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1. Introduction

Throughout this paper, we examine undirected, simple, and finite graphs. Let G be
(n,m) —graph defined as a graph characterized by the vertex set V(G) and the edge set
E(G), where |V(G)] =n and |E(G)| = m, with the elements of V(G) referred to as
vertices and the elements of E(G) designated as edges of the graph G. Two vertices are
considered adjacent in G if they are connected by a common edge, which is described as
being incident to those two vertices. The degree of a vertex u in V(G), represented by

d (u), quantifies the number of edges that are incident to u. The complement G of graph
G constitutes a simple graph that retains the same vertex set as G, whereby two vertices u

and v are adjacent in G if and only if they are non-adjacent in G. For additional graph-
theoretic terminologies and definitions, we direct the reader to the reference [13].

The vertices within the molecular graph are representative of the atoms
constituting the molecule, while the edges signify the covalent bonds that interconnect
these atoms. A topological index is defined as a graph invariant that assigns a unique real
number to each molecular graph. A plethora of such descriptors has been examined in the
realm of theoretical chemistry and has demonstrated practical applications, particularly
within the contexts of Quantitative Structure-Activity Relationship (QSAR) and
Quantitative Structure-Property Relationship (QSPR)[14, 20]. Topological indices are
classified into two principal categories, specifically degree-based indices and distance-
based indices. Noteworthy examples of degree-based indices include the first Zagreb index,
the second Zagreb index, the forgotten index, the hyper Zagreb index, the Randic index,
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the harmonic index, the geometric-arithmetic index, and the redefined third Zagreb index,
among others. For a comprehensive exploration of degree-based topological indices, we
direct the reader to reference[6, 7, 8, 9, 10]. Among the diverse array of degree-based
indices, the first and second Zagreb indices have garnered substantial scholarly attention.
In the year 1972, Gutman et al. [7] formally introduced the first and second Zagreb indices
pertaining to a graph G. To date, numerous researchers worldwide are delving into these
indices, pushing the boundaries of knowledge to advanced methodologies. Subsequently,
in 2008, Dosli¢ [5] articulated the definitions of the first and second Zagreb coindices,
which pertain to all non-adjacent pairs of vertices. For further insights regarding the Zagreb
indices and coindices, as well as their various applications, refer to[2, 10, 15, 16, 17, 19,
23]. In the year 2015, Basavanagoud et al. [3] introduced novel graph operations referred
to as generalized transformations denoted as G, and derived the formulations for both
the first and second Zagreb indices as well as the coindices pertaining to these graphs and
their corresponding complements. In 2017, Vaidya et al. [22] proposed a new graph
operation termed k-splitting of a graph G and conducted an analysis on the energy
associated with this operation.

In the current study, we concentrate on deriving explicit formulations for the
forgotten index pertaining to the k -splitting of generalized transformation graphs
sply (G “b). Subsequently, we also derive comparable expressions for the complements of

spl(G?).

2. Preliminaries
The first Zagreb index M;(G) [7] and second Zagreb index M,(G) [7] are defined as

M@= ) d? and MG = ) dgw) dg(v)
uev(c) uveE(G)
respectively.
The first Zagreb can also be expressed as [4]

M@= ) [dew+dg)]
uveE(G)

Boris Furtula and Ivan Gutman [6] have put forward a degree based topological indices
viz., a forgotten topological index which is defined as

F@= ) dg@®= ) [de(w? +dg(v)?]

uev(G) UveE(G)

3. Generalized transformation graph 6%? and the k-splitting graph

Let G denote a graph characterized by the vertex set V(G) and the edge set E(G), and let
a and B represent two elements belonging to the union V(G) U E(G). The associativity
of the elements a and £ is defined as + if they exhibit adjacency or incidence within the
graph G; conversely, it is denoted as — in the absence of such a relationship. Let ab
signify a 2-permutation of the set {+, —}. The elements a and g are said to correspond to
the initial term a of ab if both entities reside within V(G) or E(G), whereas they
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correspond to the subsequent term b of ab if one of the entities is contained in V(G) and
the other is situated in E(G). The generalized transformation graph G is formulated on
the vertex set V(G) U E(G). A pair of vertices a and S in G is connected by an edge
if and only if their associativity within G aligns with the corresponding term of ab. In this
context, there exist four distinct graphical transformations of graphs, specifically G**,
G*~, G™F,and G~ corresponding to the four unique 2-permutations of the set {+,—}.

