Annals of Pure and Applied Mathematics Vol. 2, No. 2, 2012, 194-199 ISSN: 2279-087X (P), 2279-0888(online) Published on 28 December 2012 www.researchmathsci.org Annals of

Pure and Applied <u>Mathematics</u>

Some Characterizations of 0-distributive Nearlattice

A.S.A.Noor¹, Md. Zaidur Rahman² and Md. Bazlar Rahman²

¹Department of ECE East West University, Dhaka E mail: <u>noor@ewubd.edu</u>

²Department of Mathematics Khulna University of Engineering & Technology E mail: <u>mzrahman1968@gmail.com</u>

Received 13 December 2012; accepted 23 December 2012

Abstract. In this paper we studied different properties of 0-distributive nearlattices. Here we prove that for a filter A of S, $A^0 = \{x \in S | x \land a = 0, \text{ for some } a \in A\}$ is an ideal if and only if S is 0-distributive. Then we include several characterizations of a 0-distributive nearlattice using A^0 where A is a filter. Finally we show that S is 0-distributive if and only if for all $a, b, c \in S$,

 $(a \land (b \lor c))^{\perp} = (a \land b)^{\perp} \cap (a \land c)^{\perp}$ provided $b \lor c$ exists.

Keywords: 0-distributive nearlattice, Maximal filter, Prime filter, Minimal prime down set, Minimal prime ideal.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

J.C. Varlet [5] has given the definition of a 0-distributive lattice to generalize the notion of pseudocomplemented lattices. By [5], a lattice L with 0 is called a 0-distributive lattice if for all $a,b,c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Then many authors including [1] and [4] studied the 0-distributive properties in lattices and meet semilattices. Recently [6] have studied the 0-distributive property in a nearlattice.

A *nearlattice* is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. This property is known as the *upper bound property*.

Some Characterizations of 0-distributive Nearlattice

A nearlattice S is called *distributive* if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$, provided $y \lor z$ exists in S. For detailed literature on nearlattices, we refer the reader to consult [2] and [3].

A nearlattice S with 0 is called 0-distributive if for all $x, y, z \in S$ with $x \wedge y = 0 = x \wedge z$ and $y \vee z$ exists imply $x \wedge (y \vee z) = 0$.

It can be easily proved that it has the following alternative definition: S is 0-distributive if for all $x, y, z, t \in S$ with $x \wedge y = 0 = x \wedge z$ imply $x \wedge ((t \wedge y) \vee (t \wedge z)) = 0$; $(t \wedge y) \vee (t \wedge z)$ exists by the upper bound property of S. Of course, every distributive nearlattice S with 0 is 0-distributive. Figure 1 is an example of a non-modular nearlattice which is 0-distributive, while Figure 2 gives a modular nearlattice which is not 0-distributive.

A subset I of a nearlattice S is called a *down set* if $x \in I$ and for $t \in S$ with $t \leq x$ imply $t \in I$. An *ideal(down set)* I in a nearlattice S is a non-empty subset of S such that it is a down set and whenever $a \lor b$ exists for $a, b \in I$, then $a \lor b \in I$. A proper ideal I in S is called a *prime ideal(down set)* if $a \land b \in I$ implies that either $a \in I$ or $b \in I$. A non-empty subset F of S is called a filter if $t \geq a$, $a \in F$ implies $t \in F$ and if $a, b \in F$ then $a \land b \in F$. A proper filter F in S is called *prime* if $a \lor b$ exists and $a \lor b \in F$ implies either $a \in F$ or $b \in F$. In lemma 1, we prove that F is a filter of S if and only if S-F is a prime down set. Moreover, it is easy to show that a prime down set P is a prime ideal if and only if S - P is a prime filter.

A proper filter M of a nearlattice S is called *maximal* if for any filter Q with $Q \supseteq M$ implies either Q = M or Q = S. Dually, we define a *minimal prime ideal (down set)*

Let L be a lattice with 0. An element a^* is called the *pseudocomplement* of a if $a \wedge a^* = 0$ and if $a \wedge x = 0$ for some $x \in L$, then $x \le a^*$. A lattice L with 0 and 1 is called *pseudocomplemented* if its every element has a pseudocomplement. Since a nearlattice S with 1 is a lattice, so pseudocomplementation is not possible in a general nearlattice. A nearlattice S with 0 is called sectionally

A.S.A.Noor, Md. Zaidur Rahman and Md. Bazlar Rahman

pseudocomplemented if the interval [0, x] for each $x \in S$ is pseudocomplemented. For $A \subseteq S$, we denote $A^{\perp} = \{x \in S \mid x \land a = 0 \text{ for all } a \in A\}$. If S is distributive then clearly A^{\perp} is an ideal of S.

