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1.  Introduction 
1.1. Cactus graph 
Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices and 

m edges, where V  is the set of vertices and E  is the set of edges. A vertex v  is 
called a  cut-vertex if removal of v  and all edges incident on v  disconnect the 
graph. A  non-separable graph is a connected graph which has no cut-vertex and a  
block means a maximum non-separable sub-graph. A block is a  cyclic block or 
simply a  cycle in which every vertex is of degree two. 
A  cactus graph is a connected graph in which every block is either an edge or a 
cycle. 

Cactus graph has many applications. These graphs can be used to model 
physical setting where a tree would be inappropriate. Examples of such setting arise in 
telecommunications when considering feeder for rural, suburban and light urban 
regions [8] and in material handling network when automated guided vehicles are 
used [9]. Moreover, ring and bus structures are often used in local area networks. The 
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combination of local area network forms a cactus graph. Design a suitable algorithms 
is a very important task. Several algorithms have been design for different graphs, see 
[16-27]. 

 
1.2.  The k -neighbourhood-covering set 

The k -neighbourhood-covering (k -NC) problem is a variant of the 
domination problem. Domination is natural model for location problems in operations 
research, networking, etc. 

The graph considered in this paper are simple  i.e, finite, undirected and 
having no self-loop or parallel edges. In a graph ),(= EVG , the  length of a path is 

the number of the edges in the path. The  distance ),( yxd  from the vertex x  to the 
vertex y  is the minimumn length of a path from x  to y , and if there is no path 

from x  to y  then ),( yxd  is taken as ∞ . 

A vertex x,  k -dominates another vertex y  if kyxd ≤),( . A vertex z  is 

k -NC of an edge ),( yx  if kzxd ≤),(  and kzyd ≤),(  ei. , the vertex z  k
-dominates both x  and y . Conversely if kzxd ≤),(  and kzyd ≤),(  then the 

edge ),( yx  is said to be k -neighbourhood covered by the vertex z . A set of 

vertices VC ⊆  is a k -NC set if every edge in E  is k -NC by some vertices in C. 
The k -NC number ),( kGρ  of G  is the minimum cardinality of all k -NC sets. 

 
1.3. Review of previous works 

 For 1=k , Lehel et al. [10] have presented a linear time algorithm for 
computing ,1)(Gρ  for an inteval graph G . Chang et al. [1] and Hwang et al. [7], 

have presented linear time algorithms for computing ,1)(Gρ  for a strongly chordal 
graph provided that strong elimination ordering is known. Hwang et al. [7] also 
proved that k -NC problem is NP-complete for chordal graphs. Mondal et al. [12] 
have presented a linear time algorithm for computing 2-NC problem for an interval 
graph. Also a linear time algorithm for trapezoid graph has presented by Ghosh et al. 
[4]. 

 
1.4. Our result 
           In this paper we consider a cactus graph G . Here we design an algorithm 
which finds the 2-neighbourhood covering set of the graph G  in )(nO  time. The 

algorithm also takes )(nO  space. 
 

2. Computation of blocks and cutvertices of G  
As described in [13] the blocks as well as cut vertices of a graph G  can be 

determined by applying DFS technique. Using this technique we obtain all blocks and 
cut vertices of the cactus graph ),(= EVG . Let the blocks be 1B , 2B , 3B ,..., NB  

and the cut vertices be 1c , 2c , Rcc ,,3 K  where N  is the total number of blocks 

and R  is the total number of cut vertices. 
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Two blocks are said to be  adjacent if they have at least one common vertex 
of the graph G . Define edge blocks as 2}|=:|{= jji BBe , and cycle blocks as 

2}|>:|{= jji BBC , where || jB  is the cardinality of jB . Let the number of cycle 

blocks be N′  and number of edge blocks be N ′′ . Number of vertices of each cycle 
is denoted by || iC , Ni ′,1,2,= K . 

 
3. Construction of tree blocks and the tree BCT  

 Suppose the set },,,,{= 321 NeeeeS ′′′ K . A tree block iT  is a maximal 

subgraph of G  such that iT  is a tree. Let LTTT ,,, 21 K  be the tree blocks of G. The 

tree blocks iT 's are formed by the members of S′   i.e., STi ′⊂ , Li ,1,2,= K . 

