Annals of Pure and Applied Mathematics Vol. 2, No. 2, 2012, 129-134 ISSN: 2279-087X (P), 2279-0888(online) Published on 26 December 2012 www.researchmathsci.org Annals of

Pure and Applied <u>Mathematics</u>

A Relation on Almost Distributive Lattices

N. Rafi¹ and B.Venkateswarlu² ¹Department of Mathematics, Bapatla Engineering College Bapatla, Andhra Pradesh, India-522101 ²Department of Mathematics, Sri Praksh College of Engineering Tuni, E.G., Andhra Pradesh, India-533401 Email: rafimaths@gmail.com; bvlmaths@yahoo.com

Received 12 December 2012; accepted 20 December 2012

Abstract. In this paper we discuss some important results of tolerance relations on almost distributive lattices.

Keywords: Almost Distributive Lattice (ADL), SubADL, Filter, Tolerance, Congruence.

AMS Mathematics Subject Classification (2010): 06D99

1. Introduction

After Booles axiomatization of two valued propositional calculus as a Boolean algebra, a number of generalizations both ring theoretically and lattice theoretically have come into being. The concept of an Almost Distributive Lattice (ADL) was introduced by Swamy and Rao [4] as a common abstraction of many existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. In that paper, the concept of a filters in an ADL was introduced analogous to that in a distributive lattice and it was observed that the set PF(R) of all principal filters of R forms a distributive lattice. This enables us to extend many existing concepts from the class of distributive lattices to the class of ADLs. We introduced a relation on an ADL, which is reflexive and symmetric (i.e., Tolerance relation) on ADL. We proved that a tolerance relation is compatible. Finally, we proved that tolerance relation induced by filter if and only if it congruence relation on ADL.

2. Preliminaries

Definition 2.1.[4] An Almost Distributive Lattice with zero or simply ADL is an algebra $(\mathbb{R}, \vee, \wedge, 0)$ of type (2, 2, 0) satisfying 1. $(x \vee y) \wedge z = (x \wedge z) \vee (y \wedge z)$ 2. $x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$ 3. $(x \vee y) \wedge y = y$ 4. $(x \vee y) \wedge x = x$ N. Rafi and B. Venkateswarlu

5. $x \lor (x \land y) = x$ 6. $0 \land x = 0$ 7. $x \lor 0 = x$, for any $x, y, z \in R$.

Every non-empty set X can be regarded as an ADL as follows. Let $x_0 \in X$. Define the binary operations V, \wedge on X by

$$x \lor y = \begin{cases} x & \text{if } x \neq x_0 \\ y & \text{if } x = x_0 \end{cases} \qquad x \land y = \begin{cases} y & \text{if } x \neq x_0 \\ x_0 & \text{if } x = x_0 \end{cases}$$

Then (X, \vee, \wedge, x_0) is an ADL (where x_0 is the zero) and is called a discrete ADL. If $(R, \vee, \wedge, 0)$ is an ADL, for any $a, b \in R$, define $a \le b$ if and only if $a = a \wedge b$ (or equivalently, $a \vee b = b$), then \le is a partial ordering on R.

```
Theorem 2.2. ([4]) If (R, V, \Lambda, 0) is an ADL, for any a, b, c \in R, we have the following:
```

(1) $a \ Vb = a \Leftrightarrow a \land b = b$ (2) $a \ Vb = b \Leftrightarrow a \land b = a$ (3) \land is associative in R (4) $a \land b \land c = b \land a \land c$ (5) $(a \ Vb) \land c = (b \ Va) \land c$ (6) $a \land b = 0 \Leftrightarrow b \land a = 0$ (7) $a \ V(b \land c) = (a \ Vb) \land (a \ Vc)$ (8) $a \land (a \ Vb) = a$, $(a \land b) \ Vb = b$ and $a \ V(b \land a) = a$ (9) $a \leq a \ Vb$ and $a \land b \leq b$ (10) $a \land a = a$ and $a \ \Lambda a = a$ (11) $0 \ Va = a$ and $a \land 0 = 0$ (12) If $a \leq c$, $b \leq c$ then $a \land b = b \land a$ and $a \ Vb = b \ Va$ (13) $a \ Vb = (a \ Vb) \ Va$.