Moreover, $A^{\perp} = \bigcap_{a \in A} \{\{a\}^{\perp}\}$. If A is an ideal, then obviously A^{\perp} is the

pseudocomplement of A in I(S). Therefore, for a distributive nearlattice S with 0, I(S) is pseudocomplemented.

2. Some Results

Lemma 1. In a nearlattice S, F is a proper filter if and only if S - F is a prime down set.

Proof. Let F be a proper filter. Let $x \in S - F$ and $t \le x$. Then $x \notin F$ and so $t \notin F$ as F is a filter. Hence $t \in S - F$ and so S - F is a down set.

Now let $a \land b \in S - F$ for some $a, b \in S$. Then $a \land b \notin F$. This implies either $a \notin F$ or $b \notin F$ and so either $a \in S - F$ or $b \in S - F$. Therefore S - F is prime.

Conversely, suppose S - F is a prime down set. Let $a \in F$ and $t \ge a$ $(t \in S)$. Then $a \notin S - F$ and so $t \notin S - F$ as it is a down set. Thus $t \in F$ and so F is an up set. Now let $a, b \in F$, then $a \notin S - F$ and $b \notin S - F$. Since S - F is prime, so $a \land b \notin S - F$. This implies $a \land b \in F$, and so F is a filter.

Lemma 2. Every proper filter of a nearlattice with 0 is contained in a maximal filter.

Proof. Let F be a proper filter in S with 0. Let \mathcal{F} be the set of all proper filters containing F. Then \mathcal{F} is non-empty as $F \in \mathcal{F}$. Let C be a chain in \mathcal{F} and let $M = \bigcup \{X | X \in C\}$. We claim that M is a filter with $F \subseteq M$. Let $x \in M$ and $y \ge x$. Then $x \in X$ for some $X \in C$. Hence $y \in X$ as X is a filter. Therefore, $y \in M$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. So $x, y \in Y$. Then $x \land y \in Y$ as Y is a filter. Hence $x \land y \in M$. Moreover M contains F. So M is maximum element of C. Then by Zorn's lemma \mathcal{F} has a maximal element, say Q with $F \subseteq Q$.

Use the same type of proof we have the following result

Lemma 3. Every filter disjoint from an ideal I is contained in a maximal filter disjoint from $I . \bullet$

Following result trivially follows from lemma 2 and lemma 1

Some Characterizations of 0-distributive Nearlattice

Corollary 4. Every prime down set of a nearlattice contains a minimal prime down set.•

For a subset A of a nearlattice S, we define

 $A^0 = \{x \in S \mid x \land a = 0 \text{ for some } a \in A\}$. It is easy to see that A^0 is a down set. Moreover, $\{a\}^{\perp} = \{a\}^0 = [a)^0$. By [7, Theorem 5] S is 0-distributive if and only if A^0 is an ideal for every filter A of S.

Theorem 5. Let S be a nearlattice with 0. Then the following conditions are equivalent.

- (i) S is 0-distributive.
- (ii) For a proper filter A , there exists a minimal prime ideal disjoint to A but containing A^0 .
- (iii) For a non-zero element $a \in S$, there is a minimal prime ideal containing $\{a\}^0$ but not containing a.

Proof. $(i) \Rightarrow (ii)$ Since A is a proper filter, so A^0 is an ideal by [7, Theorem 5]. Now $A \cap A^0 = \phi$. For if $x \in A \cap A^0$ then $x \in A$ and $x \wedge a = 0$ for some $a \in A$. This implies $0 \in A$, which is a contradiction as A is a proper. Then by lemma 3, there exists a maximal filter $M \supseteq A$ such that $M \cap A^0 = \phi$. Since S is 0-distributive, so by [6, Theorem 5], M is a prime filter. This implies S - M is a minimal prime ideal containing A^0 and disjoint to A.

