: $spl_k(P_4^{+-}):2-splitting of P_4^{+-}$

Proposition 4. Let G be a (n,m)-graph. Then order and size of $spl_k(G^{+-})$ are (n+m)(k+1) and m(n-1)(2k+1).

Theorem 2. Let G be a (n, m)-graph. Then

$$F(spl_k(G^{+-})) = 2m^3[(k+1)^2 + k((k+1)^2 + 1)] + m(n-2)[(m^2 + (n-2)^2)(k+1) + k([m^2(k+1)^2 + (n-2)^2] + [m^2 + (n-2)^2(k+1)^2])]$$

Proof: Partitioning edge set of $spl_k(G^{+-})$ as follows:

$$E(spl_k(G^{+-})) = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5$$

where

 $E_1 = \{uv : uv \in E(G)\}$

 $E_2 = \{ue: vertex u \text{ in G is not incident to edge e in G}\}\$

 $E_3 = \{uv' : \text{vertex u in G is adjacent to vertex } v' \in G^{+-} \text{due to vertex v in G} \}$ $E_4 = \{ue' : \text{vertex u in G is incident to vertex } e' \in G^{+-} \text{due to edge e in G} \}$ $E_5 = \{u'e : \text{vertexu'} \in G^{+-} \text{duetovertexu} \in \text{GnotincidenttoedgeeinG} \}$

$$|E_1| = m$$
, $|E_2| = m(n-2)$, $|E_3| = 2mk$, $|E_4| = mk(n-2)$ and $|E_5| = mk(n-2)$.

$$\begin{split} F\big(spl_k(G^{+-})\big) &= \sum_{uv \in \big(E(spl_k(G^{+-}))\big)} \left[d_{spl_k(G^{+-})}(u)^2 + d_{spl_k(G^{+-})}(v)^2\right] \\ &= \sum_{uv \in E_1} \left[d_{spl_k(G^{\pm})}(u)^2 + d_{spl_k(G^{\pm})}(v)^2\right] \\ &+ \sum_{ue \in E_2} \left[d_{spl_k(G^{+-})}(u)^2 + d_{spl_k(G^{+-})}(e)^2\right] \\ &+ \sum_{uv' \in E_2} \left[d_{spl_k(G^{\pm})}(u)^2 + d_{spl_k(G^{\pm})}(v')^2\right] \end{split}$$

$$\begin{split} &+\sum_{uer\in E_4} \left[d_{spl_k(G^{+-})}(u)^2 + d_{spl_k(G^{+-})}(e')^2\right] \\ &+\sum_{ur\in E_5} \left[d_{spl_k(G^{+-})}(u')^2 + d_{spl_k(G^{+-})}(e)^2\right] \\ &= \sum_{uv\in E_1} \left[m^2(k+1)^2 + m^2(k+1)^2\right] \\ &+\sum_{ue\in E_2} \left[m^2(k+1)^2 + (n-2)^2(k+1)^2\right] \\ &+\sum_{ur\in E_3} \left[m^2(k+1)^2 + m^2\right] + \sum_{uer\in E_4} \left[m^2(k+1)^2 + (n-2)^2\right] \\ &+\sum_{ur\in E_5} \left[m^2 + (n-2)^2(k+1)^2\right] \\ &= 2m^2(k+1)^2 \sum_{uv\in E_1} 1 + (m^2 + (n-2)^2)(k+1) \sum_{ue\in E_2} 1 \\ &+m^2\left[(k+1)^2 + 1\right] \sum_{uv\in E_3} 1 + \left[m^2(k+1)^2 + (n-2)^2\right] \sum_{uer\in E_4} 1 \\ &+\left[m^2 + (n-2)^2(k+1)^2\right] \sum_{u'e\in E_5} 1 \\ &= 2m^3(k+1)^2 + m(n-2)(m^2 + (n-2)^2)(k+1) + 2km^3\left[(k+1)^2 + 1\right] \\ &+mk(n-2)\left[m^2(k+1)^2 + (n-2)^2\right] + mk(n-2)\left[m^2 + (n-2)^2(k+1)^2\right] \\ &= 2m^3\left[(k+1)^2 + k((k+1)^2 + 1)\right] + m(n-2)\left[(m^2 + (n-2)^2)(k+1)\right] \end{split}$$

4.3. Forgotten Index of $spl_k(G^{-+})$

Let G be a (n, m)-graph and $spl_k(G^{-+})$ represents k-splitting of G^{-+} .

