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Abstract. The first Zagreb index of a graph is defined as the sum of the squares of the 

degrees of vertices in the graph. In this note, we present a lower bound for the first Zagreb 

index of a graph. Using that lower bound, we present sufficient conditions for the 

Hamiltonian properties of a graph. 
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1. Introduction 

We consider only finite undirected graphs without loops or multiple edges. Notation and 

terminology not defined here follow those in [1]. Let G = (V(G), E(G)) be a graph with n 

vertices and e edges, The degree of a vertex v is denoted by dG(v). We use δ and ∆ to denote 

the minimum degree and maximum degree of G, respectively. A set of vertices in a graph 

G is independent if the vertices in the set are pairwise nonadjacent. A maximum 

independent set in a graph G is an independent set of the largest possible size. The 

independence number, denoted β(G), of a graph G is the cardinality of a maximum 

independent set in G. For disjoint vertex subsets X and Y of V(G), we use E(X, Y) to 

denote the set of all the edges in E(G) such that one end vertex of each edge is in X and 

another end vertex of the edge is in Y. Namely, E(X, Y) := { e : e = xy ϵ E, x ϵ X, y ϵ Y }.  

A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of 

G. A graph G is called Hamiltonian if G has a Hamiltonian cycle. A path P in a graph G is 

called a Hamiltonian path of G if P contains all the vertices of G. A graph G is called 

traceable if G has a Hamiltonian path.  

The first Zagreb index of a graph was introduced by Gutman and Trinajstić [4] in 

1972. For a graph G, its first Zagreb index, denoted M1(G), is defined as ∑u ϵ V(G)(dG(u))2. 

Since its introduction, the first Zagreb index has been intensively investigated and a variety 

of results on the first Zagreb index have been obtained. The survey paper [3] and the 

references therein are good resources for the results. While investigating the first Zagreb 

index, researchers are often concerned about the bounds of it. In this note, we present a 

new lower bound for the first Zagreb of a graph. Using that lower bound, we present 
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sufficient conditions for Hamiltonian and traceable graphs. The main results are as follows.  

 

Theorem 1.1. Let G be a graph with n vertices and e edges. Then  

 

M1(G) ≥ β (δ2 + ∆2) + 2 ∆ e – n ∆2 

 

with equality if and only if G is a bipartite graph with partition sets I and V – I such that  

|I| = β, d(u) = δ for each u ϵ I, and d(v) = ∆ for each v ϵ V – I.  

 

Using Theorem 1.1, we can prove the following corollaries.  

 

Corollary 1.2. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e edges. If  

 

M1(G)  ≤ (k + 1) (δ2 + ∆2) + 2 ∆ e – n ∆2, 

then G is Hamiltonian or G is Kk, k + 1. 

Corollary 1.3. Let G be a k-connected (k ≥ 1) graph with n ≥ 9 vertices and e edges. If 

 

    M1(G) ≤ (k + 2) (δ2 + ∆2) + 2 ∆ e – n ∆2, 

then G is traceable or G is Kk, k + 2. 

2. Lemmas 

We will use the following results as our lemmas. The first two are from [2].     

 

Lemma 2.1. [2]  Let G be a k-connected graph of order n ≥ 3. If β ≤ k, then G is 

Hamiltonian. 

 

Lemma 2.2. [2]  Let G be a k-connected graph of order n. If β ≤ k + 1, then G is traceable. 

 

Lemma 2.3 below is from [6].  

 

Lemma 2.3. [6]  Let G be a balanced bipartite graph of order 2n with bipartition (A, B). 

If d(x) + d(y) ≥ n + 1 for any x ∈ A and any y ∈ B with xy ∉ E, then G is Hamiltonian. 

 

Lemma 2.4 below is from [5].  

 

Lemma 2.4. [5] Let G be a 2-connected bipartite graph with bipartition (A, B), where |A| 

≥ |B|. If each vertex in A has a degree of at least s and each vertex in B has a degree at least 

t, then G contains a cycle of length at least 2min(|B|, s + t - 1, 2s - 2). 

 

3. Proofs of the theorems 

Proof of Theorem 1.1. Let G be a graph with n vertices and e edges.  

Let I := { u1, u2, ..., uβ } 

        be a maximum independent set in G. Then 

∑ u ϵ I d(u) = |E(I, V – I)| ≤ ∑ v ϵ V - I d(v).   
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        Since ∑ u ϵ I d(u) + ∑ v ϵ V - I d(v) = 2e, we have that 

∑ u ϵ I d(u) ≤ e  ≤ ∑ v ϵ V - I d(v).   

        Let v be any vertex in V – I. Clearly, (∆ - d(v))2 ≥ 0 and ∆2 + d2(v) ≥ 2 ∆ d(v). Thus   

 

∑ v ϵ V – I (∆2 + d2(v)) ≥ ∑ v ϵ V – I (2 ∆ d(v)). 

        Therefore  

        

(n – β) ∆2 + ∑ v ϵ V – I d2(v) ≥ 2 ∆ ∑ v ϵ V – I d(v) ≥ 2 ∆ e. 

        Hence  

 

∑ v ϵ V – I d2(v) ≥ 2 ∆ e - (n – β) ∆2. 