Now we have in a position to construct the tree BCT  using tree blocks iT 's, 

Li ,1,2,= K  and jC 's, Nj ′,1,2,= K . Before construction of the tree BCT  we 

define  an intermediate graph G′  whose vertices are the blocks of G . 
Thus ),(= EVG ′′′  where the vertices are blocks of the graph G   

 i.e., },,,,,,,{= 32121 NL CCCCTTTV ′′ KK . 

If two blocks are adjacent they are connected by an edges. Thus 
),{(= ji CCE′  or ),( ki TC  or NjijiTT lk ′/ ,1,2,=,;=:),( K  and 

Lkllk ,1,2,=,;= K/ , iC , jC , lT  and kT  are adjacent blocks }. 

Now the tree BCT  is constructed from G′  as follows: 

We discard some suitable edges from G′  in such a way that the resultant 
graph becomes a tree. The procedure for such reduction is given below: 

Let us take any arbitrary vertex of G′ , containing at least two cut-vertices of 
G , as root of the tree BCT  and mark it. All the adjacent vertices of this root are taken 

as children of level one and mark them. If there are edges between the vertices of this 
level, then discard these edges. Each vertices of level one is considered one by one to 
find the vertices which are adjacent to them but unmarked. These vertices are taken as 
children of the corresponding vertices of level one and put them at level two. These 
children at level two are marked and if there be any edge between them then remove 
them. This process is continued until all the vertices are marked. 

Thus the tree ),(= EVTBC ′′′  where },,,,,,,{= 32121 NL CCCCTTTV ′′ KK  

and EE ′⊂′′  is obtained. For convenience, we refer the vertices of BCT  as nodes. 

We note that each node of this tree is a block (cycle block or tree block) of the graph 
),(= EVG . 

The parent of the node iC  in the tree BCT  will be denoted by  Parent( iC ). 

 
4. Euler Tour 

Euler tour produces an array of nodes. The tour proceeds with a visit to the 
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root and there after visits to the children of the root one by one from left to right 
returning each time to the root using tree edges in both directions. Algorithm 
GEN-COMP-NEXT of Chen et al. [2] implements this Euler tour on a tree starting 
from the root. The input to the algorithm is the tree represented by a `parent of' 
relation with explicit ordering of the children. The output of the algorithm is the tour 
starting from the root of the tree and ending also at the root. The tour is represented by 
an array 1))2(:(1 −+′ LNS  that stores information connected to the visits during 

the tour. The element )(iS  of the array S  is a record consisting of two fields, one of 

which, denoted by nodeiS ).( , is the node visited during the  ith visit while the 

other, denoted by subscriptiS ).(  is the number of times the node nodeiS ).(  is 

visited d using the first i  visits of the tour. Two fields of an element of S  are 
written together using the notation subscriptnode)( . 

Also, we consider an array )( jf  and )(kf ′  which stores the total number 

of occurrence of the block ,jC  Nj ′,1,2,3,= K  and ,kT  Lk ,1,2,3,= K  in the 

array 1),2(1,2,3,=),( −+′ LNiiS K . Thus )( jf  and )(kf ′  represents the total 

number of visits of the block jC  and kT  in the Euler tour,  i.e., )( jf  and )(kf ′  

are the maximum subscript of jC  and kT  in the array )(iS .  

For each j and k, j=1,2,3,...,N and k=1,2,3,...,L, (Cj)f(j) and (Tk)f’(k) occurs only 
once in th array S(i) and before (Cj)f(j) and (Tk)f’(k)  all of (Cj)1, (Cj)2,...(Cj)f(j)-1 and (Tk)1, 
(Tk)2,...(Tk)f’(k)-1 occur respectively in order of increasing subscripts of Cj and Tk. 

 

        The following important lemma is proved in [11]. 
 

Lemma 1.  If 1=).( subscriptiS  and 1=1).( /+ subscriptiS , then nodeiS ).(  is 
a leaf node of the tree.  
 
5. Determination of 2-NC set from cycles and paths 
Lemma 2.  For 2-NC problem a vertex in a cactus graph can cover at least 4 edges.  
Proof: Let ),(= EVG  be a cactus graph and Vu∈ . Now degree of u  may be two 
or more. 
Case 1: Let the degree of u  be two. Then there exist two vertices v  and w  so that 

1=),( rud , wvr ,= . Now if wv,  are of degree two then there also exist two 

vertices yx,  so that ),( xud  and 2=),( yud . Thus u  covers four edges 

),(),,(),,(),,( yvxwwuvu  where wv,  are adjacent to u  and yx,  are adjacent to 
v  and w  respectively. 