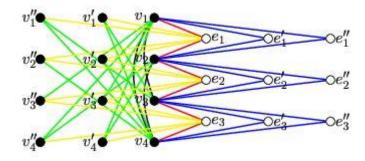


Figure 3: $spl_k(P_4^{-+}):2-splitting \ of \ P_4^{-+}$

Proposition 5. Let G be a (n,m)-graph. Then

$$(i)d_{spl_k(G^{-+})}(v) = (n-1)(k+1)$$
 where $v \in V(G)$

$$(ii)d_{spl_{\nu}(G^{-+})}(e) = 2(k+1)$$
 where $e \in E(G)$

$$(iii)d_{snl_{\nu}(G^{-+})}(v') = (n-1)$$
 where $v' \in G^{-+}$ due to vertex v in G

$$(iv)d_{Spl_{*}(G^{-+})}(e') = 2$$
 where $e' \in G^{-+}$ due to edge e in G

Proposition 6. Let G be a (n,m)-graph. Then order and size of $spl_k(G^{-+})$ are (n+m)(k+1) and $\frac{1}{2}[n(n-1)+2m](2k+1)$.

Theorem 3. Let G be a (n, m)-graph. Then

$$F(spl_k(G^{-+})) = [2(n-1)^2(k+1)^2 + (n-1)^2[(k+1)^2 + 1]\left(\frac{n(n-1)}{2} - m\right) + 2m\{(k+1)^2[(n-1)^2 + 4] + k([(n-1)^2(k+1)^2 + 4] + [(n-1)^2 + 4(k+1)^2])\}$$

Proof: Partitioning edge set of $spl_k(G^{-+})$ as follows:

$$E(spl_k(G^{-+})) = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5$$

where

$$E_1 = \{uv : uv \notin E(G)\}$$

$$E_2 = \{ue: vertex \ u \ in \ G \ is incident \ to \ edge \ e \ in \ G\}$$

$$\begin{split} E_2 &= \{ue : vertex \ u \ in \ G \ is \ incident \ to \ edge \ e \ in \ G \} \\ E_3 &= \{uv' : vertex \ u \in G \ is \ not \ adjacent \ to \ vertex \ v' \in G \ is \ not \ adjacent \ to \ not \ adjacent \ not \ not \ adjacent \ not \ adjacent$$

 G^{-+} due to vertex v in G}

$$E_4 = \{ue' : \text{vertex } u \in G \text{ is incident to vertex } e' \in G^{-+} \text{due to edge e in } G\}$$

$$E_5 = \{u'e : \text{vertex } u' \in G^{-+} \text{due to vertex } u \in G \text{ is not incident to edge e in } G\}$$

Clearly,

$$|E_1| = \frac{n(n-1)}{2} - m, |E_2| = 2m, |E_3| = 2k \left(\frac{n(n-1)}{2} - m\right),$$

 $|E_4| = 2mk$ and $|E_5| = 2mk.$

Consider,

$$\begin{split} F \big(spl_k(G^{-+}) \big) &= \sum_{uv \in \left(E \left(spl_k(G^{-+}) \right) \right)} \left[d_{spl_k(G^{-+})}(u)^2 + d_{spl_k(G^{-+})}(v)^2 \right] \\ &= \sum_{uv \in E_1} \left[d_{spl_k(G^{\mp})}(u)^2 + d_{spl_k(G^{\mp})}(v)^2 \right] \\ &+ \sum_{ue \in E_2} \left[d_{spl_k(G^{-+})}(u)^2 + d_{spl_k(G^{-+})}(e)^2 \right] \\ &+ \sum_{uv' \in E_3} \left[d_{spl_k(G^{\mp})}(u)^2 + d_{spl_k(G^{\mp})}(v')^2 \right] \\ &+ \sum_{uer \in E_4} \left[d_{spl_k(G^{-+})}(u)^2 + d_{spl_k(G^{-+})}(e')^2 \right] \end{split}$$

$$+ \sum_{u'e \in E_5} \left[d_{spl_k(G^{-+})}(u')^2 + d_{spl_k(G^{-+})}(e)^2 \right]$$

