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1. Introduction
1.1. Cactusgraph
Let G=(V,E) be a finite, connected, undirected, simple grapinovertices and

m edges, wherd/ is the set of vertices anl is the set of edges. A vertex is
called a cut-vertexif removal of v and all edges incident ox disconnect the
graph. A non-separable grapfs a connected graph which has no cut-vertex and a
block means a maximum non-separable sub-graph. A bk tyclic blockor
simply a cyclein which every vertex is of degree two.

A cactus graphis a connected graph in which every block is eithe edge or a
cycle.

Cactus graph has many applications. These graphdeaused to model
physical setting where a tree would be inappropriakamples of such setting arise in
telecommunications when considering feeder forlywaburban and light urban
regions [8] and in material handling network wheroaated guided vehicles are
used [9]. Moreover, ring and bus structures arenofised in local area networks. The
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combination of local area network forms a cactaplr Design a suitable algorithms
is a very important task. Several algorithms haaenidesign for different graphs, see
[16-27].

1.2. The k-neighbourhood-covering set

The k -neighbourhood-covering K -NC) problem is a variant of the
domination problem. Domination is natural modelléaration problems in operations
research, networking, etc.

The graph considered in this paper are simpke finite, undirected and
having no self-loop or parallel edges. In a grdpt= (V, E), the lengthof a path is
the number of the edges in the path. THistance d(X, y) from the vertexx to the
vertex y is the minimumn length of a path from to y, and if there is no path
from X to y then d(X,y) istaken asw.

A vertexx, k-dominates another vertey if d(x,y)<k.A vertex z is
k-NC of an edge(x,y) if d(x,z2)<k and d(y,z)<k ie, the vertexz k
-dominates bothx and y. Conversely ifd(x,z) <k and d(y,z) <k then the
edge (X,y) is said to bek -neighbourhood covered by the vertex A set of
vertices C 1V is a k-NC set if every edge irE is k-NC by some vertices i@.
The k-NC number p(G,k) of G is the minimum cardinality of alk -NC sets.

1.3. Review of previousworks

For k=1, Lehel et al. [10] have presented a linear tingo@thm for
computing p(G,1) for an inteval graphG . Chang et al. [1] and Hwang et al. [7],
have presented linear time algorithms for computim@s,1) for a strongly chordal

graph provided that strong elimination orderingkimown. Hwang et al. [7] also
proved thatk -NC problem is NP-complete for chordal graphs. Manet al. [12]
have presented a linear time algorithm for comguiFfNC problem for an interval
graph. Also a linear time algorithm for trapezordggh has presented by Ghosh et al.

[4].

1.4. Our result
In this paper we consider a cactus gr&phHere we design an algorithm
which finds the 2-neighbourhood covering set of gh@ph G in O(n) time. The

algorithm also take$D(n) space.

2. Computation of blocks and cutvertices of G
As described in [13] the blocks as well as cutiveg of a graphG can be
determined by applying DFS technique. Using thitiméque we obtain all blocks and

cut vertices of the cactus grafgh = (V, E) . Let the blocks beB,, B,, B;,..., By

and the cut vertices be, c,, C,,...,C; where N is the total number of blocks
and R is the total number of cut vertices.
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Two blocks are said to beadjacentif they have at least one common vertex
of the graphG . Define edge blocks ag ={B, :|B; |=2}, and cycle blocks as
C ={B,:|B;|>2}, where|B, | is the cardinality ofB; . Let the number of cycle
blocks be N’ and number of edge blocks " . Number of vertices of each cycle
is denoted by|C, |, i =1,2,...,N".

3. Construction of tree blocks and thetree Ty

Suppose the seb ={e,e,,e,,...,6,.} . A tree block T, is a maximal
subgraph ofG such thatT, is a tree. LetT,,T,,...,T, be the tree blocks @. The
tree blocksT.'s are formed by the members 8 ie, T OS, i=1,2,..,L.
Now we have in a position to construct the tr&g. using tree blocksT, 's,
i=1,2,..,L and CJ. 's, j=1,2,..,N'. Before construction of the tre€,. we
define an intermediate grapHG' whose vertices are the blocks Gf.

Thus G' = (V',E") where the vertices are blocks of the gra@h
ie, V' ={T,T,,...T,,C,C,,C,,...,.Cy}.