But if any one of v  and w  are of degree more than two then u  cover all 
edges incident on v  or w  or both as 1=),( rud , wvr ,= . In this case u  covers 
more than four edges. 
Case 2: Suppose the degree of u  is more than two. In this case u  is adjacent to 
more than two vertices so that the inequality 2),( ≤vud  is satisfied for more than 
four vertices  i.e., u  covers more than four edges. 
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Thus it is evident from the above cases that u  covers at least four edges. 
Hence the proof.  

 
Lemma 3.  A cycle of m4  vertices contribute at least m vertices in the 2-NC set 
X .  

Proof: The degree of all vertices of a cycle are two. Let u , v , w , x , y  be the 
five consecutive vertices of a cycle. Hence from Lemma 2 it is evident that a vertex u  
can cover four edges ),(),,(),,(),,( yvxwwuvu  where wv,  are adjacent to u  and 

yx,  are adjacent to w  and v  respectively as 2),( ≤rud , yxwvr ,,,= . Now a 

cycle of m4  vertices contain m4  edges. Thus to cover m4  edges at least m 
vertices are needed.  
 
Lemma 4.  A cycle containing 14 +m , 24 +m  and 34 +m  vertices contribute at 
least 1+m  vertices in the 2-NC set X .  
 
Lemma 5. A path containing m4  edges  i.e., containing 14 +m  vertices 
contribute at least m vertices in the 2-NC set X .  
Proof: In a path every vertex except the end vertices are of degree two. So, if u  is a 
vertex on the path which is not an end vertex or its adjacent then it must cover four 
edges because end vertices of a path cover at most two edges where as the adjacent 
vertex of an end vertex can cover at most three edges, one from the side where end 
vertex lies and two edges from the other side. Hence to cover all the edges on this path 
at least m vertices are needed.  
    
Lemma 6.  A path containing 21,44 ++ mm  or 34 +m  edges contribute at least 

1+m  vertices in 2-NC set X .  
Proof: As a path containing m4  edges contribute at least m vertices in X  then 
for the rest 1 or 2  or 3  edges one vertex is required to cover them. Thus 1+m  
vertices are necessary to cover all the edges of these paths.  

 
Lemma 7.  Between two vertices iu , Xu j ∈  and also iu , ij Cu ∈  (or path), there 

exist at most 44 +r  edges, i.e., 34 +r  vertices, r  being the number of vertices 

between iu  and ju  included in both X  and the cycle iC  (respectively path).  

Proof: Suppose iu  and ju  are any two vertices of X  belong to the same cycle 

(path). Let there exists r  vertices in X  between iu  and ju . Now iu  covers two 

edges and ju  covers two edges between the edges of iu  and ju . Also r  vertices 

of X  cover r4  edges. Hence there are 44 +r  edges between iu  and ju   i.e., 

34 +r  vertices. 
Thus if 0=r , then there exists 4  edges between iu  and ju   i.e., 3  
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vertices, if 1=r , then there exists 8  edges between iu  and ju   i.e., 7  vertices, 

if 2=r , then there exists 12 edges between iu  and ju   i.e., 11 vertices, and so 

on. Hence the proof.  
                                                                                                                             

6. Determination of 2-NC set from the tree blocks 
For a tree block iT  consider the vertex common to iT  and the adjacent cycle 

block of iT  as the root say, *0u . Here the adjacent cycle block of iT  is the node 

which is consider after iT  in the Euler sequence. Then the adjacent vertices of the 

root are placed at level 1 and the adjacent vertices of the vertices of level 1 are placed 

at level 2 and so on. Thus the height of the tree h  is defined as ),,({= *
0 vudmaxh  

*
0u  being the root and }iTv∈ . The vertices for which maximum level is obtained, 

one of that is denoted by *hu  and the path between *0u  and *
hu  on which h  occurs 

is treated as the  main path of the tree. The vertices on the main path are denoted as 
**

2
*
1

*
0 ,,,, huuuu K , where subscripts denote the level of vertices. 