$$\begin{split} F \Big(spl_k(G^{-+}) \Big) &= \sum_{uv \in E_1} \left[(n-1)^2 (k+1)^2 + (n-1)^2 (k+1)^2 \right] \\ &+ \sum_{uv \in E_2} \left[(n-1)^2 (k+1)^2 + 4(k+1)^2 \right] \\ &+ \sum_{uv \in E_3} \left[(n-1)^2 (k+1)^2 + (n-1)^2 \right] \\ &+ \sum_{ue \in E_4} \left[(n-1)^2 (k+1)^2 + 4 \right] + \sum_{uv \in E_5} \left[(n-1)^2 + 4(k+1)^2 \right] \\ &= 2(n-1)^2 (k+1)^2 \sum_{uv \in E_1} 1 + (k+1)^2 \left[(n-1)^2 + 4 \right] \sum_{ue \in E_2} 1 \\ &+ (n-1)^2 \left[(k+1)^2 + 1 \right] \sum_{uv \in E_3} 1 + \left[(n-1)^2 (k+1)^2 + 4 \right] \sum_{ue \in E_4} 1 \\ &+ \left[(n-1)^2 + 4(k+1)^2 \right] \sum_{uv \in E_5} 1 \\ &= 2(n-1)^2 (k+1)^2 \left(\frac{n(n-1)}{2} - m \right) + 2m(k+1)^2 \left[(n-1)^2 + 4 \right] \\ &+ (n-1)^2 \left[(k+1)^2 + 1 \right] \left(\frac{n(n-1)}{2} - m \right) + 2mk \left[(n-1)^2 (k+1)^2 + 4 \right] \\ &+ 2mk \left[(n-1)^2 + 4(k+1)^2 \right] \\ &= \left[2(n-1)^2 (k+1)^2 + (n-1)^2 \left[(k+1)^2 + 1 \right] \left(\frac{n(n-1)}{2} - m \right) \\ &+ 2m \{ (k+1)^2 \left[(n-1)^2 + 4 \right] + k (\left[(n-1)^2 (k+1)^2 + 4 \right] \\ &+ \left[(n-1)^2 + 4(k+1)^2 \right] \right] \end{split}$$

4.4. Forgotten Index of $spl_k(G^{--})$

Let G be a (n, m)-graph and $spl_k(G^{--})$ represents k-splitting of G^{--} .

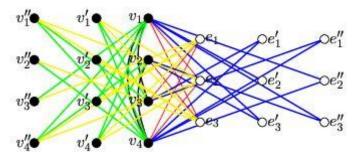


Figure 4: $spl_k(P_4^{--}):2-splitting of P_4^{--}$

Proposition 5. Let G be a (n,m)-graph. Then

$$(i)d_{spl_k(G^{--})}(v) = (n+m-1-2d_G(v))(k+1)$$
 where $v \in V(G)$

Proposition 6. Let G be a (n,m)-graph. Then order and size of $spl_k(G^{--})$ are (n+m)(k+1) and $\frac{1}{2}[n(n-1)+2m(n-3)](2k+1)$.

Theorem 4. Let G be a (n,m)-graph. Then

$$\begin{split} F\big(spl_k(G^{--})\big) &= [12(k+1)^2 + 12 - 12(n+m-1) - 8(k+1)^2(n+m-1) \\ &- 4(k+1)^2(n+m-1)M_1(G) + [(n+m-1)^2 \\ &+ (n-2)^2(k+1)^2]m(n-2) + [(n+m-1)^2(k+1)^2 + (n-2)^2 \\ &+ (n+m-1)^2 + (n-2)^2]mk(n-2) \end{split}$$

Proof: Partitioning edge set of $spl_k(G^{--})$ as follows:

$$E(spl_k(G^{--})) = E_1 \cup E_2 \cup E_3 \cup E_4 \cup E_5$$

where

 $E_1 = \{uv : uv \notin E(G)\}$

 $E_2 = \{ue : vertex u \text{ in G is not incident to edge e in G}\}$

 $E_3 = \{uv' : \text{vertex } u \in G \text{ is not adjacent to vertex } v' \in G^{--} \text{due to vertex } v \text{ in } G\}$

 $E_4 = \{ue' : \text{vertex } u \in G \text{ is not incident to vertex } e' \in G^{--} \text{due to edge e in } G\}$

 $E_5 = \{u'e : vertexu' \in G^{--}duetovertexu \in GisnotincidenttoedgeeinG\}$

Clearly,

$$|E_1| = \frac{n(n-1)}{2} - m$$
, $|E_2| = m(n-2)$, $|E_3| = 2k\left(\frac{n(n-1)}{2} - m\right)$, $|E_4| = mk(n-2)$ and $|E_5| = mk(n-2)$.