In an alternative formulation, the generalized transformation graph G®°
constitutes a graph characterized by the vertex set V(G) U E(G), where a,f € V(G‘”’)
are considered to be adjacent within G if and only if the conditions (i) and (ii) are
satisfied:

() a, B €V(G?), with @ and B being adjacent in G under the condition that a = +,
whereas a and f are non-adjacent in G when a = —.

(ii)) If a € V(G) and B € E(G), then a and B are incident in G when b = +, while «
and B are notincidentin G if b = —.

The vertex u of G?" that corresponds to a vertex u of G is designated as a point
vertex. Conversely, the vertex e of G that corresponds to an edge e of G is termed a
line vertex.

The k-splitting of a graph G, denoted as spl, (G), is derived by augmenting each
vertex u of G with k additional vertices, labeled as v, v, ..., u®, in such a manner
that u®, where 1 < i < k, is adjacent to every vertex that shares adjacency with u in the
original graph G.

Now we present the main results of our work through following sections.

4. Results
4.1. Forgotten Index of spl,(G*F)
Let G bea (n,m)-graph and spl, (G**) represents k-splitting of G**.

! !
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alt g
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vie  Ui@
Figure 1: spl, (P ): 2—splitting of P+

Proposition 1. Let G be a (n, m)-graph. Then
(D dgp, (W) = 2(k + 1)dg(v) wherev € V(G)
({D)dgpy, c++)(e) = 2(k + 1) where e € E(G)
(i) dgpy, (c++) (V") = 2dg(v) wherev' € G**due to vertexvinG
(iv)dsp,k(GH)(e’) = 2 where €’ is vertex in k — splitting of G** due to edge e in G.
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Proposition 2. Let G be a (n,m)-graph. Then order and size of spl, (G**) are
(n+m)(k+1) and 3m(2k + 1).

Theorem 1. Let G be a (n,m)-graph. Then
F(sple(G*1)) = 8(k + 1)2F(G) + [4 + 4k*(k + 1) + 4k(k + 1)? + 4k]F (G)
+8m(k + 1) + 8mk + 8mk(k + 1)
Proof: Partitioning edge set of spl, (G**) as follows:
E(splp(G**)) =E;UE, UE; UE, U Ex
where,
E, = {uv: uv € E(G)}
E, = {ue: vertex u in G is incident to edge e in G}
E; = {uv':vertex u in G is adjacent to vertex v' € G**due to vertex v inG}
E, = {ue':vertex u in G is incident to vertex e’ € Gt due to edge e in G}
Es = {u'e:vertex u’' € G**due to vertex u in G incident to edge e in G}

Clearly |E;| = m, |E;| = 2m, |E3| = 2mk, |E4| = 2mk and |Eg| = 2mk
Consider,

F(Splk(6++)) = Z [dsplk(G++)(u)2 + dsplk(G++)(v)2]
qu(E(splk(G++)))

= z [dsplk(6++)(u)2 +dsplk(G++)(v)2]

UVEE,

+ Z [dspra++) W + depy, a++)(€)?]

Ue€E,

+ Z [dsplk(G++)(u)2 +dsplk(G++)(v’)2]

uv’€E;

+ Z [dsplk(G""")(u)Z +dsplk(G++)(e,)2]

uerekE,

* Z [dsplk(0++)(u,)2 +dsplk(6++)(e)2]

ure€kEs

F(sple(G*)) = Z [4(k + 1)2dg (w)? + 4(k + 1)2dg (v)?]

UVEE,

+ Z [4(k + 1)2dg (w)? + 4(k + 1)2]

UVEE,
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+ Z [4(k + 1)2dg (w)? + 4dg(v)2] + Z [4(k + 1)2dg (1)? + 4]

uv€E3 uV€E4

+ Z [4dg (1) + 4(k + 1)2]

Ue€EEs

= 4(k + 1)?2 Z [dg(w)? + dg(v)?] + 4(k + 1)? Z dg ()2

‘LL'VEE]_ quEz

+4(k + 1)? Z 14 Z [4(k? + 2k + 1)dg (W)? + 4dg (v)?]

quEz quE:;
+4(k + 1)? Z dg(W)? +4 Z 144 Z de(W? + 4(k + 1)2 Z 1
UVEE, UVEE, UVEEs UVEES

=4+ D? ) [dg@? + dg@)]+ 4k + 1P Y de()? - dg(w)

UVEE(G) u€ev(G)

+4(k + 1)? Z 1+4 z [dg(w)? + dg (v)?]