For every vertex *
iu , hi ,1,2,= K  there exists one or more subtrees rooted 

at *
iu . These are denoted by )()(),(),( **

3
*

2
*

1 iMiii uBuBuBuB K , M  being the total 

number of subtrees rooted at *iu . 

Clearly, the height of )( *
ik uB  is less than or equal to ih −  for all 

Mk ,1,2,= K . Some of the subtrees are paths rooted at *
iu . Thus for each such path 

ihuB ik −≤|)(| *  for some k , as the maximum number of edges and vertices 

excluding *
iu  on that path is ih − . 

 

Lemma 8.  The vertex *
2−hu  is the first member of X  in T and 2),( *

2 ≤− vud h , for 

all )( *
ihk uBv −∈ , 1,2=i .  

Proof: Since the height of the tree is h , there is no subtree (path) rooted at *
hu . If 

there is a subtree (path) rooted at *
1−hu , height of that subtree is one. Similarly, *

2−hu  

may has subtrees of height 2≤ . Otherwise, they all exceed the height of the tree. 

Also 2=),( **
2 hh uud − . Hence for all )( *

ihk uBv −∈ , 1,2=i , 2),( * ≤huvd .  

 

Lemma 9.  If the path rooted at the vertex *iu , 2,0,1,2,= −hi K  with

24|=)(| * +muB ik  for at least one k , then *
iu  is a member of X .  

Proof: From Lemma 2, we have seen that one vertex cover at least four edges. For any 

path rooted at *
iu , if we start from its leaf, m vertices are included in X  to cover 

m4  edges. For the rest two edges either adjacent to *
iu  on that path or *

iu  is the 
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vertex to cover them. But *iu  is the most suitable vertex to cover them because it also 

covers more edges on the main path as well as on the other subtrees rooted at *iu . 

Hence the proof.  
 

Lemma 10.  The path rooted at *
iu , 2,0,1,2,= −hi K  with 34|=)(| * +muB ik , 

for some k , )()( **
iki uBuadj ∈  is a member of X .  

Proof: A path with 34|=)(| * +muB ik  contains 34 +m  vertices and 34 +m  

edges. Here also m vertices covered m4  edges if we start from the leaf of the path. 

Three edges are left uncovered below *
iu . Thus if, the vertex )()( **

iki uBuadj ∈  is 

selected, then it covers those edges. Also )( *
iuadj  can cover all the edges incident on 

*
iu .  

 

Lemma 11.  The path rooted at *
iu , 2,0,1,2,= −hi K  with 14|=)(| * +muB ik , 

for some k , *
iu  or )( *

iuadj  is a member of X , where )( *
iuadj  is not a member of 

)( *
ik uB .  

 
Lemma 12.  The path rooted at *

iu  with muB ik 4|=)(| *  or 14 +m  or 24 +m , 

for some k  contribute m vertices and with 34|=)(| * +muB ik , contribute 1+m  

vertices.  
Proof: The path containing 4m, 14 +m and 24 +m  vertices contain m4 , 14 +m , 

24 +m  edges. By Lemma 5, m  vertices on the path are selected to cover m4  

edges. Also by Lemma 9 and Lemma 10, m vertices on the path are selected and *
iu  

or )()( **
iki uBuadj ∉  are selected to cover the 14 +m  and 24 +m  edges. Hence 

)( *
ik uB  with 21,4,44 ++ mmm  vertices contribute m vertices in X . 

From Lemma 10, for 34|=)(| * +muB ik , m vertices are selected for m4  

edges and for the other three edges )()( **
iki uBuadj ∈  is selected. Hence )( *

ik uB  

contribute 1+m  vertices in X .  
 
Procedure to determine the 2-NC set from the tree 

Using the above lemmas the procedure for selecting covering vertices from 
the tree BCT  is described below.  

Step-1: Start from *
hu . The first member of X  is *

2−hu . 

Step-2: Go to the vertex *
ihu − , hi ,3,4,= K  one by one. Two cases arise here for 

each i . 
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Case 1: There exist no subtrees rooted at *
ihu − . 

In this case we proceed to the vertex ,*
1−−ihu  hi ≠  and apply Case 1 and 

Case 2 of Step 2. 

Case 2: There exist some subtrees rooted at *
ihu − . 

Here also two cases arise. 
Subcase 2.1: If some subtrees are paths then consider the leaf vertex of the 

path at the first position and consider the following situations. 