(ii) \Rightarrow (iii) is trivial by considering the filter [a).

(iii) \Rightarrow (i) Suppose *(iii)* holds but S is not 0-distributive. Then there exists a, b, c \in S with a \land b = 0 = a \land c and b \lor c exists but a \land (b \lor c) \neq 0. Then by *(iii)*, there exists a minimal prime ideal P such that a \land (b \lor c) \notin P but $\{a \land (b \lor c)\}^0 \subseteq P$. Now b $\land [a \land (b \lor c)] = a \land b = 0$ and

 $c \wedge [a \wedge (b \vee c)] = a \wedge c = 0$ imply $b, c \in \{a \wedge (b \vee c)\}^0 \subseteq P$. Since P is an ideal, so $b \vee c \in P$ and hence $a \wedge (b \vee c) \in P$ which gives a contradiction. Therefore S must be 0-distributive.

Theorem 6. Let S be a nearlattice with 0. Then the following conditions are equivalent.

(i) S is 0-distributive.

(ii) If A is a an ideal and
$$\{A_i | i \in I\}$$
 is a family of ideals of S such that $A \cap A_i = (0]$ for all I, then $A \cap \left(\bigvee_{i \in I} A_i\right) = (0]$.

A.S.A.Noor, Md. Zaidur Rahman and Md. Bazlar Rahman

(iii) If
$$a_1, a_2, \dots, a_n \in S$$
 such that $a \wedge a_1 = \dots = a \wedge a_n = 0$, then
 $(a] \wedge ((a_1] \vee (a_2] \vee \dots \vee (a_n]) = (0].$

Proof: (*i*) \Rightarrow (*ii*) By [2, lemma 1.2.1], we know that $\bigvee_{i \in I} A_i = \bigcup_{n=0}^{\infty} B_n$, where $B_0 = \bigcup_{i \in I} A_i$ and $B_n = \{x \in S \mid x \le p \lor q \text{ for some } i, j \in B_{n-1}, i \lor j \text{ exists}\}$. Here clearly $B_0 \subseteq B_1 \subseteq B_2 \subseteq \cdots$ and each B_n are down sets. Now $A \cap \left(\bigvee_{i \in I} A_i\right) = A \cap \left(\bigcup_{n=0}^{\infty} B_n\right) = \bigcup_{n=0}^{\infty} (A \cap B_n)$. Since $A \cap A_i = (0]$ for each *i*, so $A \cap B_0 = A \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} (A \cap A_i) = (0]$. Now we use the method of induction. Suppose $A \cap B_{k-1} = (0]$. Then let $x \in A \cap B_k$. This implies $x \in A$ and $x \le r \lor s$ for some $r, s \in B_{k-1}$ and $r \lor s$ exists. Since $A \cap B_{k-1} = (0]$, so $x \land r = 0 = x \land s$. Then by the 0-distributively of S, $x \land (r \lor s) = 0$. That is, x = 0. Hence $A \cap B_k = (0]$. Therefore $A \cap B_n = (0]$ for all positive integer n, and so $A \cap \left(\bigvee_{i \in I} A_i\right) = \bigcup_{n=0}^{\infty} (A \cap B_n) = (0]$. (ii) \Rightarrow (iii) is trivial by considering A = (a], $A_1 = (a_1], \cdots, A_n = (a_n]$. (iii) \Rightarrow (i) Let a, b, c \in S with $a \land b = 0 = a \land c$ and $b \lor c$ exists. Then by (iii),

 $(a] \land ((b] \lor (c]) = (0]$. This implies $(a \land (b \lor c)] = (0]$, and so $a \land (b \lor c) = 0$. Hence S is 0-distributive.•

Theorem 7. Let S be a nearlattice with 0. Then the following conditions are equivalent.

- (i) S is 0-distributive.
- (ii) For any filter A of S, A^0 is the intersection of all the minimal prime ideals disjoint from A.
- (iii) For all $a, b, c \in S$, $\{a \land (b \lor c)\}^0 = (a \land b)^0 \cap (a \land c)^0$ provided $b \lor c$ exists.

