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1. Introduction 

After Booles axiomatization  of two valued propositional calculus as a Boolean  

algebra, a number of generalizations both ring theoretically  and lattice 

theoretically have come into being. The concept of an Almost Distributive 

Lattice (ADL) was introduced  by Swamy and Rao [4] as a common abstraction 

of many existing ring theoretic generalizations of a Boolean algebra on one hand 

and the class of distributive lattices on the other. In that paper, the concept of a 

filters in an ADL was introduced analogous to that in a distributive lattice and it 

was observed that the set PF(R) of all principal filters of R forms a distributive  

lattice.  This enables us to extend many existing concepts from the class of 

distributive lattices to the class of ADLs. We introduced a relation on an ADL, 

which is reflexive and symmetric (i.e., Tolerance relation) on ADL. We proved 

that a tolerance relation is compatible. Finally, we proved that tolerance relation 

induced by filter if and only if it congruence relation on ADL. 

 

2. Preliminaries 

Definition 2.1.[4]  An Almost Distributive Lattice with zero or simply ADL is an 

algebra (R, ∨, ∧, 0) of type (2, 2, 0) satisfying 

1. (x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z) 

2. x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) 

3. (x ∨ y) ∧ y = y 

4. (x ∨ y) ∧ x = x 
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5. x ∨ (x ∧ y) = x 

6. 0 ∧ x = 0 

7. x ∨ 0 = x, for any x, y, z ∈ R. 

 

     Every non-empty set X can be regarded  as an ADL as follows. Let x0 ∈X. Define 

the binary operations ∨, ∧ on X by 

                            
 

Then (X, ∨, ∧, x0) is an ADL (where x0  is the zero) and is called a discrete ADL. 

If (R, ∨, ∧, 0) is an ADL, for any a, b  ∈ R, define a ≤ b if and only if a = a ∧ b 

(or equivalently, a ∨ b  = b), then ≤ is a partial ordering on R. 

 

Theorem 2.2.  ([4])  If (R, ∨, ∧, 0) is an ADL,  for any a, b, c ∈ R,  we have the 

following: 

(1) a ∨ b  = a ⇔ a ∧ b  = b 

(2) a ∨ b  = b ⇔ a ∧ b  = a  

(3) ∧ is associative in R  

(4) a ∧ b ∧ c = b ∧ a ∧ c 

(5) (a ∨ b) ∧ c = (b ∨ a) ∧ c 

(6) a ∧ b  = 0 ⇔ b ∧ a = 0 

(7) a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) 

(8) a ∧ (a ∨ b) = a,  (a ∧ b) ∨ b  = b and a ∨ (b ∧ a) = a 

(9) a ≤ a ∨ b  and a ∧ b  ≤ b 

(10) a ∧ a = a and a ∨ a = a 

(11) 0 ∨ a = a and a ∧ 0 = 0 

(12) If a ≤ c, b ≤ c then a ∧ b  = b ∧ a and a ∨ b  = b ∨ a 

(13) a ∨ b  = (a ∨ b) ∨ a. 

 

      It can be observed that an ADL R satisfies almost all the properties of a 

distributive lattice except the right distributivity of ∨ over  ∧, commutativity of 

∨, commutativity of ∧.  Any one of these properties make an ADL R a 

distributive  lattice. 

 

Theorem 2.3.  ([4])  Let (R, ∨, ∧, 0) be an ADL  with 0.  Then  the following are 

equivalent: 

(1)  (R, ∨, ∧, 0) is a distributive  lattice 

(2)  a ∨ b  = b ∨ a, for all a, b ∈ R 

(3)  a ∧ b  = b ∧ a, for all a, b ∈ R 

(4)  (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c), for all a, b, c ∈ R. 

 

As usual, an element m ∈ R is called maximal if it is a maximal element in 

the partially ordered set (R, ≤). That is, for any a ∈ R, m ≤ a ⇒ m = a. 
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Theorem 2.4.  ([4])  Let  R be an ADL  and m ∈ R.  Then  the following are 

equivalent: 

(1)  m is maximal  with respect to ≤ 

(2)  m ∨ a = m,  for all a ∈ R 

(3)  m ∧ a = a, for all a ∈ R 

(4)  a ∨ m is maximal,  for all a ∈ R. 

 

As in distributive lattices [1,2], a non-empty subset F of an ADL R is said to 

be a filter of R if a ∧ b  ∈ F and x ∨ a ∈ F for a, b ∈ F and x ∈ R. 

