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Abstract. Extreme weather conditions pose significant glatelllenges, making precise

and reliable forecasting methods crucial. Curraaply neural network (GNN) models,

although successful in implementations, often gfieignvith accurately capturing the

complexities of geographical landscapes, partibulardiverse regions like Nepal. The

objective of this paper is to address these limitat by introducing a novel approach to
graph representation for weather forecasting. Oethod involves developing a domain-
guided knowledge graph specifically tailored fagks, geographically diverse regions. By
employing spatio-temporal graph neural networksfarecast multiple weather attributes
over extended periods, effectively leveraging spratependencies within the constructed
graph. This approach demonstrates remarkable iraprexits in forecasting accuracy,
robustness under computing resource constraints, saalability. Also, the analysis

confirms the coherence between forecasted resudtgrmaph structures, providing insights
into the reliability and predictive power of our thed.

Keywords. Graph representation, dynamic weather attribupatia-temporal graph,
weather forecasting
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1. Introduction

Extreme weather conditions can inflict substantiatm on individuals, communities,
nations, and the global community. The EMDAT datgbaocuments [1] a total of
11,360 natural disasters occurred between 199528&2, averaging 398 per year.
Notably, hydrological, meteorological, and climaigical disasters constitute 81.2% of
these incidents. In Nepal, natural disasters cabsedxtreme meteorological events,
such as floods, erratic rainfall, landslides, diuisg thunderstorms, hail storms, heat
waves, and cold spells, result in significant ecoitolosses and human casualties each
year [2]. These events adversely impact agricultwagter resources, biodiversity, and
ecosystems. Given their direct correlation with thiea patterns, precise weather fore-
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casting holds the potential to alleviate risks tahbhuman life and property damage.
Weather forecasting involves predicting forthcomatpnospheric conditions like tem-
perature, humidity, wind speed, and precipitatibrotigh scientific analysis of mete-
orological data and computer models. While numéweather prediction (NWP) methods
[3-6] are prevalent, they can be susceptible to inacmgacdue to in-
complete understanding of atmospheric processestetl spatio-temporal resolution,
and inherent uncertainties in weather predictiohese challenges are particularly
pronounced in regions with diverse landscapesNi&pal, highlighting the limitations of
conventional approaches. The reliance on Euclidgdarctures within NWP models ex-
acerbates these issues, as they struggle to acfmuthte complexities of geographical
features.

Many existing methods in weather forecasgirigmarily concentrate on short-term
predictions, often forecasting only a limited numbé weather attributes. Additionally,
they frequently rely on datasets spanning shorediames and data sourced from
a restricted number of weather stations. Relativethiese shortcomings, our study
aims to address these gaps and has demonstratelblendatprovements. Emerging
technologies, such as graph neural network-basdtioa® offer a promising avenue
for enhancement. By leveraging the non-Euclideamireaof geographical data, these
advanced techniques can better capture the irdricgliationships between weather
parameters [7]. This capability holds the potertilaenhance the precision and region-
specificity of forecasts, crucial for mitigatingskis associated with extreme weather
conditions.

Existing weather forecasting methods face significkmitations, such as using
datasets from short time spans, relying on data fidimited number of weather stations,
and predicting only a few weather attributes wihtricted input variables. Additionally,
there is a lack of domain-guided graph represemtatthat can simultaneously address
diverse geographical locations. These constrairighlipht the need for more
comprehensive and sophisticated approaches capébiandling the complexities of
varied geographic landscapes to improve the acguead reliability of weather
forecasting.

The objective of this paper is to develop a metigaly crafted domain-guided
knowledge graph representation tailored for divgessgraphic landscapes like Nepal. We
utilize spatio-temporal graph neural network tegoes to forecast multiple weather
attributes over a 24-day period, leveraging théiaband temporal dependencies encoded
within the constructed knowledge graph. Our mettethonstrates robust performance
even under computing resource constraints, higtitigh the scalability and
efficiency of the proposed methodology. Additiogalve analyze statistical behaviors
to validate the coherence between the forecastaaltseand the underlying structure
of the constructed graph, providing insights inbe treliability and predictive power
of our approach. Embracing such advancements mgrafsignificant stride toward more
effective weather forecasting, vital for protectitiges and property in vulnerable
regions.

2. Literature review
The field of weather forecasting employing spadoporal graph neural networks en-
compasses a variety of approaches for graph caetistnu For short-term wind speed
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forecasting [8], wind farms are represented as siodéh edges denoting mutual cor-
relations in wind speed and direction values, whetlge weights are determined by
the exponential decay of their mutual correlatidgstashce(e %), Similarly, in PM2.5
forecasting [9], cities serve as vertices with elation-based edges.
Regarding air quality prediction [10], two types gfaph formations are prominent:
station-level graphs, where weather stations domstnodes and edges are established

based on the inverse of Euclidean dist 1) and city-level graphs, wherein intra-
9]

city connections are fully realized. Additionallfgr city air quality forecasting [11],

enhancements are made to the city-level graph ghrau differentiable grouping net-

work.