If two blocks are adjacent they are connected by eslges. Thus
E'={(C.C)) o (C,T) or (T, ,T):i#j;i,j=12,..,N  and
k#l;1,k=1,2,...,.L, C, C,, T, and T, are adjacent blocks }.

Now the treeTg. is constructed fronG' as follows:

We discard some suitable edges fr@h in such a way that the resultant
graph becomes a tree. The procedure for such iedustgiven below:

Let us take any arbitrary vertex @', containing at least two cut-vertices of
G, asroot of the tred ;. and mark it. All the adjacent vertices of thistrace taken
as children of level one and mark them. If theeeeatges between the vertices of this
level, then discard these edges. Each verticesvef bne is considered one by one to
find the vertices which are adjacent to them bumarked. These vertices are taken as
children of the corresponding vertices of level and put them at level two. These
children at level two are marked and if there bg esige between them then remove
them. This process is continued until all the wediare marked.

Thus the treeT,. = (V',E") whereV'={T,T,,...T,,C,,C,,C,,...,Cy}
and E" O E' is obtained. For convenience, we refer the vestafel,. as nodes.
We note that each node of this tree is a blocki¢clytock or tree block) of the graph
G=(V,E).

The parent of the nod€, in the treeT,. will be denoted by Parent(C, ).

4. Euler Tour
Euler tour produces an array of nodes. The toucgeds with a visit to the
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root and there after visits to the children of thet one by one from left to right
returning each time to the root using tree edgedath directions. Algorithm
GEN-COMP-NEXT of Chen et al. [2] implements thisl&utour on a tree starting
from the root. The input to the algorithm is theetrrepresented by a “parent of’
relation with explicit ordering of the children. @loutput of the algorithm is the tour
starting from the root of the tree and ending alsthe root. The tour is represented by
an array S(1:2(N'+L)-1) that stores information connected to the visitsndu
the tour. The elemen$(i) of the array S is a record consisting of two fields, one of
which, denoted byS(i).node, is the node visited during théth visit while the
other, denoted byS(i).subscript is the number of times the nodg(i).node is
visited d using the firsi visits of the tour. Two fields of an element & are
written together using the notatigmode

subscript*

Also, we consider an array (j) and f'(k) which stores the total number
of occurrence of the blockc;, j=1,2,3,.., N' andT,, k=1,2,3,..,L inthe
array S(i),i =1,2,3,..,2(N'+L)-1. Thus f(j) and f'(k) represents the total
number of visits of the bloclkC; and T, in the Euler tour, i.e., f(j) and f'(k)

are the maximum subscript &; and T, in the array (i) .

For each jand k, j=1,2,3,...,N and k=1,2,3,..()«; and (k) occurs only
once in th array S(i) and before X and ()i all of (G)1, (G)a,...(C)s- and ()1,
(TW2,..-(TWra-1 OCcur respectively in order of increasing subssrgd Gand T

The following important lemma is proved1d].

Lemmal. If S(i).subscript=1 and S(i +1).subscript£ 1, then S(i).node is
a leaf node of the tree.

5. Determination of 2-NC set from cycles and paths
Lemma?2. For 2-NC problem a vertex in a cactus graph caverat least 4 edges.

Proof: Let G=(V,E) be acactus graph and[1V . Now degree ofu may be two

or more.

Case 1: Let the degree ol be two. Then there exist two verticesand W so that
d(u,r)=1, r=v,w. Now if v,w are of degree two then there also exist two
vertices X,y so that d(u,x) and d(u,y)=2. Thus U covers four edges
(u,v), (u,w),(w, x),(v,y) wherev,w are adjacenttal and x,y are adjacent to
V and W respectively.

But if any one ofv and w are of degree more than two thencover all
edges incident orv or W or both asd(u,r) =1, r =v,w. In this caseu covers
more than four edges.

Case 2. Suppose the degree of is more than two. In this casg is adjacent to
more than two vertices so that the inequalitfu,v) < 2 is satisfied for more than

four vertices i.e., U covers more than four edges.
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Thus it is evident from the above cases thiatovers at least four edges.
Hence the proof.

Lemma3. A cycle of4m vertices contribute at leastn vertices in the 2-NC set
X.
Proof: The degree of all vertices of a cycle are two. Uetv, w, X, y be the

five consecutive vertices of a cycle. Hence frormhea 2 it is evident that a vertex
can cover four edgeéu, v), (u,w), (w, x), (v, y) where v,w are adjacenttal and
X,y are adjacent tov and v respectively asd(u,r)<2, r =v,w,x,y. Now a

cycle of 4m vertices containrdm edges. Thus to covem edges at leastm
vertices are needed.