UVEE, uveE(G)

+ak(k + 2)(k) z de(W)? - dg(w) + 4(k + 1) Z de(W)? - dg ()

uev(G) u€ev(G)
+4 z 1+ 4k z dg(w)? - dg(w) + 4(k + 1)2 Z 1
UVEE, uev(G) UVEE;5

= 4(k + 1)?F(G) + 4(k + D?F(G) + 8m(k + 1)? + 4F(G)
+4k2(k + DF(G) + 4k(k + 1)?F(G) + 8mk + 4kF(G) + 8mk(k + 1)
=8(k + 1)?F(G) + [4 + 4k*(k + 1) + 4k(k + 1) + 4k]F (G)
+8m(k + 1) + 8mk + 8mk(k + 1)

4.2. Forgotten Index of spl,(G*™)
Let G be a (n,m)-graph and spl, (G*~) represent k-splitting of G*~.

Proposition 3. Let G be a (n,m)-graph. Then
(Ddgpr, +H(w) =m(k +1) wherev € V(G)
(D) dgpi, 6+ (@) = (mn—2)(k +1) wheree € E(G
({id)dsp, g+ (v') =m wherev’ € G*~due to vertex vin G
(iv)dgp, g+ (€") = (n — 2) where e’ € k — splitting of G*~due to edge e in G.

57



Shafigahmed Yellur and Prashant V. Patil

vie vie U
1o ! o S AN

: v v * 3

Vo @ 120_.__  2 R

.U.!;l.‘» : p%. 'Ué#" - ‘,' <

Vi@ 'ug."‘ Uy
Figure 2: sply (P;™):2—splittingof Py~

Proposition 4. Let G be a (n,m)-graph. Then order and size of spl,(G*~) are
(mn+m)(k+1) and m(n —1)(2k + 1).

Theorem 2. Let G be a (n,m)-graph. Then
F(sple(G*7)) = 2m3[(k + 1)? + k((k + 1)? + )] + m(n — 2)[(m? + (n — 2)*)(k
+ 1)+ k(m?(k+ 1)? + (n—2)2] + [m? + (n — 2)%(k + 1)?])]
Proof: Partitioning edge set of spl, (G*~) as follows:
E(sply(G*™)) =E,UE, UE; UE, U Esg

where

E, = {uv:uv € E(G)}

E, = {ue: vertex uin G is not incident to edge e in G}

E; = {uv':vertex u in G is adjacent to vertex v’ € G*~due to vertex v in G}

E, = {ue':vertex uin G is incident to vertex e’ € G*~due to edge e in G}

Es = {u'e:vertexu’ € Gt~ duetovertexu € GnotincidenttoedgeeinG}
Clearly,
|E1| = m, |E;| = m(n — 2), |E5| = 2mk, |Ey| = mk(n — 2) and |E5| = mk(n — 2).

Consider,

F(sple(G*7)) = Z [dsprecer- @ + dspy 6+ @)?]

qu(E(splk(G"")))

= z [dsplk(ci)(u)z +dsplk(Gi)(v)2]

UVEE,

+ Z [dsprecar- @D? + dpi e+ (€]

UeeE,

* z |dspiy(62) @7 + dyyy (61) @7

uv'€E;
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+ Z [dSPlk(G+_)(u)2 + dsplk(G’f‘)(e’)z]

uer€E,

+ z [dsplk(6+_)(u,)2 +dSPlk(G+_)(e)2]

Uule€Es

= ) [k + D)7 + P+ 1))

UVEE,

+ Z [m2(k + 1)2 + (n — 2)2(k + 1)2]

Ue€E,

+ Z [m2(k + 1)2 + m?] + Z [m2(k + 1) + (n — 2)?]