In the realm of multi-adversarial spaemporal networks [12], an unweighted
graph is employed, featuring weather stations atices and edges determined by
geographical proximity via spherical distance. Matteam graph attention networks [13]
for windspeed forecasting adopt a graph structitte stations as nodes and utilize multi-
head graph attention mechanisms (GAT) to estabtigies. Frost forecasting [14] employs
a similar node-based approach with weather sensath, distance-based edges and
incorporation of temporal information via tempoyatlirected graphs.

For Point of Interest (POI) category predictionngsspatio-temporal adaptive at-
tention graph convolution [15], three graph typee eonsidered: weather stations as
vertices with edges based on spatial and Euclid#iatances, as well as temporal
corresponding patterns. Similarly, HistGNN [16]liaés hierarchical, local, and global
graphs with learnable multi-graph concepts. MoreoVéeatherGNN [17], a structural
graph neural network [18], and CloudNine [19] enydoid graphs where grid points serve
as nodes and edges connect neighboring pointsriineh directions. Table 1 gives
the detailed summary of the existing works. Tablelbw shows a detailed summary of
current graph representation techniques and varfarameters utilized in weather
forecasting through different Graph Neural Netw@BRN) architectures.

Table 1: The summary of existing graph-based forecastindnoukst

Task Description of paramete

Wind speed forecastir[8] Datase Eastern Wind Integration Data
Time span 2007 — 2012
Stations 145

Input features 2
Output features | 1

PM s forecasting[9] Datase PMzs, MEE, ERA!
Time span 01/01/2015 - 31/12/2018
Stations 184

Input features 7
Output features | 2

Air quality forecasting10] Datase Air Quality, POI, Weathe
Time span 01/2018 — 12/2018
Stations -

Input features -
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Output feature 1

Air quality forecasting11] Datase Chinese City Air Qualit
Time span 01/01/2017 — 30/04/2019
Stations

Input features

209

Output features | 1
Air quality forecasting12] Datase Air Quality, POI, Weathe
Time span -
Stations 53/87
Input features 14
Output features | 4
Wind forecastin(13] Datase Netherland Weath
Time span 01/01/2011 — 29/03/2020
Stations 6
Input features 6
Output features | 1
Wind forecastin(13] Datase Denmark Weath
Time span 2000 - 2010
Stations 4
Input features 4
Output features | 1
Frost forecastin[14] Datase -
Time span 09/04/2020 — 04/05/2021
Stations 11
Input features 4
Output features | 1

Air quality prediction[15]

Datase

Air Quality, POI, Weathe

Time span 01/2016 — 01/2018
Stations 35
Input features 13
Output features | 12
Air quality prediction[15] Datase Air Quality, POI, Weathe
Time span 01/2014 — 04/2015
Stations 26
Input features 14
Output features | 20

Air quality prediction[15]

Datase

Air Quality, POI, Weathe

Time span 01/2017 — 03/2018
Stations 26
Input features 11
Output features | 20
Weather forecastin[16] Datase WD_B.
Time span 01/03/2015 — 11/03/2018
Stations 10
Input features 9
Output features | 3
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Time span
Stations

Weather forecastin[16] Datase WD_ISR
Time span 02/02/2012 — 28/10/2017
Stations 6
Input features 4
Output features | 4
Weather forecastin[16] Datase WD_USA
Time span 02/10/2012 — 28/10/2017
Stations 13
Input features 4
Output features | 4
Weather forecastin[17] Datase Ningbc

01/01/2021 - 04/01/2021
2726 (grids)

Input features 10
Output features | 5
Weather forecastin[17] Datase Ningxia

Time span 01/01/2021 — 01/01/2022
Stations 1200 (grids)
Input features 8
Output features | 5
Weather predictio[19] Datase CloudeNine
Time span 01/01/2021 — 01/01/2022
Stations -
Input features Multiple
Output features | 5

Table 1 also highlights several limitations of ¢xig methods, including the
utilization of datasets from short spans of time #me collection of weather attributes
from a relatively small number of weather statioMoreover, these methods often
predict output for only a few weather attributesd azonsider a limited number of
input variables. Additionally, there is a notablesence of domain-guided graph
representations capable of addressing diverse aggligal locations simultaneously.
These constraints underscore the need for more retrapsive and sophisticated
approaches in weather forecasting, particularihandling the complexities of diverse
geographic landscapes.