Lemmad4. A cycle containingdm+1, 4m+2 and 4m+3 vertices contribute at
least m+1 vertices in the 2-NC seX .

Lemma 5. A path containing4m edges i.e., containingdm+1 vertices
contribute at leastm vertices in the 2-NC seX .

Proof: In a path every vertex except the end verticeofdegree two. So, il is a
vertex on the path which is not an end vertex©adjacent then it must cover four
edges because end vertices of a path cover attmostdges where as the adjacent
vertex of an end vertex can cover at most threegdogne from the side where end
vertex lies and two edges from the other side. Hémcover all the edges on this path
at leastm vertices are needed.

Lemma6. A path containingdm+1,4m+2 or 4m+3 edges contribute at least

m+1 vertices in 2-NC sefX .

Proof: As a path containinglm edges contribute at leagt vertices in X then
for the restl or 2 or 3 edges one vertex is required to cover them. Tl
vertices are necessary to cover all the edgessethaths.

Lemma7. Between two vertices, U X and also U, 0C, (or path), there

exist at mostdr +4 edges, i.e.4r +3 vertices,r being the number of vertices
betweenu, and u; included in bothX and the cycleC, (respectively path).

Proof: Supposeu; and u; are any two vertices oX belong to the same cycle
(path). Let there exists vertices in X betweenu, and u;. Now u; covers two
edges andy; covers two edges between the edgesiofand u; . Also r vertices

of X cover 4r edges. Hence there adr +4 edges between; and u; i.e.,

4r +3 vertices.
Thus if r =0, then there exist?} edges between, and u; i.e., 3
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vertices, if r =1, then there exist8 edges betweem; and u; i.e., 7 vertices,

if r=2,then there existd2 edges betweem; andu; i.e., 11 vertices, and so
on. Hence the proof.

6. Determination of 2-NC set from the tree blocks
For a tree blocKT; consider the vertex common T and the adjacent cycle

block of T, as the root sayil,. Here the adjacent cycle block @ is the node

which is consider aftefl; in the Euler sequence. Then the adjacent verttéise
root are placed at level 1 and the adjacent vertif¢he vertices of level 1 are placed
at level 2 and so on. Thus the height of the theés defined ash = maxd(u,, V),

U, being the root and/ (0T} . The vertices for which maximum level is obtained,

one of that is denoted by, and the path between, and U, on which h occurs
is treated as themain pathof the tree. The vertices on the main path aretdehas
Uy, U ,Us,..., U, , where subscripts denote the level of vertices.

For every vertexui*, i =1,2,..,h there exists one or more subtrees rooted
at u; . These are denoted b, (u; ), B,(u; ), B,(u’)... B, (u’), M being the total
number of subtrees rooted &f .

Clearly, the height ofB (u’) is less than or equal th—i for all
k=1,2...,M . Some of the subtrees are paths rooteq*aﬂ'hus for each such path
|B.(u )[ch-i for some k, as the maximum number of edges and vertices

excluding u; on that path ish—i .

Lemma8. The vertexu,_, is the first member oX in T and d(u,_,,V) < 2, for
all vOB,(u,), i=1,2.
Proof: Since the height of the tree Is, there is no subtree (path) rooteduért If

there is a subtree (path) rooteduﬁ,t_l, height of that subtree is one. Similarly,*,,_2
may has subtrees of heigkt2. Otherwise, they all exceed the height of the.tree
Also d(u;_,,u;)=2.Hence forallvOB (u;_), i =1,2, d(v,u;)<2.

Lemma 9. If the path rooted at the vertemi*, i=0,1,2,..,h—2 with

| B, (U )|=4m+2 for at least onek, then u; is a member ofX .
Proof: From Lemma 2, we have seen that one vertex coleast four edges. For any
path rooted at; , if we start from its leafm vertices are included iX to cover

4m edges. For the rest two edges either adjacemf ton that path orui* is the
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vertex to cover them. Buti, is the most suitable vertex to cover them beciwggo

covers more edges on the main path as well asenottter subtrees rooted ai.
Hence the proof.