(i) If the paths are of length 24 +m , then select *
ihu −  and the vertices at 

1)(4 −k th position, mk ,1,2,= K  are selected in X . 

(ii) If the paths are of length 34 +m , then select the vertices at 1)(4 −k th 

position, 1,1,2,= +mk K  in X . 

(iii) If the paths are of length m4 , then select the verties at 1)(4 −k th 

position, mk ,1,2,3,= K  in X . 

(iv) If the paths are of length 14 +m , then select the vertices at 1)(4 −k th 

position, mk ,1,2,= K  in X . 

In this case one edge incident on *
iu  is left uncovered. It is covered by the 

vertex *
ihu −  or )( *

ihuadj −  which is either belongs to the main path or another 

subtrees (paths) rooted at the vertex *
ihu −   i.e., they are situated at level 1+− ih  or 

1−− ih . Now if the vertex )( *
ihuadj −  of level 1+− ih  or *

ihu −  is not already 

selected for X  then the vertex *
1−−ihu  must be a member of X . 

 Subcase 2.2: If the subtrees are another trees then find their height and 
following the same procedure as described in Step 1 and Step 2 find the covering 
vertices from those subtrees. 

Thus applying the Step 1 and Step 2 repeatedly for the vertices one by one on 
the main path from level h  to the level 0 , the 2-NC set of the tree will be obtained. 

At the time of consideration of *0u  if some edges incident on the vertex *
0u   

i.e., the root of the tree or tree block is uncovered then select *
0u  or )( *

0uadj  from 

the tree or from cycle containing the vertex *
0u . If )( *

0uadj  from the tree or tree 

block is not selected then it is selected from the cycle when we consider the cycle. 

7. Determination of 2-NC set from the nodes of the tree BCT  

Here we consider the nodes of the tree BCT  one by one from the sequence 

obtained from Euler tour. The nodes jC  or kT  for which )( jf  or )(kf ′  is 1, are 

leaf nodes. Otherwise, the nodes are interior nodes. 
 

7.1.  Finding covering vertices from a leaf node of BCT  

If the leaf node is a cycle iC  we apply the following procedure. Suppose v  is the 
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cutvertex of the leaf node iC  and consider the cutvertex v  in the first position of the 

cycle. Now 
(1) For the leaf node iC  having m4  vertices mark the cutvertex v  first 

and thereafter mark the vertices at 1)(4 +k th position, mk ,1,2,= K . 

(2) For the leaf node iC  having 14 +m  vertices, one of the incident edges 

on the cutvertex v  is left uncovered and marked the vertices at 1)(4 −k th position, 

mk ,1,2,= K  (considering the cutvertex v  in the first position). 

(3) For the leaf node iC  having 24 +m  vertices, both the edges incident on 

the cutvertex v  are left uncovered and marked the vertices at k4 th position, 
mk ,1,2,= K . 

(4) For the leaf node iC  having 34 +m  vertices mark the cutvertex v  

first, then mark vertices at 1)(4 +k th position, mk ,1,2,= K . 

If the leaf node be a tree block iT , then find the covering vertices from iC  

for X  by applying the procedure described in Section 6. 
After selecting the vertices for the covering set from leaf nodes mark all edges 

which are covered by those vertices. 

7.2.  Finding covering vertices from an interior node of BCT  

After marking the covered edges from leaves or children nodes jC(  or )jT  the 

respective Parent( jC ) or Parent( jT ) which is another cycle iC  or tree kT  have the 

following situations. 
(1) None of the edges of the )( jCParent  or )( jTParent  is covered. Also 

there may some uncovered edges incident on the some cutvertices with its children 
nodes. 

(2) One or more edges of the )( jCParent  or )( jTParent  are covered 

from its children node. Here also may arise some uncovered edges incident on the 
cutvertices with its children nodes. 
Case 1: Here (i) if the node is a tree block (kT ) then the uncovered edges of its 

children nodes increase its height as well as length of some subtrees of that tree block. 
Therefore applying the method described in Section 6 we find the covering vertices 
from that improved tree block. 

(ii) If the node be a cycle block iC , first we have to mark either the 

cutvertices of iC  and sC j ′  or any one of the adjacent vertices of the said cutvertices 

of the children nodes of iC  with jC . It depends on the number of vertices lies 

between these cutvertices. 
Suppose iu  are the cutvertices which have branch of length one. il  be the 

path between iu  and 1+iu . || il  be the number of vertices in il . Now we select iu  
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or )( iuadj  by using the following procedure. 