Consider,

$$\begin{split} F\big(spl_k(G^{--})\big) &= \sum_{uv \in \left(E(spl_k(G^{--}))\right)} \left[d_{spl_k(G^{--})}(u)^2 + d_{spl_k(G^{--})}(v)^2\right] \\ &= \sum_{uv \in E_1} \left[d_{spl_k(G^{--})}(u)^2 + d_{spl_k(G^{--})}(v)^2\right] \\ &+ \sum_{ue \in E_2} \left[d_{spl_k(G^{--})}(u)^2 + d_{spl_k(G^{--})}(e)^2\right] \\ &+ \sum_{uv \in E_3} \left[d_{spl_k(G^{--})}(u)^2 + d_{spl_k(G^{--})}(v')^2\right] \\ &+ \sum_{ue' \in E_4} \left[d_{spl_k(G^{--})}(u)^2 + d_{spl_k(G^{--})}(e')^2\right] \\ &+ \sum_{uv \in E_4} \left[d_{spl_k(G^{--})}(u')^2 + d_{spl_k(G^{--})}(e)^2\right] \end{split}$$

$$\begin{split} F \big(spl_k(G^{--}) \big) &= \sum_{uv \in E_1} [(n+m-1-2d_G(u))^2(k+1)^2 + (n+m-1-2d_G(v))^2(k+1)^2] \\ &+ \sum_{uv \in E_2} [(n+m-1-2d_G(u))^2 + (n-2)^2(k+1)^2] \\ &+ \sum_{uv \in E_3} [(n+m-1-2d_G(u))^2(k+1)^2 + (n+m-1-2d_G(v))^2] \\ &+ \sum_{uv \in E_5} [(n+m-1-2d_G(u))^2(k+1)^2 + (n-2)^2] \\ &+ \sum_{uv \in E_5} [(n+m-1-2d_G(u))^2 + (n-2)^2] \\ &= (k+1)^2 \sum_{uv \in E_1} [(n+m-1-2d_G(u))^2 + (n+m-1-2d_G(v))^2] \\ &+ \sum_{uv \in E_2} [(n+m-1-2d_G(u))^2 + (n-2)^2(k+1)^2] \\ &+ \sum_{uv \in E_3} [(n+m-1-2d_G(u))^2(k+1)^2 + (n+m-1-2d_G(v))^2] \\ &+ \sum_{uv \in E_5} [(n+m-1-2d_G(u))^2(k+1)^2 + (n-2)^2] \\ &+ \sum_{uv \in E_5} [(n+m-1-2d_G(u))^2 + (n-2)^2] \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u) \\ &+ (n+m-1)^2 + 4d_G(v)^2 - 4(n+m-1)d_G(v)] \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(v)] \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(v)] \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ (n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1)^2 \\ &+ \sum_{uv \in E_5} [(n+m-1)^2 + 4d_G(u)^2 - 4(n+m-1)d_G(u)(k+1$$

$$\begin{split} F\big(spl_k(G^{--})\big) &= 2(k+1)^2(n+m-1)^2\sum_{uv\notin E} 1 + 4(k+1)^2\sum_{uv\notin E} \left[d_G(u)^2 + d_G(v)^2\right] \\ &-4(k+1)^2(n+m-1)\sum_{uv\notin E} \left[d_G(u) + d_G(v)\right] \\ &+ (n+m-1)^2\sum_{uv\in E_2} 1 + 4\sum_{ue\in E_2} d_G(u)^2 - 4(n+m-1)\sum_{uv\notin E_3} d_G(u) \\ &+ (n-2)^2(k+1)^2\sum_{uv\in E_3} 1 + (n+m-1)^2[(k+1)^2+1]\sum_{uv\notin E_3} 1 \\ &+ 4(k+1)^2\sum_{uv\in E_3} d_G(u)^2 - 4(k+1)^2(n+m-1)\sum_{uv\notin E_3} d_G(u) \\ &+ 4\sum_{uv\notin E_3} d_G(v)^2 - 4(n+m-1)\sum_{uv\notin E_4} d_G(v)\right] \\ &+ (n+m-1)^2(k+1)^2\sum_{ue\in E_4} 1 + 4(k+1)^2\sum_{uv\in E_4} d_G(u)^2 \\ &- 4(k+1)^2(n+m-1)\sum_{uv\in E_5} d_G(u) + (n-2)^2\sum_{uv\in E_4} 1 \\ &+ (n+m-1)^2\sum_{uv\in E_5} 1 + 4\sum_{uv\in E_5} d_G(u)^2 \\ &- 4(n+m-1)\sum_{uv\in E_5} d_G(u) + (n-2)^2\sum_{uv\in E_5} 1 \end{split}$$