Lemma10. The path rooted ati, i =0,1,2,..,h—2 with | B (u )|=4m+3,
for somek, adj(u’ ) OB, (u’) is a member ofX .
Proof: A path with |B, (U )|=4m+3 contains 4m+3 vertices and4m+3

edges. Here als@n vertices covereddm edges if we start from the leaf of the path.
Three edges are left uncovered below Thus if, the vertexadj(u, ) OB, (u;) is
selected, then it covers those edges. Adstj(u’) can cover all the edges incident on

*

u .

Lemmall. The pathrooted ati, i =0,1,2,..,h—2 with | B (u )|=4m+1,
forsomek, U or adj(u’) isamemberofX , where adj(u;) is nota member of
B.(u)).

Lemma12. The path rooted ati with |B, (U’ )|=4m or 4m+1 or 4m+2,

for somek contribute m vertices and with| B, (u; ) |= 4m+ 3, contribute m+1

vertices.
Proof: The path containingm 4m+l1and 4m+ 2 vertices contairdm, 4m+1,
4m+2 edges. By Lemma 5 vertices on the path are selected to coder

edges. Also by Lemma 9 and Lemma 10, vertices on the path are selected atﬁd
or adj(u’)OB,(u) are selected to cover tém+1 and 4m+2 edges. Hence
Bk(ui*) with 4m,4m+1,4m+ 2 vertices contributem vertices in X .

From Lemma 10, foi B, (U )|=4m+3, m vertices are selected fatm

edges and for the other three edgegdj(u’) 0B, (u’) is selected. Henc®, (U,)
contribute m+1 vertices in X .

Procedureto determinethe 2-NC set from thetree
Using the above lemmas the procedure for selectingring vertices from

the tree T, is described below.
Step-1: Start from u, . The first member ofX is U, _,.

Step-2: Go to the vertexu;_i, i =3,4,..,h one by one. Two cases arise here for
eachi .
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Case 1: There exist no subtrees rooteduat; .

In this case we proceed to the vermﬁgi_l, i #h and apply Case 1 and
Case 2 of Step 2.
Case 2: There exist some subtrees rootedJat .

Here also two cases arise.
Subcase 2.1: If some subtrees are paths then consider thevéetdx of the
path at the first position and consider the follogvsituations.

(i) If the paths are of lengtdm+ 2, then selectu;_i and the vertices at
(4k —1)th position, k =1,2,...,m are selected inX .

(ii) If the paths are of lengtldm+ 3, then select the vertices gdk —1)th
position, k=1,2,...,m+1 in X.

(iii) If the paths are of lengttdm, then select the verties §dk —1)th
position, k=1,2,3,..,m in X.

(iv) If the paths are of lengtldm+1, then select the vertices @k —1)th
position, k=1,2,...,m in X.

In this case one edge incident uﬁ is left uncovered. It is covered by the
vertex U,_, or adj(u,,) which is either belongs to the main path or anothe
subtrees (paths) rooted at the verléggi i.e.,they are situated at levédd—i +1 or
h—i—-1. Now if the vertexadj(u,_;) of level h—i+1 or u, is not already

selected forX then the vertexu, ,, must be a member oX .

Subcase 2.2: If the subtrees are another trees then find theight and
following the same procedure as described in Stepdl Step 2 find the covering
vertices from those subtrees.

Thus applying the Step 1 and Step 2 repeatedihéovertices one by one on
the main path from leveh to the level 0, the 2-NC set of the tree will be obtained.

At the time of consideration ofi, if some edges incident on the vertex
i.e., the root of the tree or tree block is uncoverezhtbelectu, or adj(u,) from
the tree or from cycle containing the vertay. If adj(u,) from the tree or tree
block is not selected then it is selected fromaye when we consider the cycle.
7. Determination of 2-NC set from the nodes of thetree Ty

Here we consider the nodes of the treg one by one from the sequence

obtained from Euler tour. The nod€s or T, forwhich f(j) or f'(k) is 1, are
leaf nodes. Otherwise, the nodes are interior nodes

7.1. Finding covering verticesfrom aleaf node of Ty
If the leaf node is a cycl€, we apply the following procedure. Suppogeis the
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cutvertex of the leaf nod€, and consider the cutvertex in the first position of the

cycle. Now
(1) For the leaf nodéC, having 4m vertices mark the cutvertex first

and thereafter mark the vertices(@k +1) th position, k =1,2,...,m.