From Lemma 7 we see that between two members of X  of a cycle or a path 
there are 34 +r  vertices, ,1,2,= Kr . Using this lemma the following cases may 
arise. 
Subcase 1: Let there be 14 +m  vertices between iu  and 1+iu . In this case select 

the vertices ii luadj ∈)(  and ii luadj ∈+ )( 1  or 1)( −∈ ii luadj  and 11)( ++ ∈ ii luadj . 

For the first pair there are 14 −m  vertices between )( iuadj  and )( 1+iuadj  and for 

the second pair there are 34 +m  vertices between )( iuadj  and )( 1+iuadj  which 

satisfy Lemma 7. 
Subcase 2: Let there be 24 +m  vertices between iu  and 1+iu . In this case select 

the vertices iu  and ii luadj ∈+ )( 1  or 1)( −∈ ii luadj  and 1+iu . For the first and for 

the second pair there are 34 +m  vertices between iu  and )( 1+iuadj  and between 

)( iuadj  and 1+iu  which satisfy Lemma 7. 

Subcase 3: Let there be 34 +m  vertices between iu  and 1+iu . In this case select 

the vertices ii luadj ∈)(  and 11)( ++ ∈ ii luadj  or 1)( −∈ ii luadj  and ii luadj ∈+ )( 1  

or iu  and 1+iu . There are 34 +m  vertices between the vertices of each pair which 

satisfy Lemma 7. 
Subcase 4: Let there be m4  vertices between iu  and 1+iu . In this case select the 

vertices iu  and ii luadj ∈+ )( 1  or ii luadj ∈)(  and 1+iu . There are 14 −m  vertices 

between the vertices of each pair which satisfy Lemma 7. 
 
Lemma 13.  For ml i 4|=|  or 24 +m , K1,2,=m   

(i) 1+iu  is the first member of X  from iC  if 1−il  is of length 14 +m . 

(ii) iu  is the first member of X  from iC  if 1+il  is of length 14 +m . 

(iii) iu  or 1+iu  is the first member of X  from iC  if both 1+il  and 1−il  

are of length 14 +m .  
Proof: (a) For ml i 4|=| , select either the vertices iu  and ii luadj ∈+ )( 1  or 

ii luadj ∈)(  and 1+iu . 

(b) For 24|=| +ml i , select either the vertices iu  and 11)( ++ ∈ ii luadj  or 

1)( −∈ ii luadj  and 1+iu . 

(c) For 14|=| 1 +− ml i , select either the vertices 1)( −∈ ii luadj  and 

11)( −− ∈ ii luadj  or ii luadj ∈)(  and 21)( −− ∈ ii luadj . 

(d) For 14|=| 1 ++ ml i  select either the vertices 11)( ++ ∈ ii luadj  and 

12)( ++ ∈ ii luadj  or ii luadj ∈+ )( 1  and 21)( ++ ∈ ii luadj . 
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Case 1: Thus from (a) and (c) it is evident that if il  is of length m4  and 1−il  is of 

length 14 +m  then select 1+iu , ii luadj ∈)( , ii luadj ∈− )( 1 , for X .            (1) 

If il  is of length 24 +m  and 1+il  is of length 14 +m  (b) and (d) give the 

covering vertices as 1111 )(,)(, −−−+ ∈∈ iiiii luadjluadju  in X .                   (2) 

Thus (1) and (2) shows that 1+iu  must be member of X . So it is the first 

member of X  from that cycle iC . 

Case 2: Now if il  is of length m4  and 1+il  is of length 14 +m  then (a) and (d) 

give iu , ii luadj ∈+ )( 1  and 22)( ++ ∈ ii luadj ,                                    (3) 

and if il  is of length 24 +m  and 1+il  is of length 14 +m , (b) and (d) give  

11)(, ++ ∈ iii luadju  and 12)( ++ ∈ ii luadj .                                 (4) 

Thus (3) and (4) shows that iu  must be a member of X . So it is the first member of 

X  from the cycle iC . 

Case 3: If both 1+il  and 1−il  are of length 14 +m  and il  is of length m4  or 

24 +m  select vertices from any one of (1) or (2) or (3) or (4), which shows that any 
one of iu  and 1+iu  is the first member of X  from iC .  