It can be observed that an ADL R satisfies almost all the properties of a distributive lattice except the right distributivity of \vee over \wedge , commutativity of \vee , commutativity of \wedge . Any one of these properties make an ADL R a distributive lattice.

Theorem 2.3. ([4]) Let $(R, V, \Lambda, 0)$ be an ADL with 0. Then the following are equivalent:

(1) (R, V, A, 0) is a distributive lattice
(2) a Vb = b Va, for all a, b ∈ R
(3) a Ab = b Aa, for all a, b ∈ R
(4) (a Ab) Vc = (a Vc) A (b Vc), for all a, b, c ∈ R.

As usual, an element $m \in R$ is called maximal if it is a maximal element in the partially ordered set (R, \leq) . That is, for any $a \in R$, $m \leq a \Rightarrow m = a$.

A Relation on Almost Distributive Lattices

Theorem 2.4. ([4]) Let R be an ADL and $m \in R$. Then the following are equivalent:

(1) *m* is maximal with respect to \leq

(2) $m \lor a = m$, for all $a \in R$

(3) $m \land a = a$, for all $a \in R$

(4) a V m is maximal, for all $a \in R$.

As in distributive lattices [1,2], a non-empty subset F of an ADL R is said to be a filter of R if $a \land b \in F$ and $x \lor a \in F$ for $a, b \in F$ and $x \in R$.

For any subset S of R is the smallest filter containing S is given by

 $[S]=\{x \mid x \lor (\bigwedge_{i=1}^{n} s_i) \mid s_i \in S, x \in \mathbb{R} \text{ and } n \in \mathbb{Z}^+\}$. If $S=\{x\}$, we write [x) instead of [S].

3. Tolerance Relation on ADLs

We introduced the notion of tolerance relation on an ADL and proved some important properties on it. First, we give the following.

Definition 3.1. Let R be an ADL, $a \in R$ and F a filter of R. Define $a \wedge F = \{a \wedge f | f \in F \}$.

Theorem 3.2. Let R be an ADL. Then for each filter F of R and each $a \in R$ the set $a \wedge F$ is a convex subADL of R. **Proof:** Let x, $y \in a \land F$. Then $x = a \land f_1$ and $y = a \land f_2$, where $f_1, f_2 \in F$. Now $x \land y = (a \land f_1) \land (a \land f_2) = a \land f_1 \land f_2$. Since $f_1 \wedge f_2 \in F$, we get $x \wedge y \in a \wedge F$. Also, $x \lor y = (a \land f_1) \lor (a \land f_2) = a \land (f_1 \lor f_2)$ that implies $x \lor y \in a \land F$ (Since $f_1 \vee f_2 \in F$). Therefore a \land F is a subADL of R. Let x, $y \in a \land F$ and $z \in R$ such that $x \le z \le y$. Then $x = a \land f_1$, $y = a \land f_2$ where $f_1, f_2 \in F$. Now we prove that $z \in a \land F$. Take $f = (f_1 \lor z) \land f_2$. Then $f \in F$. Now $a \wedge f = a \wedge (f_1 \vee z) \wedge f_2 = a \wedge (f_1 \vee z) \wedge a \wedge f_2 = [(a \wedge f_1) \vee (a \wedge z)] \wedge y$ $= [x \lor (a \land y \land z)] \land y = [x \lor (y \land z)] \land y = (x \lor z) \land y = z \land y = z.$ So that $z \in a \land F$. Therefore a \wedge F is a convex subADL of R.

Lemma 3.3. Let R be an ADL and F a filter of R. Then $S_F = \{a \land F \mid a \in R\}$ is covering of R. **Proof:** Let $a \in R$ and $x \in F$. Now $a = a \land (a \lor x) \in a \land F$, since $a \lor x \in F$. Therefore $a \in a \land F$. Hence S_F is covering of R.