(2) For the leaf nod€C, having 4m+1 vertices, one of the incident edges
on the cutvertexv is left uncovered and marked the verticeg4k —1)th position,
k=1,2,...,m (considering the cutvertex in the first position).

(3) For the leaf nodéC, having 4m+ 2 vertices, both the edges incident on
the cutvertexv are left uncovered and marked the vertices4ktth position,
k=1,2...,m.

(4) For the leaf nodeC, having 4m+3 vertices mark the cutvertex
first, then mark vertices a4k +1) th position, k =1,2,...,m.

If the leaf node be a tree block, then find the covering vertices froig,

for X by applying the procedure described in Section 6.
After selecting the vertices for the covering setrf leaf nodes mark all edges
which are covered by those vertices.

7.2. Finding covering verticesfrom an interior nodeof Ty
After marking the covered edges from leaves ordekil nodes(C; or T;) the

respective Paren; ) or Parent{;) which is another cycl€C, or tree T, have the
following situations.
(1) None of the edges of thBaren{C,) or Paren{(T,) is covered. Also

there may some uncovered edges incident on the satuertices with its children
nodes.

(2) One or more edges of thearen{C,) or Paren{(T,) are covered

from its children node. Here also may arise sonwuwered edges incident on the
cutvertices with its children nodes.

Case 1: Here (i) if the node is a tree blocH,() then the uncovered edges of its

children nodes increase its height as well as keafijsome subtrees of that tree block.
Therefore applying the method described in Sediiove find the covering vertices
from that improved tree block.

(i) If the node be a cycle bloclC, , first we have to mark either the
cutvertices ofC; and C;s or any one of the adjacent vertices of the satidectices

of the children nodes o€, with C,. It depends on the number of vertices lies

between these cutvertices.
Supposeu, are the cutvertices which have branch of lengta dn be the

path betweery; and u,,,. |I; | be the number of vertices ih. Now we selectu,
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or adj(u;) by using the following procedure.

From Lemma 7 we see that between two memberX obf a cycle or a path
there aredr +3 vertices,r =1,2,...,. Using this lemma the following cases may
arise.

Subcase 1: Let there be4dm+1 vertices betweerny, and u,,,. In this case select
the verticesadj(u,) I, and adj(u,,)Ol, or adj(u,)Cl,_, and adj(u.,,) Ol .
For the first pair there ardm—1 vertices betweeradj(u;) and adj(u,,,) and for

the second pair there a#m+3 vertices betweeradj(u;) and adj(u.,;) which
satisfy Lemma 7.
Subcase 2: Let there bedm+2 vertices betweeny; and U, . In this case select

the verticesu, and adj(u,,,)Ul, or adj(u;)0l,_; and u,,,. For the first and for
the second pair there adm+3 vertices betweeru, and adj(u,,,) and between
adj(u) and u,, which satisfy Lemma 7.

Subcase 3: Let there bedm+3 vertices betweeny; and U, . In this case select
the verticesadj(u;) I, and adj(u,,)dl.,, or adju)Ol,_ and adj(u,,)dl

or U, and u,,. There aredm+ 3 vertices between the vertices of each pair which

satisfy Lemma 7.
Subcase 4: Let there bedm vertices betweeny; and u,,,. In this case select the

vertices U, and adj(u,,) I, or adj(u,)0l; and u,,,. There are4m—-1 vertices
between the vertices of each pair which satisfy tenT.

Lemmal3. For |l [=4m or 4m+2, m=1,2,..
(i) u,, isthe first member ofX from C if |, is of length4m+1.
(i) u, isthe first member ofX from C, if |, is of length4m+1.
(i) u; or u,, is the first member ofX from C if both |, and |,

are of length4m+1.
Proof: (a) For |l;|=4m, select either the vertices; and adj(u,,)Ol; or

adj(u) Ol and u, .

(b) For |l |=4m+2, select either the vertices and adj(u,,,) I, or
adj(u) Ol and u,.

(c) For |l,,|=4m+1, select either the verticesadj(u)Ol,_, and
adj(u,_) dl,_; or adj(u)Ol, and adj(u_,)Ol,_,.