Proof: (*i*) \Rightarrow (*ii*) Let N be a minimal prime down set disjoint from A. If $x \in A^0$, then $x \wedge a = 0$ for some $a \in A$. Thus $x \wedge a \in N$. But $N \cap A = \phi$ implies $a \notin N$. So $x \in N$ as N is prime. Therefore, $A^0 \subseteq N$.

Now let $y \in S - A^0$. Then $a \land y \neq 0$ for all $a \in A$. Hence $A \lor [y] \neq S$. Then by lemma 2, there exists a maximal filter $M \supseteq A \lor [y]$. Thus, S - M is a minimal prime down set such that $(S - M) \cap A = \phi$ and $y \notin S - M$. Therefore, A^0 is the intersection of all minimal prime down sets disjoint from A. Since S is 0-

Some Characterizations of 0-distributive Nearlattice

distributive, so by [6, theorem 9], all minimal prime down set are minimal prime ideals and this proves (ii).

(ii) \Rightarrow (iii) Let $A = [a] \lor ([b] \cap [c))$. Suppose Q is a minimal prime ideal disjoint from A. Then $Q \cap [a] = \phi$ and $Q \cap [b] \cap [c] = \phi$. Then either $Q \cap ([a] \lor [b]) = \phi$ or $Q \cap ([a] \lor [c)) = \phi$. If not suppose $x \in Q \cap ([a] \lor [b))$ and $y \in Q \cap ([a] \lor [c))$. Then $x, y \in Q$ and $x \ge a \land b$, $y \ge a \land c$. This implies $a \land b, a \land c \in Q$. Since $Q \cap A = \phi$, so $a \notin Q$. Thus $b, c \in Q$ as ideal. Hence $b \lor c \in Q$. Also $b \lor c \in [b] \cap [c)$, which contradicts the fact $Q \cap [b] \cap [c] = \phi$. Therefore either $Q \cap ([a] \lor [b]) = \phi$ or $Q \cap ([a] \lor [c]) = \phi$. This implies either $a \land b \notin Q$ or $a \land c \notin Q$. Now let, $x \in ([a] \lor [b])^0 \cap ([a] \lor [c])^0 = [a \land b)^0 \cap [a \land c)^0$ Then $x \land a \land b = 0$ and $x \land a \land c = 0$. This implies $x \in Q$ as Q is prime. Hence by $(ii), x \in A^0 = ([a] \lor ([b] \cap [c])))^0$. Therefore, $([a] \lor ([b] \cap [c])))^0 \supseteq ([a] \lor [b])^0 \cap ([a] \lor [c])^0$. Since the reverse inclusion is obvious, so $([a] \lor ([b] \cap [c])))^0 = ([a] \lor [b])^0 \cap ([a] \lor [c])^0$. This implies $[a \land (b \lor c))^0 = [a \land b)^0 \cap [a \land c)^0$ and so, $\{a \land (b \lor c)\}^0 = (a \land b)^0 \cap (a \land c)^0$.

(iii) \Rightarrow (i) Suppose (iii) holds. Let $a, b, c \in S$ with $a \wedge b = 0 = a \wedge c$ and $b \vee c$ exists. Then $(a \wedge b)^0 = S = (a \wedge c)^0$. Hence by (iii) $(a \wedge (b \vee c))^0 = S$. It follows that $a \wedge (b \vee c) = 0$. Thus S is 0-distributive.

REFERENCES

- 1. P.Balasubramani and P.V. Venkatanarasimhan, Characterizations of the 0-Distributive Lattice, *Indian J. Pure Appl. Math.*, 32(3) (2001), 315-324.
- 2. M. B. Rahman, A study on distributive nearlattices, Ph.D Thesis, Rajshahi University, Bangladesh (1994).
- 3. W.H. Cornish and A.S.A. Noor, Standard elements in a nearlattice, *Bull. Austral. Math. Soc.*, 26(2) (1982), 185-213.
- 4. Y. S Pawar and N. K. Thakare, 0-Distributive semilattices, *Canad*. *Math. Bull.*, 21(4) (1978), 469-475.
- 5. J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull.Soc. Sci. Liege, 37 (1968), 149-158.
- 6. Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, 0-distributive Nearlattice, *Annals of Pure and App. Math.*, 2(2) (2012), 177-184.
- Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, Some properties of 0-distributive Nearlattice, *Annals of Pure and App. Math.*, 2(2) (2012), 185-193.