$$F\big(spl_k(G^{--})\big) = 2(k+1)^2(n+m-1)^2\prod_{u\in V(G)} d_G(u)^2 + (n+m-1)^2m(n-2) + 4F(G) \\ &- 4(k+1)^2(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2(k+1)^2m(n-2) \\ &+ (n+m-1)^2[(k+1)^2+1]2k\left[\frac{n(n-1)}{2}-m\right] + 4(k+1)^2F(G) \\ &- 4(k+1)^2(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + 4F(G) \\ &- 4(n+m-1)\sum_{v\in V(G)} d_G(v)^2 + (n+m-1)^2(k+1)^2mk(n-2) \\ &+ 4(k+1)^2F(G) - 4(k+1)^2(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + 4F(G) \\ &- 4(n+m-1)\sum_{v\in V(G)} d_G(v)^2 + (n+m-1)^2(k+1)^2mk(n-2) \\ &+ 4(k+1)^2F(G) - 4(k+1)^2(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + 4F(G) \\ &- 4(n+m-1)\sum_{v\in V(G)} d_G(v)^2 + (n+m-1)^2(k+1)^2mk(n-2) \\ &+ (n-2)^2mk(n-2) + (n+m-1)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) + 4F(G) \\ &- 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) \\ &+ 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) \\ &+ 4(n+m-1)\sum_{u\in V(G)} d_G(u)^2 + (n-2)^2mk(n-2) \\ &+ 4(n+m-1)\sum_{u\in V(G)}$$

$$\begin{split} F\big(spl_k(G^{--})\big) &= 2(k+1)^2(n+m-1)^2 \left[\frac{n(n-1)}{2} - m\right] + 4(k+1)^2 F(G) \\ &- 4(k+1)^2(n+m-1) M_1(G) + (n+m-1)^2 m(n-2) + 4F(G) \\ &- 4(n+m-1) F(G) + (n-2)^2(k+1)^2 m(n-2) \\ &+ (n+m-1)^2 [(k+1)^2 + 1] 2k \left[\frac{n(n-1)}{2} - m\right] + 4(k+1)^2 F(G) \\ &- 4(k+1)^2(n+m-1) F(G) + 4F(G) - 4(n+m-1) F(G) \\ &+ (n+m-1)^2(k+1)^2 m k(n-2) + 4(k+1)^2 F(G) \\ &- 4(k+1)^2(n+m-1) F(G) + (n-2)^2 m k(n-2) \\ &+ (n+m-1)^2 m k(n-2) + 4F(G) \\ &- 4(n+m-1) F(G) + (n-2)^2 m k(n-2) \\ F\big(spl_k(G^{--})\big) &= [2(k+1)^2(n+m-1)^2 + (n+m-1)^2 [(k+1)^2 \\ &+ 1] 2k \Big[\frac{n(n-1)}{2} - m\Big] \\ &+ [12(k+1)^2 + 12 - 12(n+m-1) - 8(k+1)^2(n+m-1) \\ &- 4(k+1)^2(n+m-1) M_1(G) + [(n+m-1)^2 \\ &+ (n-2)^2(k+1)^2] m(n-2) + [(n+m-1)^2(k+1)^2 \\ &+ (n-2)^2 + (n+m-1)^2 + (n-2)^2] m k(n-2) \end{split}$$

5. Conclusion

In this paper, we derived explicit formulations for the forgotten index pertaining to the k-splitting of generalized transformation graphs $spl_k(G^{ab})$. Subsequently, we also derived comparable expressions for the complements of $spl_k(G^{ab})$.