(d) For |l,;|=4m+1 select either the verticesadj(u,,)Ol,, and
adj(u,.) O,y or adj(u,,,) Of; and adj(u,.,) Ol .
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Case 1: Thus from (a) and (c) it is evident thatljf is of length4m and |,_; is of
length 4m+1 then selectu,,,, adj(u,)Ol,, adj(u_)0Ol;, for X. (1)
If I, is of length4m+2 and|,,, is of length4m+1 (b) and (d) give the
covering vertices asl,,,adj(u_;) Ul,_;,adj(u;) 0l in X. (2)

Thus (1) and (2) shows that,, must be member o . So it is the first
member of X from that cycleC, .
Case 2: Now if |, is of length4m and [,,, is of length4m+1 then (a) and (d)

give U, adj(u.,)0l; and adj(u.,)0l;.,, 3
and if |, is of length4m+2 and |,,; is of length4m+1, (b) and (d) give
ui ’adj(ui+l) O Ii+l and adj(ui +2) U Ii+l' (4)

Thus (3) and (4) shows that must be a member oK . So it is the first member of
X from the cycleC, .

Case 3: If both I,,; and |,_, are of length4m+1 and |, is of length 4m or

4m+ 2 select vertices from any one of (1) or (2) ordB)4), which shows that any
one of u; and u,,, is the first member ofX from C,.

Lemmal4. For |, and l,; (l,_;) are either both of lengt®dm or 4m+2 or

one is 4m and otherisdm+2, u,, (u,) is the first member oiX from that
cycle.
Proof: (a) If |, is of length 4m, select either the verticas, and adj(u,,)CIl, or

u,, andadju, )OI, .

(b) For [,,, is oflength 4m select eithery,,, and adj(u,,) Ol or u.,
and adj(u,,,) O, .

(c) If I, is of length 4m+2 , select either the vertices) and
adj(u,.,) Ol,; or u,, and adj(u) Ol ;.

(d) For I,,, is of length 4m+2 select either the verticesl,, and
adj(u,.,) 0., or u, and adj(u,,,) 0l

Now if |. andl,, both are of lengttdm or 4m+ 2, then from (a), (b), (c)
and (d) the vertex,,, is the common member to be selected. Hemge must be a
member of X . So it is the first member oK from C, .

If I, andl,,, one of which is4m and other is the lengtdm+2, then
from (a), (c) and (b), (du,, is the common member to be selected. Heugce
must be a member oK . So it is the first member oK from C, .
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For |, instead ofl,,;, we can prove similarly thatl, is the first member
of X . Hence the proof.
Lemmal5. Forall |, i=1,2,...,r =1 oflength4m or 4m+2, any one ofu,,
1 =1,2,..,r isthe first member o)X from the cycleC, .

Proof: (a) If |, is of length 4m, select eitheru, , adj(u,)Ul, or u,,,
adj(u) O, .

(b) If I, is of length 4m+2, select eitheru,, adj(u.,,)Ol,, or u,,,
adj(u) Ol .

From (a) and (b) it is evident that for eakh i =1,2,3,..r =1 of length
4m or 4m+2, u, or U, is a common member oK . Thus for alll; of length

4m or 4m+2, any one ofu,, i =1,2,...,r is the first member ofX from the
cycle C,.
Lemmal6. Forall I, i=1,2,..,r =1 of length4m+1 or 4m+3, any one of

adj(u), i1=1,2,...,r isthe first member ofX from the cycleC, .

Proof: (a) If I, is of length 4m+1 select either the verticeadj(u,) I, and
adj(u.,,) 0l or adj(y) Ol,_; and adj(u,,,) 01, .

(b) If I, is of length 4m+3 select either the verticeadj(u,) OI; and
adj(u.,,) Ol,,, or adj(u,) Ol and adj(u,,) Ol or u, andu,,.

From (a) and (b) it is evident that for eakh i =1,2,3,..r -1 of length
4m+1 or 4m+3, adj(uy;) is a common member for both the cases. So ikenta
as the first member oX . Thus for alll, of length 4m+1 or 4m+3, any one of

adj(u), 1=1,2,..,r isthe first member ofX from the cycleC, .

Case 2: In this case also if the node be a tree block Heeght of the tree or length of
some paths be decreased. Also if there be someremecbedges incident on some
vertex of the tree then the length of some pathegght of the tree be increased.

If the node be a cycle there occur two orarthan two trees.

Hence the steps to find the covering vertices ftoeinterior node are:

Step 1: For the cycle arises in Case 1.