        So 

 

M1(G) = ∑ w ϵ V d2(w) = ∑ u ϵ I d2(u) + ∑ v ϵ V - I d2(v) 

  

                             ≥ β δ2  + 2 ∆ e - (n – β) ∆2 = β (δ2 + ∆2) + 2 ∆ e – n ∆2. 

         If  

              

M1(G) = β (δ2 + ∆2) + 2 ∆ e – n ∆2. 

 

 We, from the proofs above, have that ∑ v ϵ V – I d(v) = e which implies that ∑ u ϵ I d(u) = e 

and G is a bipartite graph with partition sets I and V – I such that |I| = β, d(u) = δ for each  

 u ϵ I, and d(v) = ∆ for each v ϵ V – I.   

 

 If G is a bipartite graph with partition sets I and V – I such that |I| = β, d(u) = δ for each 

𝑢 ∈  𝐼, and d(v) = ∆ for each v ϵ V – I, then e = (n – β) ∆. A simple computation shows that  

 

M1(G) = β (δ2 + ∆2) + 2 ∆ e – n ∆2.  

 

 This completes the proof of Theorem 1.1.                  ∎ 

 

Proof of Corollary 1.2. Let G be a k-connected (k ≥ 2) graph with n ≥ 3 vertices and e 

edges satisfying the conditions in Corollary 1.2. Suppose G is not Hamiltonian. Then 

Lemma 2.1 implies that β ≥ k + 1. Also, we have that n ≥ 2 δ + 1 ≥ 2 k + 1 otherwise δ ≥ k 

≥ n/2 and G is Hamiltonian. From the conditions in Corollary 1.2 and Theorem 1.1, we 

have  

                         (k + 1) (δ2 + ∆2) + 2 ∆ e – n ∆2 ≥ M1(G) 

 ≥ β (δ2 + ∆2) + 2 ∆ e – n ∆2 ≥ (k + 1) (δ2 + ∆2) + 2 ∆ e – n ∆2. 

 Thus  

 (k + 1) (δ2 + ∆2) + 2 ∆ e – n ∆2 = M1(G) = β (δ2 + ∆2) + 2 ∆ e – n ∆2. 

 

From the proofs above and Theorem 1.1, we have that β = k + 1 and G is a bipartite graph 

with partition sets I and V – I such that |I| = β, d(u) = δ for each u ϵ I, and d(v) = ∆ for each 

𝑣 ∈  𝑉 –  𝐼. Since V – I now is an independent set in G, we have |V – I| ≤ |I| = k + 1. Thus 
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n ≤ 2 k + 2. Since n ≥ 2 k + 1, we have that n = 2k + 2 or n = 2 k + 1. If n = 2k + 2, then 

Lemma 2.3 implies that G is Hamiltonian, a contradiction. If n = 2k + 1, then G is Kk, k + 1.  

 

This completes the proof of Corollary 1.2.                 ∎ 

 

The proof of Corollary 1.3 is similar to the proof of Corollary 1.2. For the sake of 

completeness, we still present a full proof of Corollary 1.3 below.  

 

Proof of Corollary 1.3. Let G be a k-connected (k ≥ 1) graph with n ≥ 9 vertices and e 

edges satisfying the conditions in Corollary 1.3. Suppose G is not traceable. Then Lemma 

2.2 implies that β ≥ k + 2. Also, we have that n ≥ 2 δ + 2 ≥ 2 k + 2 otherwise δ ≥ k ≥ (n – 

1)/2 and G is traceable. From the conditions in Corollary 1.3 and Theorem 1.1, we have  

 

               (k + 2) (δ2 + ∆2) + 2 ∆ e – n ∆2 ≥ M1(G) 

≥ β (δ2 + ∆2) + 2 ∆ e – n ∆2 ≥ (k + 2) (δ2 + ∆2) + 2 ∆ e – n ∆2. 

Thus   

(k + 2) (δ2 + ∆2) + 2 ∆ e – n ∆2 = M1(G) = β (δ2 + ∆2) + 2 ∆ e – n ∆2. 

From the proofs above and Theorem 1.1, we have that β = k + 2 and G is a bipartite graph 

with partition sets I and V – I such that |I| = β, d(u) = δ for each u ϵ I, and d(v) = ∆ for each   

 v ϵ V – I. Since V – I now is an independent set in G, we have |V – I| ≤ |I| = k + 2. Thus n    

 ≤ 2 k + 4. Since n ≥ 2 k + 2, we have that n = 2k + 4, n = 2k + 3, or n = 2 k + 1. If n = 2k 

+ 4, since n ≥ 9, we have that k ≥ 3. Therefore Lemma 2.3 implies that G is Hamiltonian 

and thereby G is traceable, a contradiction. If n = 2k + 3, since n ≥ 9, we have that k ≥ 3. 

Thus Lemma 2.4 implies that G has a cycle of length at least (n – 1) and thereby G is 

traceable. 

 If n = 2k + 2, then G is Kk, k + 2. 

 This completes the proof of Corollary 1.3.          ∎ 

 
4. Conclusion 

In this note, we present a lower bound for the first Zagreb of a graph. Using that lower 

bound, we present sufficient conditions for Hamiltonian and traceable graphs. 
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