UVIEE;3 UEIEE,

+ Z [m? + (n — 2)2(k + 1)?]

ure€Es

= 2m2(k + 1)? Z 1+ m2+ (n—2)2)(k + 1) Z 1

UVEE, Ue€kE,

+m2[(k + D2 + 1] Z 1+ [m2(k + D2 + (n— 2)?] Z 1

UVIEE3 UEIEE,

+[m? + (n — 2)%(k + 1)?] 1
=2m3(k+ D2+ mn—-2)(m*+ (n—2)>)(k+ 1) + 2km3[(k + 1)*> + 1]
+mk(n —2)[m?(k + 1)? + (n — 2)?] + mk(n — 2)[m? + (n — 2)?(k + 1)?]
=2m3[(k+ 12+ k((k+ D2+ D]+ m(n—2)[(m? + (n—2)*)(k + 1)
+k([m?(k+ D2+ (n—2)%] + [m? + (n — 2)%(k + 1)?])]
4.3. Forgotten Index of spl,(G™)
Let G be a (n,m)-graph and spl, (G~F) represents k-splitting of G~*.
”'1";_, v'lQ_‘.
o e bl

S

1ot r-d
U@ U@

Figure 3: spl, (P, *):2—splitting of P, *
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Proposition 5. Let G be a (n, m)-graph. Then

Ddspr, -+ W) = —1(k+1) wherev € V(G)

(i) dspi -+ (e) = 2(k +1) wheree € E(G)

({id)dspy, -+ @) = (n—1) wherev' € Gt due tovertexvinG
((v)dgp, -+ (e") =2 wheree' € G~ *duetoedgeeinG

Proposition 6. Let G be a (n, m)-graph. Then order and size of spl,(G~*) are
(n+m)(k +1) and 5 [n(n — 1) + 2m](2k + 1).

Theorem 3. Let G bea (n,m)-graph. Then
F(sple(G™)) = [2(n = D?(k + D* + (n = D?[(k + 1D? + 1] (n(nz_ 2 m)

+2m{(k + D?[(n — 1)? + 4] + k([(n — 1)?(k + 1)? + 4]
+[(n — 1) + 4k + D))
Proof: Partitioning edge set of spl, (G~") as follows:
E(spl,(G™*) =E;UE, UE; UE, UE;
where
E, = {uv:uv ¢ E(G)}
E, = {ue:vertex uin G is incident to edge e in G}
E; = {uv':vertex u € G is not adjacent to vertex v' €
G~ tdue to vertex vin G}
E, = {ue':vertex u € G is incident to vertex ¢’ € G~ *due to edge e in G}
Es = {u'e:vertexu’ € G~ *due to vertex u € G is not incident to edge e in G}

Clearly,
|By| =20 — i, | By | = 2m, | B3| = 2k (M52 —m),
|E4| = 2mk and |E5| = 2mk.
Consider,
F(sple(G™1) = Z [dspiic+@)? + dspr - ©)?]

qu(E(splk(G"")))

- Z [dsvlk(Gi)(u)Z +d5plk(6$)(v)2]

UVEE,

+ Z [dSZ’lk(G_+)(u)2 + dsplk(G_+)(e)2]

Ue€kE,

’ z [ds”lk(‘;i)(u)z +dsplk(6*_')(v,)2]

uv’'€E;

+ ) [dspryan W2 + dpi oy (@]

UEIEE,
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+ Z [dsplk(G_+)(u,)2 + dsplk(G_+)(e)2]

U’e€Es

F(sple(G—)) = Z [(n — D2k + 12 + (n — 1)2(k + 1)?]

UVEE

+ Z [(n = D2k + 12 + 4(k + 1)?]

UeEE,
+ Z [(n— D2k + 12 + (n— 1)?]

UvI€E;

+ Z [(n— 12k + 1)2 + 4] + Z [(n—1)% + 4(k + 1)2]

UeIEE, u’e€Es

= 2(n — 1)2(k + 1)?2 Z 14 (k + D2[(n— 1)2 + 4] Z 1

UveEE; Ue€ekE;

+(n—1?[(k +1)% + 1] 1+ [(n— 12k + 1) + 4] 1
u;E3 u;&;
+[(n = 1% + 4(k + 1)*] Zureer, 1

= 2(n — 1)2(k + 1)2 (n(n —D_ m) +2m(k + D2[(n — 1)% + 4]
nn—1)

(= D[k + 12 + 1] (
+2mk[(n — 1)? + 4(k + 1)?]
= [2(n = 1)2(k + 1) + (n — D2[(k + 1)% + 1] (