131

N. Rafi and B. Venkateswarlu

Definition 3.4. Let R be an ADL and F be a filter of R. The covering $S_F = \{a \land F | a \in R\}$ is called induced by F and tolerance relation T (S_F) induced by S_F is called tolerance on R induced by the filter of F. For the sake of brevity, denote by $T_F = T$ (S_F).

Definition 3.5. Let F be a filter of R. Define $a \land F = \{a \land f \mid f \in F\}$. A relation T_F on R defined by the rule $\langle x, y \rangle \in T_F$ if and only if there exists $a \in R$ such that $x \in a \land F$ and $y \in a \land F$. It is easy to verify that T_F is reflexive and symmetric relation on R.

Lemma 3.6. Let *R* be an ADL, *F* a filter of *R* and *T_F* be the induced by *F*. If $< c, d > \in T_F$, then $1. < a \land d, a \land c > \in T_F$ $2. < d \land a, c \land a > \in T_F$ $3. < a \lor d, a \lor c > \in T_F$. **Proof:** Let $< c, d > \in T_F$. Then there exists $u \in R$ such that $c \in u \land F$, $d \in u \land F$. That implies $c = u \land f_1$, $d = u \land f_2$, for some $f_1, f_2 \in F$. 1. Now $a \land d = a \land u \land f_2$ $a \land c = a \land u \land f_1$. That implies $< a \land d, a \land c > \in T_F$. 2. Similarly $< d \land a, c \land a > \in T_F$. 3. Now, $a \lor d = a \lor (u \land f_2) = (a \lor u) \land (a \lor f_2)$ (since $a \lor f_2 \in F$).

Also again, a V c = a V (u \land f₁) = (a V u) \land (a V f₁) (since a V f₁ \in F). Therefore < a V d, a V c > \in T_F.

Note that $\langle d \lor a, c \lor a \rangle \notin T_F$ for each $a \in R$, since $d \lor a = (u \land f_2) \lor a$, there is no right distributivity of \lor over \land in an ADL.

Lemma 3.7. Let R be an ADL, F a filter of R and T_F a relation on R. If $\langle a, b \rangle \in T_F$, $\langle c, d \rangle \in T_F$ then $\langle a \land c, b \land d \rangle \in T_F$. **Proof:** Let $< a, b > \in T_F$, $< c, d > \in T_F$. Then there exist u, $v \in R$ such that $a = u \wedge f_1$, $b = u \wedge f_2$ $c = v \land f_3$, $d = v \land f_4$, where $f_1, f_2, f_3, f_4 \in F$. Now, $a \wedge c = u \wedge f_1 \wedge v \wedge f_3 = u \wedge v \wedge f_1 \wedge f_3$ $b \wedge d = u \wedge f_2 \wedge v \wedge f_4 = u \wedge v \wedge f_2 \wedge f_4.$ That implies $\langle a \land c, b \land d \rangle \in T_F$. Similarly, $\langle c \land a, d \land b \rangle \in T_F$. Now, a V c = $(u \land f_1) \lor (v \land f_3)$ $= [(u \land f_1) \lor v] \land [(u \land f_1) \lor f_3]$ $= [(\mathbf{u} \lor \mathbf{v}) \land (\mathbf{f}_1 \lor \mathbf{v})] \land [(\mathbf{u} \land \mathbf{f}_1) \lor \mathbf{f}_3]$ $= (\mathbf{u} \lor \mathbf{v}) \land (\mathbf{f}_1 \lor \mathbf{v}) \land [(\mathbf{u} \land \mathbf{f}_1) \lor \mathbf{f}_3] \text{ (since } (\mathbf{f}_1 \lor \mathbf{v}) \land [(\mathbf{u} \land \mathbf{f}_1) \lor \mathbf{f}_3] \in \mathbf{F} \text{).}$ Now, $b \lor d = (u \land f_2) \lor (v \land f_4)$ $= (\mathbf{u} \vee \mathbf{v}) \wedge (\mathbf{f}_2 \vee \mathbf{v}) \wedge [(\mathbf{u} \wedge \mathbf{f}_2) \vee \mathbf{f}_4] \text{ (since } (\mathbf{f}_2 \vee \mathbf{v}) \wedge [(\mathbf{u} \wedge \mathbf{f}_2) \vee \mathbf{f}_4] \in \mathbf{F} \text{).}$ Therefore $\langle a \lor c, b \lor d \rangle \in T_F$. Similarly, we get $\langle c \lor a, d \lor b \rangle \in T_F$.