For any subset S of R  is the smallest filter containing S  is given by 

[S)={x | x ∨ (⋀   
   i ) | si ∈ S, x∈R and n∈ ℤ+}. If S={x}, we write [x) instead     

of [S). 

 

3. Tolerance Relation on ADLs 

We introduced the notion of tolerance relation on an ADL and proved some 

important properties on it. First, we give the following. 

 

Definition 3.1.  Let R  be an ADL, a  ∈  R  and F  a filter of R. Define  a ∧ F =         

{a ∧ f | f ∈ F }. 

 

Theorem 3.2.  Let R be an ADL. Then for each filter F of R and each a ∈ R the set  

a ∧ F is a convex subADL  of R. 

Proof:  Let x, y ∈ a ∧ F. Then x = a ∧ f1  and y = a ∧ f2 , where f1, f2  ∈ F. 

Now x ∧ y = (a ∧ f1 ) ∧ (a ∧ f2)  = a ∧ f1  ∧ f2. 

Since f1  ∧ f2  ∈ F, we get x ∧ y ∈ a ∧ F. 

Also, x ∨ y = (a ∧ f1) ∨ (a ∧ f2)  = a ∧ (f1  ∨ f2) that implies x ∨ y ∈ a ∧ F   (Since     

f1  ∨ f2  ∈ F ). 

Therefore a ∧ F is a subADL  of R. 

Let x, y ∈ a ∧ F and z ∈ R such that x ≤ z ≤ y. 

Then x = a ∧ f1,   y = a ∧ f2  where f1, f2  ∈ F. 

Now we prove that z ∈ a ∧ F. 

Take f = (f1  ∨ z) ∧ f2. Then f ∈ F. 

Now a ∧ f = a ∧ (f1 ∨ z) ∧ f2  = a ∧ (f1 ∨ z) ∧ a ∧ f2    = [(a ∧ f1) ∨ (a ∧ z)] ∧ y 

= [x ∨ (a ∧ y ∧ z)] ∧ y  = [x ∨ (y ∧ z)] ∧ y  = (x ∨ z) ∧ y  = z ∧ y  = z. 

So that z ∈ a ∧ F. 

Therefore a ∧ F is a convex subADL  of R. 

 

Lemma 3.3.  Let R be an ADL  and F a filter of R. Then  SF   = {a ∧ F | a ∈ 

R} is covering of R. 

Proof:  Let a ∈ R and x ∈ F. 

Now a = a ∧ (a ∨ x) ∈ a ∧ F, since a ∨ x ∈ F. 

Therefore a ∈ a ∧ F . Hence SF    is covering of R. 
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Definition 3.4.  Let R  be an ADL and F  be a filter of R.  The covering SF   = {a ∧ F  

| a ∈ R} is called induced by F  and tolerance relation T (SF ) induced by SF    is 

called tolerance on R induced by the filter of F. 

For the sake of brevity, denote by TF   = T (SF). 

 

Definition 3.5.  Let F be a filter of R. Define a ∧ F = {a ∧ f | f ∈ F }. 

A relation TF  on R  defined by the rule < x, y >∈ TF  if and only if there 

exists a ∈ R such that x ∈ a ∧ F and y ∈ a ∧ F. 

It is easy to verify that TF   is reflexive and symmetric relation on R. 

 

Lemma 3.6.  Let R be an ADL,  F a filter of R and TF   be the induced by F. 

If < c, d >∈ TF , then 

1. < a ∧ d, a ∧ c >∈ TF 

2. < d ∧ a, c ∧ a >∈ TF 

3. < a ∨ d, a ∨ c >∈ TF . 

Proof:  Let < c, d >∈ TF . 

Then there exists u ∈ R such that c ∈ u ∧ F,   d ∈ u ∧ F. 

That implies c = u ∧ f1 , d = u ∧ f2,  for some f1, f2  ∈ F. 

1. Now a ∧ d = a ∧ u ∧ f2 

a ∧ c = a ∧ u ∧ f1. That implies < a ∧ d, a ∧ c >∈ TF . 

2. Similarly  < d ∧ a, c ∧ a >∈ TF . 

3. Now, a ∨ d = a ∨ (u ∧ f2) = (a ∨ u) ∧ (a ∨ f2) (since a ∨ f2  ∈ F ). 

 

Also again, a ∨ c = a ∨ (u ∧ f1) = (a ∨ u) ∧ (a ∨ f1) (since a ∨ f1  ∈ F ). 

Therefore < a ∨ d, a ∨ c >∈ TF . 