Select the first member oK from C; and mark the edges covered by this
vertex. Then the unmarked edges of the c@léhus form two trees rooted at the
cutvertex ofC; andParent(G). For every tree we apply the procedure as destiibe
Section 6 to select the covering vertices from thes.

Step 2: For the cycle arises in the Case 2.

Here the unmarked vertices occurs as two or mane tivo trees. For every

tree we apply the procedure as described in Se6ttorselect the covering vertices.
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Step 3: For the tree block arises in Case 1 or Case Apmy the procedure as
described in Section 6 to select the covering eestirom that tree block.

8. Algorithm and its complexity

In this section, we present an algorithm 2NBCO\¢ampute the 2-neighbourhood
covering set on cactus graphs. The time and spaolexities are also computed
here. The proof of correctness of the algorithmls® presented in this section.

Algorithm 2NBCOV

Input: The cactus grapit .

Output: The 2-neighbourhood covered skt.

Step 1: Compute the blocks and cutvertices@f as described in Section 3.

/lLet S be the set of edge blocks and form the tree bldcks
i=1,2...,L.Also denote the cycle blocks &, j=1,2,...,N".//

Step 2: Construct a tre€l;. whose nodes are the tree blocks and cycle blagks a
described in Section 4.
Step 3: Apply Euler tour on T,. and store the output in the array

S(1:2(N'+L)-1), N'+L is the total number of nodes @, .

Step 4. Compute f(j) and f'(k), j=1,2,...,N" and k=1,2,...,L, N'+L
which stores total number of occurrences of theenGd and T, in the arrayS.
Step 5. Note the order in which(C;);,, (T)¢4 1=1,2,...,N and

k=1,2,..,L occursin the array5.
Step 6: For each node of the resulting sequence, if

(i) f(j)=21 or f'(k)=1,then find the vertices 065 using rule described
in Section 7.1 and put them in the 9Xt.

(i) f(j)#1 or f'(k)#1, then find the vertices o5 using the rule

described in Section 7.2 and put them in the Xet
end 2NBCOV

Lemma 17. The set X obtained from the algorithm 2NBCOV is a 2-neighthood
covering set.

Proof: Here the problem is to find 2-NC set. The $€t is constructed in such a way
that for every vertexud X , we find vOOJS' sothatd(u,v) < 2. Now it is seen that

SUX =V . Therefore all the edges connected with the \estaf X and vertices

of S are covered by the vertices o, i.e., E is covered by the vertices of the
set X . Thus X is the 2-NC covering set of the grajih.

Lemmal8. The setX obtained from 2NBCOV is minimum among all the 2-NC
covering set of the cactus grapB .

Proof: From the Lemmas 2, 3, 4, 5, 6, 10 and 12, it ideat that the selection of
covering vertices from cycles, paths and tree lddsknade in such a way that these
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contribute least number of vertices in the covesay Also during consideration of
the nodes of the treé,. we minimize the number of covering vertices far tases

where leaf nodes contaidm+1 and 4m+ 2 vertices. Sometimes, these contribute
m vertices in X instead ofm+1 vertices as in Lemma 4. Similarly, for the tree
block the paths containingm+1 and 4m+ 2 edges also contributen vertices
instead ofm+1 vertices as in Lemma 12. Hence the lemmas ancegue are so
designed that they find minimum number of vertime2-NC set X . Thus the setX

is the minimum cardinality 2-NC set for the caaguaph G .

Theorem 1. The minimum 2-neighbourhood covering ¢t obtained from the
algorithm 2NBCOV can be computed @(n) time.

Proof: The blocks and cutvertices of any graph can bepobed inO(m-+n) time [13].
For the cactus graph=0(n), hence step 1 of AlgorithNBCOVtakes O(n) time.
Also formation of tree block$; using the edge blocks & takesO(n) time. Hence
step 2 can be computed@fn) time. In step 3, the construction of the tiige using
tree blocks and cycles, findind(j) andf' (k) for each node and finding sequence of
nodes using Euler Tour tak¥n) time. Hence steps 3, 4, 5 and 6 taKe) time. Step

7 can be performed by compariffp andf' (k) with 1 forj= 1,2...., N’ andk=1, 2,

..., L. So this step takes ony(n) time. Hence the algorithm 2NBCOV computed the
2-NC set inO(n) time.
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