+2m{(k + 1)?[(n — 1?2 + 4] + k([(n — D?(k + 1)? + 4]
+[(n—1)% + 4k + 1D?])}

_ m) + 2mk[(n — 1)2(k + 1)% + 4]

n(nz— 1) 3 m)

4.4. Forgotten Index of spl,(G~7)
Let G bea (n,m)-graph and spl, (G~~) represents k-splitting of G~~.

vi@ Vi@
vie.  \U5@ SO

v 3@ X

e vie
Figure 4: spl, (P, 7):2—splitting of P,

Proposition 5. Let G be a (n, m)-graph. Then
D dsprc— W) = (n +m—1-2d; (v))(k + 1) wherev € V(G)
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(i) dspr, - (€) = (n—2)(k + 1) wheree € E(G)
(iid)dgp, (@) = (n +m—1-2d; (v)) where v’ €
G~ "duetovertexvinG
(iv)dspr, ) (e") = (n — 2) where e’ € G™"due to edge e inG

Proposition 6. Let G be a (n, m)-graph. Then order and size of spl,(G~~) are
(n+m)(k +1) and S [n(n — 1) + 2m(n — 3)](2k + 1).

Theorem 4. Let G bea (n,m)-graph. Then
F(splp(G™)) =[12(k+1)?+ 12— 12(n+m—1) —8(k + 1)*(n+m — 1)
—4(k + D2 +m— 1M, (G) + [(n + m — 1)?
+(n—2)%k+ 1 mn—-2)+[(n+m—1)2(k + 1)? + (n — 2)?
+(n+m—1)2+ (n—2)?mk(n - 2)
Proof: Partitioning edge set of spl,(G~~) as follows:
E(sply(GT™)) =E{UE, UE; UE, UEs
where
E, ={uv:uv ¢ E(G)}
E, = {ue:vertex u in G is not incident to edge e in G}
E; = {uv':vertex u € G is not adjacent to vertex v’ € G~ ~due to vertex v in G}
E, = {ue':vertex u € Gis not incident to vertex e’ € G™~due to edge e in G}
Es = {u'e:vertexu' € G~ ~duetovertexu € GisnotincidenttoedgeeinG}

Clearly,
|Ey| = 252 —m, By | = m(n — 2), 13| = 2k ("2 = m),
|E4| = mk(n — 2) and |Es| = mk(n — 2).
Consider,
F(Splk(G__)) = Z [dsplk(G__)(u)2 + dsplk(G__)(v)z]

qu(E(splk(G——)))

= z [dsplk(G“)(u)z +dsplk(G“)(v)2]

UVEE,

+ Z [dsplk(G__)(u)Z + dsplk(G__)(e)z]

UEEE,

+ z [dsplk(G“)(u)z +dsplk(G“)(U,)2]

UVIEE3

+ Z [dsplk(G__)(u)Z +dsplk(G__)(e,)2]

ue'€E,

+ z [dsplk(G“)(u,)z +dsplk(6“)(e)2]

ure€Es
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F(splp(G™)) = Z [(m+m—1-2d;(wW)*k+1)2+n+m—1-2d;(v)*(k
UVEE,

+1)?]
+ Z [(n+m—1—2dgw)? + (n—2)2(k +1)2]

Ue€E,
+ Z [((n+m—1—2dgW)2(k + 1)2 + (n+m—1— 2dg(v))?]
UVIEE3

+ Z [(n+m—1—2dgwW)2(k + 12 + (n — 2)?]
uereE,
+ [(m+m—1-2d;w)?+ (n—2)?]
u;Es ’
= (k + 1)2 Z [(n+m—1—2dgwW)2+ (n+m—1—2dg))2]
UVEE
+ Z [(n+m—1—2dgW)2 + (n— 2)%(k + 1)2]
Ue€kE,
+ Z [(m+m—1-2d;wW)*(k+ 12+ n+m—1-2d;(v))?]