Note that < d ∨ a, c ∨ a >∉ TF   for each a ∈ R, since d ∨ a = (u ∧ f2) ∨ a, 

there is no right distributivity  of ∨ over  ∧ in an ADL.  

 

Lemma 3.7.  Let R be an ADL,  F  a filter of R and TF  a relation on R.  If 

< a, b >∈ TF  , < c, d >∈  TF   then < a ∧ c, b ∧ d >∈ TF . 

Proof: Let < a, b >∈ TF , < c, d >∈  TF . 

Then there exist u, v ∈ R such that a = u ∧ f1,  b = u ∧ f2 

c = v ∧ f3,  d = v ∧ f4, where f1, f2, f3, f4  ∈ F. 

Now, a ∧ c = u ∧ f1  ∧ v ∧ f3  = u ∧ v ∧ f1  ∧ f3 

b ∧ d = u ∧ f2  ∧ v ∧ f4  = u ∧ v ∧ f2  ∧ f4. 

That implies < a ∧ c, b ∧ d >∈ TF . 

Similarly, < c ∧ a, d ∧ b  >∈ TF . 

Now, a ∨ c = (u ∧ f1) ∨ (v ∧ f3) 

                   = [(u ∧ f1) ∨ v] ∧ [(u ∧ f1) ∨ f3] 

                   = [(u ∨ v) ∧ (f1  ∨ v)] ∧ [(u ∧ f1) ∨ f3] 

                   = (u ∨ v) ∧ (f1  ∨ v) ∧ [(u ∧ f1 ) ∨ f3] (since (f1 ∨ v) ∧ [(u ∧ f1) ∨ f3] ∈ F ). 

Now, b ∨ d = (u ∧ f2 ) ∨ (v ∧ f4) 

= (u ∨ v) ∧ (f2  ∨ v) ∧ [(u ∧ f2 ) ∨ f4] (since (f2  ∨ v) ∧ [(u ∧ f2) ∨ f4 ] ∈  F ). 

Therefore < a ∨ c, b ∨ d >∈ TF . 

Similarly,  we get < c ∨ a, d ∨ b  >∈ TF . 
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Lemma 3.8.  Let R  be an ADL,  F  a filter of R  and TF  is relation on R.  If 

a, b ∈ R and < a, b >∈ TF    then a = (a ∨ b) ∧ f1,  b = (a ∨ b) ∧ f2, for some 

f1 , f2  ∈ F. 

Proof:  Let < a, b >∈ TF . 

Then there exists u ∈ R such that a, b ∈ u ∧ F 

that implies a = u ∧ f1, b = u ∧ f2, where f1, f2  ∈ F. 

Now (a ∨ b) ∧ f1  = [(u ∧ f1) ∨ (u ∧ f2 )] ∧ f1  = u ∧ (f1 ∨ f2) ∧ f1  = u ∧ f1  = a. 

Similarly, b = (a ∨ b) ∧ f2. Hence lemma. 

 

We conclude this paper with the following result. 

 

Theorem 3.9.  Let R be an ADL  and F a filter of R.  If  TF   is a compatible on R  

then TF   is congruence relation on R. 

Proof:  Clearly TF   is reflexive and symmetric 

Let < x, y >∈ TF   and < y, z >∈ TF . 

Then there exist a, b ∈ R such that x, y ∈ a ∧ F and y, z ∈ b ∧ F. 

That implies x = a ∧ f1,   y = a ∧ f2 

and y = b ∧ f3,   z = b ∧ f4, where f1, f2, f3 , f4  ∈ F. 

 

We prove that < f1,  f4  >∈ TF . 

Now f1  = (f1  ∨ f4) ∧ f1 

f4  = (f1  ∨ f4) ∧ f4. 

Therefore < f1,  f4  >∈ TF . 

Since a ∈ a ∧ F and x ∈ a ∧ F, we get < a, x >∈ TF . 

Similarly < a, y >, < b, y >, < b, z >∈ TF . 

By symmetry, we get <  y, b  >, <  a, y  >∈  TF . Since TF    is compatibility, 

< y ∨ a, b ∨ y >∈ TF . 

Since TF   is compatibility, < a, b >∈ TF . 

Since < f1, f4  >∈ TF , < a ∧ f1 , b ∧ f4  >∈ TF . 

That implies < x, z >∈ TF . 

So that TF   is transitive. 

Therefore TF   is congruence on R. 

 

Corollary 3.10.  Let R  be an ADL,  F  a filter of R  and TF    is the relation induced 

by F . The  following are equivalent 

1. TF   is a compatible relation R 

2. TF   is transitive 

3. TF   is a congruence relation on R. 
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