A Relation on Almost Distributive Lattices

Lemma 3.8. Let *R* be an ADL, *F* a filter of *R* and *T_F* is relation on *R*. If *a*, $b \in R$ and $\langle a, b \rangle \in T_F$ then $a = (a \lor b) \land f_1$, $b = (a \lor b) \land f_2$, for some $f_1, f_2 \in F$. **Proof:** Let $\langle a, b \rangle \in T_F$. Then there exists $u \in R$ such that $a, b \in u \land F$ that implies $a = u \land f_1$, $b = u \land f_2$, where $f_1, f_2 \in F$. Now $(a \lor b) \land f_1 = [(u \land f_1) \lor (u \land f_2)] \land f_1 = u \land (f_1 \lor f_2) \land f_1 = u \land f_1 = a$. Similarly, $b = (a \lor b) \land f_2$. Hence lemma.

We conclude this paper with the following result.

Theorem 3.9. Let *R* be an ADL and *F* a filter of *R*. If T_F is a compatible on *R* then T_F is congruence relation on *R*. **Proof:** Clearly T_F is reflexive and symmetric Let $< x, y > \in T_F$ and $< y, z > \in T_F$. Then there exist a, $b \in R$ such that $x, y \in a \land F$ and $y, z \in b \land F$. That implies $x = a \land f_1$, $y = a \land f_2$ and $y = b \land f_3$, $z = b \land f_4$, where $f_1, f_2, f_3, f_4 \in F$.

We prove that $\langle f_1, f_4 \rangle \in T_F$. Now $f_1 = (f_1 \lor f_4) \land f_1$ $f_4 = (f_1 \lor f_4) \land f_4$. Therefore $\langle f_1, f_4 \rangle \in T_F$. Since $a \in a \land F$ and $x \in a \land F$, we get $\langle a, x \rangle \in T_F$. Similarly $\langle a, y \rangle, \langle b, y \rangle, \langle b, z \rangle \in T_F$. By symmetry, we get $\langle y, b \rangle, \langle a, y \rangle \in T_F$. Since T_F is compatibility, $\langle y \lor a, b \lor y \rangle \in T_F$. Since T_F is compatibility, $\langle a, b \rangle \in T_F$. Since $\langle f_1, f_4 \rangle \in T_F, \langle a \land f_1, b \land f_4 \rangle \in T_F$. That implies $\langle x, z \rangle \in T_F$. So that T_F is transitive. Therefore T_F is congruence on R.

Corollary 3.10. Let R be an ADL, F a filter of R and T_F is the relation induced by F. The following are equivalent 1. T_F is a compatible relation R2. T_F is transitive 3. T_F is a congruence relation on R.

REFERENCES

1. Birkhoff, G., Lattice Theory, *Amer. Math. Soc. Colloq. Publ.* XXV, Providence (1967), U.S.A.

N. Rafi and B. Venkateswarlu

- 2. Gratzer, G., *General Lattice Theory*, Academic Press, New York, San Fransisco (1978).
- 3. Rao G.C., *Almost Distributive Lattices*, Doctoral Thesis (1980), Dept. of Mathematics, Andhra University, Visakhapatnam.
- 4. Swamy, U.M. and Rao, G.C., Almost Distributive Lattices, J. Aust. Math. Soc. (Series A), 31 (1981) 77-91.