UVIEE3

+ z [((n+m—1—2d;@)2(k +1)% + (n — 2)2]
UEIEE,

+ [(n+m—1-2d;w)?+ (n—2)?]
u’eZEES ¢

F(splp(G™)) = (k + 1)? Z [(m+m—1)% +4d;(w)? — 4(n +m— 1)d;(w)
UVEE,

+(n+m—1)2+4d;(v)? —4(n+m—1)dz(v)]
+ Z [(n+m—1)2%+4d;(wW)?—4(n+m—1)dg(w) + (n

UueeE,

= 2)%(k + 1)?]
+ Z [(n+m—1)% + 4dg(w)? — 4(n + m — 1)dg (W) (k + 1)2

UVIEE;S
+(n+m—1)% +4dg ()2 — 4(n +m — 1)dg (V)]
+ Z [[(m+m—1)2+4d;(wW)? —4(n+m—DdgW)]k + 1)? + (n
ue’iE‘é)z]
+ Z [(n+m—1)% + 4dg(w)? — 4(n +m — 1)dg(w) + (n — 2)?]

ule€Es
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F(sple(G=)) = 2(k + 1)%(n + m — 1)? Z 144k +1)2 Z [dg(W)? + dg (v)?]

UVEE Uvg¢E
_4tk + 12 +m—1) z [dg () + dg ()]
Uve¢E
+(n+m—1)2 Z 1+4 Z dg(w)? —4(n+m—1) Z dg(w)
UeEE, Ue€kE, UEEE,

+(n = 2)2(k + 1)2 z 14 m+m—1D2[k + D2 + 1] Z 1

Ue€E, uv'€E;
+4(k + 1)? Z d(W)? — 4(k + D2(n +m — 1) Z de(w)
uvr€Es uv’'eE;
+4 Z do(v)? — 4(n+m—1) Z de(v)]
UvI€E; UVIEE3
4+ m— 12k + 1)2 Z 1+ 4(k + 1)2 Z dg (W)?
uer€eE, uer€E,
4k + 1)2(n+m—1) Z dg(w) + (n — 2)2 Z 1
UEIEE, UEIEE,
+(n+m—1)2 Z 144 Z dg (w)?
Uure€Es Ur’e€Es

4 +m—1) Z dg(w) + (n — 2)? Z 1

U’e€Es Ule€Es

F(splp(G™)) =2(k + 1)’(n + m — 1)? [@ - m] + 4(k + 1)?F(G)

—4k+1)?(m+m— 1M, (G) + (n+m—1)>m(n — 2) + 4F(G)
4 +m—1) z de()? + (n — 2)2(k + 1)*m(n — 2)
uev(G)
n(n-1)

+(n+m = D2[(k + 1)? + 112k "5 = m]| + 4(k + 1)2F(G)
4k + 1)+ m—1) Z dg(W)? + 4F(G)

uev(G)
—4(n+m-1) Z de()?*+ (m+m—1)%(k + 1)?>mk(n — 2)
veV(G)
+4(k + 1)2F(G) — 4(k + 1)2(n+m — 1) z dg (w)?

u€ev(G)
+(n—2)?2mk(n—2)+ (n+m—1)>mk(n —VZG) +4F(G)

—4n+m—1) Z dg(W? + (n— 2)2mk(n — 2)
u€ev(G)
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nn—1)

— = m] + 4(k + 1)?F(G)
—4(k+1)?*’(m+m—1M(G) + (n+m—1)?m(n —2) + 4F(G)
—4(n+m-1DFG)+ (n—2)%(k+1)>m(n—2)

+(n+m = 1)2[(k + 1)? + 1]2k [*5=2 = m| + 4(k + 1)?F(6)

—4(k+ 1D*(m+m—1)F(G) + 4F(G) — 4(n+ m — 1)F(G)
+(m+m—1)>2k +1)?>mk(n — 2) + 4(k + 1)%F(G)

-4k +1)?*’(m+m—1F(G) + (n—2)*mk(n — 2)
+(n+m—1)2mk(n—2) + 4F(G)

—4(n+m—1)F(G) + (n— 2)*>mk(n — 2)

F(sple(G™)) = [2(k + D2(n+m—1)* + (n + m — 1)?[(k + 1)?

+1]2k] [@ - m]

+[12(k+1)?+12-12(n+m—1) -8k + 1)*’(n+m—1)
—4(k+ D?(m+m— 1DM(G) + [(n + m — 1)?
+(n—2)2(k+ D*Im(n—2) + [(n+ m— D?(k + 1)?
+(m—222+m+m—1)2%+ (n-2)>*mk(n—2)

5. Conclusion

In this paper, we derived explicit formulations for the forgotten index pertaining to the k-
splitting of generalized transformation graphs splk(Gab). Subsequently, we also derived
comparable expressions for the complements of spl, (G*?).
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