Lemma 14.  For il  and 1+il  )( 1−il  are either both of length m4  or 24 +m  or 

one is m4  and other is 24 +m , 1+iu  )( iu  is the first member of X  from that 

cycle.  
Proof: (a) If il  is of length m4 , select either the vertices iu  and ii luadj ∈+ )( 1  or 

1+iu  and ii luadj ∈)( . 

(b) For 1+il  is of length m4  select either 1+iu  and 12)( ++ ∈ ii luadj  or 2+iu  

and 11)( ++ ∈ ii luadj . 

(c) If il  is of length 24 +m , select either the vertices iu  and 

11)( ++ ∈ ii luadj  or 1+iu  and 1)( −∈ ii luadj . 

(d) For 1+il  is of length 24 +m  select either the vertices 1+iu  and 

22)( ++ ∈ ii luadj  or 2+iu  and ii luadj ∈+ )( 1 . 

Now if il  and 1+il  both are of length m4  or 24 +m , then from (a), (b), (c) 

and (d) the vertex 1+iu  is the common member to be selected. Hence 1+iu  must be a 

member of X . So it is the first member of X  from iC . 

If il  and 1+il  one of which is m4  and other is the length 24 +m , then 

from (a), (c) and (b), (d) 1+iu  is the common member to be selected. Hence 1+iu  

must be a member of X . So it is the first member of X  from iC . 
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For 1−il  instead of 1+il , we can prove similarly that iu  is the first member 

of X . Hence the proof.  

Lemma 15.  For all il , 1,1,2,= −ri K  of length m4  or 24 +m , any one of iu , 

ri ,1,2,= K  is the first member of X  from the cycle iC .  

Proof: (a) If il  is of length m4 , select either iu , ii luadj ∈+ )( 1  or 1+iu , 

ii luadj ∈)( . 

(b) If il  is of length 24 +m , select either iu , 11)( ++ ∈ ii luadj  or 1+iu , 

1)( −∈ ii luadj . 

From (a) and (b) it is evident that for each il , 11,2,3,= −ri K  of length 

m4  or 24 +m , iu  or 1+iu  is a common member of X . Thus for all il  of length 

m4  or 24 +m , any one of iu , ri ,1,2,= K  is the first member of X  from the 

cycle iC .  

Lemma 16.  For all il , 1,1,2,= −ri K  of length 14 +m  or 34 +m , any one of 

)( iuadj , ri ,1,2,= K  is the first member of X  from the cycle iC .  

Proof: (a) If il  is of length 14 +m  select either the vertices ii luadj ∈)(  and 

ii luadj ∈+ )( 1  or 1)( −∈ ii luadj  and 11)( ++ ∈ ii luadj . 

(b) If il  is of length 34 +m  select either the vertices ii luadj ∈)(  and 

11)( ++ ∈ ii luadj  or 1)( −∈ ii luadj  and ii luadj ∈+ )( 1  or iu  and 1+iu . 

From (a) and (b) it is evident that for each il , 11,2,3,= −ri K  of length 

14 +m  or 34 +m , )( iuadj  is a common member for both the cases. So it is taken 

as the first member of X . Thus for all il  of length 14 +m  or 34 +m , any one of 

)( iuadj , ri ,1,2,= K  is the first member of X  from the cycle iC .  

Case 2: In this case also if the node be a tree block then height of the tree or length of 
some paths be decreased. Also if there be some uncovered edges incident on some 
vertex of the tree then the length of some path or height of the tree be increased. 
        If the node be a cycle there occur two or more than two trees. 

Hence the steps to find the covering vertices from the interior node are: 
Step 1: For the cycle arises in Case 1. 

Select the first member of X  from Cj and mark the edges covered by this 
vertex. Then the unmarked edges of the cycle Cj thus form two trees rooted at the 
cutvertex of Cj and Parent(Cj). For every tree we apply the procedure as described in 
Section 6 to select the covering vertices from that tree.  
Step 2: For the cycle arises in the Case 2. 

Here the unmarked vertices occurs as two or more than two trees. For every 
tree we apply the procedure as described in Section 6 to select the covering vertices. 