Acknowledgements: We grateful to the reviewers for their critical suggestions and corrections for the improvement of the paper.

Conflict of interest. The authors declare no conflicts of interest.

Author's Contributions: All the authors equally contributed.

REFERENCES

- 1. A. R. Ashrafi, T. Došlić and A. Hamzeh, The Zagreb coindices of graph operations, *Discr. Appl. Math.*, 158 (2010) 1571–1578.
- 2. M. Azari and A. Iranmanesh, Chemical graphs constructed from rooted product and their Zagreb indices, *MATCH Commun. Math. Comput. Chem.*, 70 (2013) 901–919.
- 3. B. Basavanagoud, I. Gutman and V. R. Desai, Zagreb indices of generalized transformation graphs and their complements, *Kragujevac J. Sci.*, 37 (2015) 99–112.
- 4. T. Došlić, B. Furtula, A. Graovac, I. Gutman, S. Moradi and Z. Yarahmadi, On vertex-degree-based molecular structure descriptors, *MATCH Commun. Math. Comput. Chem.*, 66 (2011) 613–626.
- 5. T. Došlić, Vertex-weighted Wiener polynomials for composite graphs, *Ars Math. Contemp.*, 1 (2008) 66–80.
- 6. B. Furtula and I. Gutman, A forgotten topological index, *J. Math. Chem.*, 53 (2015) 1184–1190.
- 7. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals. Total π -electron energy of alternant hydrocarbons, *Chem. Phys. Lett.*, 17 (1972) 535–538.

- 8. I. Gutman, B. Ruščić, N. Trinajstić and C. F. Wilcox, Graph theory and molecular orbitals. XII. Acyclic polyenes, *J. Chem. Phys.*, 62 (1975) 3399–3405.
- 9. I. Gutman, Degree-based topological indices, Croat. Chem. Acta, 86 (2013) 351–361.
- 10. I. Gutman, B. Furtula, Ž. Kovijanić Vukićević and G. Popivoda, On Zagreb indices and coindices, *MATCH Commun. Math. Comput. Chem.*, 74 (2015) 5–16.
- 11. I. Gutman and Ž. Tomović, On the application of line graphs in quantitative structure-property studies, *J. Serb. Chem. Soc.*, 65 (2000) 577–580.
- 12. I. Gutman and Ž. Tomović, More on the line graph model for predicting physicochemical properties of alkanes, *ACH Models Chem.*, 137 (2000) 439–445.
- 13. F. Harary, Graph Theory, Addison-Wesley, Reading, 1969.
- 14. I. Gutman and O.E. Polansky, *Mathematical Concepts in Organic Chemistry*, Springer, Berlin, 1986.
- 15. M.H. Khalifeh, H. Yousefi-Azari and A.R. Ashrafi, The first and second Zagreb indices of some graph operations, *Discr. Appl. Math.*, 157 (2009) 804–811.
- 16. T. Mansour and C. Song, The a and (a,b)-Analogs of Zagreb indices and coindices of graphs, *Int. J. Combin.*, 2012.
- 17. S. Nikolić, G. Kovaćević, A. Milićević and N. Trinajstić, The Zagreb indices 30 years after, *Croat. Chem. Acta*, 76 (2003) 113–124.
- 18. P. S. Ranjini, V. Lokesha and A. Usha, Relation between phenylene and hexagonal squeeze using harmonic index, *Int. J. Graph Theory*, 1 (2013) 116–121.
- 19. G. Su, L. Xiong and L. Xu, The Nordhaus-Gaddum-type inequalities for the Zagreb index and coindex of graphs, *Appl. Math. Lett.*, 25 (2012) 1701–1706.
- 20. R. Todeschini and V. Consonni, *Molecular Descriptors for Chemoinformatics*, Wiley-VCH, Weinheim, 2009.
- 21. Ž. Tomović and I. Gutman, Modeling boiling points of cycloalkanes by means of iterated line graph sequences, *J. Chem. Inf. Comput. Sci.*, 41 (2001) 1041–1045.
- 22. S. K. Vaidya and K. M. Popat, Energy of *k*-Splitting and *k*-Shadow Graphs, *Far East J. Math. Sci.*, 102 (2017) 1571–1578.
- 23. M. Wang and H. Hua, More on Zagreb coindices of composite graphs, *Int. Math. Forum*, 7 (2012) 669–673.