An Optimal Algorithm to Find a Minimum 2-neighbourhood Covering Set on Cactus 
Graphs 

57 
 

Step 3: For the tree block arises in Case 1 or Case 2 we apply the procedure as 
described in Section 6 to select the covering vertices from that tree block. 

8. Algorithm and its complexity 
In this section, we present an algorithm 2NBCOV to compute the 2-neighbourhood 
covering set on cactus graphs. The time and space complexities are also computed 
here. The proof of correctness of the algorithm is also presented in this section. 
 
Algorithm 2NBCOV 
Input: The cactus graph G . 
Output: The 2-neighbourhood covered set X .  
Step 1: Compute the blocks and cutvertices of G  as described in Section 3. 
        //Let S′  be the set of edge blocks and form the tree blocks iT ,  

        Li ,1,2,= K . Also denote the cycle blocks as jC , Nj ′,1,2,= K .// 

Step 2: Construct a tree BCT  whose nodes are the tree blocks and cycle blocks as 

described in Section 4. 
Step 3: Apply Euler tour on BCT  and store the output in the array 

1))2(:(1 −+′ LNS , LN +′  is the total number of nodes of BCT . 

Step 4: Compute )( jf  and )(kf ′ , Nj ′,1,2,= K  and Lk ,1,2,= K , LN +′  

which stores total number of occurrences of the node jC  and kT  in the array S . 

Step 5: Note the order in which )()( jfjC , )()( kfkT ′  Nj ,1,2,= K  and 

Lk ,1,2,= K  occurs in the array S . 
Step 6: For each node of the resulting sequence, if 
        (i) 1=)( jf  or 1=)(kf ′ , then find the vertices of G  using rule described 

in Section 7.1 and put them in the set X . 
        (ii) 1)( ≠jf  or 1)( ≠′ kf , then find the vertices of G  using the rule 

described in Section 7.2 and put them in the set X . 
end 2NBCOV 

 
Lemma 17. The set X  obtained from the algorithm 2NBCOV is a 2-neighbourhood 
covering set.  
Proof: Here the problem is to find 2-NC set. The set X  is constructed in such a way 
that for every vertex Xu∈ , we find Sv ′∈  so that 2),( ≤vud . Now it is seen that 

VXS =U . Therefore all the edges connected with the vertices of X  and vertices 

of S′  are covered by the vertices of X ,  i.e., E  is covered by the vertices of the 
set X . Thus X  is the 2-NC covering set of the graph G .  

Lemma 18.  The set X  obtained from 2NBCOV is minimum among all the 2-NC 
covering set of the cactus graph G .  
Proof: From the Lemmas 2, 3, 4, 5, 6, 10 and 12, it is evident that the selection of 
covering vertices from cycles, paths and tree blocks is made in such a way that these 
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contribute least number of vertices in the covering set. Also during consideration of 
the nodes of the tree BCT  we minimize the number of covering vertices for the cases 

where leaf nodes contain 14 +m  and 24 +m  vertices. Sometimes, these contribute 
m vertices in X  instead of 1+m  vertices as in Lemma 4. Similarly, for the tree 
block the paths containing 14 +m  and 24 +m  edges also contribute m vertices 
instead of 1+m  vertices as in Lemma 12. Hence the lemmas and procedure are so 
designed that they find minimum number of vertices to 2-NC set X . Thus the set X  
is the minimum cardinality 2-NC set for the cactus graph G .  
 
Theorem 1. The minimum 2-neighbourhood covering set X  obtained from the 
algorithm 2NBCOV can be computed in )(nO  time.  
Proof: The blocks and cutvertices of any graph can be computed in O(m+n) time [13]. 
For the cactus graph m=O(n), hence step 1 of Algorithm 2NBCOV takes  O(n) time. 
Also formation of tree blocks Ti  using the edge blocks of G takes O(n) time. Hence 
step 2 can be computed in O(n) time. In step 3, the construction of the tree TBC using 
tree blocks and cycles, finding  f(j)  and f’ (k) for each node and finding sequence of 
nodes using Euler Tour take O(n) time. Hence steps 3, 4, 5 and 6 take O(n) time. Step 
7 can be performed by comparing f(j) and f’ (k) with 1 for j = 1,2,…, N’  and k = 1, 2, 
…, L. So this step takes only O(n) time. Hence the algorithm 2NBCOV computed the 
2-NC set in O(n) time.  
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