3. Mathematical formulation
In this section, we discuss some mathematical netiecessary for our simulation.

A weather data is a multivariate time series data
X =W, We,, .., W, } € R*PT whereW,, = {wy,w,, ..., w,} € R™*¢

is the weather variables for particular timds the number of weather stations and
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X1

Xd

is the weather attributes from the weather stagtigkiso, theWeather forecasting in our
context, means the prediction of major weatheibaities for all the weather stationgor
nest consecutiveé time steps

O _ 1 ! ! nxdrxF
Y= {WtT+1 Wery o Werp } €R

where0 < d’ < d i.e. for given inpuiX € R™*%*T we have to predict the outptitsuch
that

Y =MmX)
whereM is the model we aim to learn.

A graphG = (V,E,W,X) is theweighted attributed graph[20], whereV is the set of
vertices, € is the set of edges indicating the connection eetwthe nodedy is the
weighted adjacency matrix of siZ&| x |[V| whose entries indicates the connection
strength between the nodes, & |V| X d matrix indicating the features on nodes. The
collection of graph& = {G,,,G,,, ..., G} whereG, = (V, &, W,, X,) is calledtemporal
graph. If &, = €& andW, = W for everyt, then the temporal graph is known astatic
graph with the temporal signal.

In addition to several existing methods to the grapnstruction process relative
to weather forecasting, we have defined a novealagmi for graph construction. Our graph
is astatic graph with temporal signals, meaning the graph topolegyains the same for
all temporal frames. Thus, for each frame, we @efire graph ag§ = (V, &, W), whereV
represents the weather stations located in 753 ¢me@rnments of Nepal. The edges
&4 U &, indicate the spatial connections, which are basegeodesic proximityg,) and
altitude similarity €,).

For spatial connections based on geodesic proxifdty, we calculate the
geodesic distancel(;) between weather stationsandj, and then apply the Laplacian
kernel [21] to measure the connection strength:

) reel-5)
g _Jexp|——| ifexp|——)=1
Wi = p( g b g 7

0 otherwise.

Similarly, for spatial connections based on al@similarity €,), we calculate
the difference between the altitudes of the weattations and apply the Laplacian kernel
to measure the connection strength:

|ai—aj| . |ai—aj|
WS‘ _Jexp (— U—a> ifexp <— U—a> > 1,

0 otherwise.
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Here,a; represents the altitude of weather statiorhe parameters;, a4, 74, and
7, are hyperparameters that control the connectiositje Finally, W = (Wij) denotes
the weight of the edges, where:

wioor wfi  if(i,) €EE or &
w;j = _
Y max{wg,wf‘;} if(i,j)) €EgNE,

This approach ensures that our graph constructftactizely captures both
geodesic and altitude-based spatial relationsleiplsancing the accuracy and robustness
of weather forecasting models in complex envirorisien

Now, we discuss about the model architecture ated atquisition techniques as follows:

Traditional convolutions designed for grid struetface challenges when applied
to graphs. To overcome this limitation, spectrahwaution, leveraging graph Fourier
transform is introduced to extend convolution tagr data. For graph signake R™ and
a kernel®, the graph convolution is defined as

@ x;x=Ud(N)UTx Q)

whereU € R™" represents the matrix of eigenvectors of normdlizaplacian
1 1
L=1-D"2WDz=UAUT 2
D € R is the diagonal degree matrix with; = X;W;;, A € R™*" is the diagonal matrix
of L and®(A) is a diagonal matrix. Also, to address the comjmrtal complexity of graph
kernel, approximation method is employed using @blebv polynomial[22] defined as

T,(A) = 1
T,(1) = A (3)
T;(A) = 2ATi_ (W) —Ti_,(1),i =2

The graph kerneb (1) of (K — 1) order [23] is defined as
DN =TS BT(N) (4)
wherep € RX is a vector of polynomial coefficients, and

A=-2_1 (5)

lmax

is the rescaled graph Laplacian matrix transfornitsgeigenvalues froni0, A,,,,,] to
[—1,1]. Thus, it is stable for deep graph neural netwdhen the graph convolution can
be written as

D x =P(L)x
= {5 BT (D)

whereT;(L) € R™ ™ is the Chebyshev polynomial of ordérwhere
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_ 2L
I= -1

)‘max

The concept for better computational efficiencyfugher particularized[24] by taking
K =2,

2L
D x4 xzﬂ0x+ﬂ1</1 —I)x
maxl 1
= Box — B (D_7WD_§> x

8 (5—% W 5-%)x

wherefy, =, =f;D=D + ITandW = W + I.

Recurrent neural network (RNN) models have longnbatlized for analyzing
temporal data and have shown considerable suddeasver, despite their effectiveness
in handling time series data, RNN models suffemfrcertain drawbacks such as being
time-consuming, having complex gate mechanisms,rasgonding slowly to dynamic
changes. Therefore, for weather forecasting insoanario, we opted for spatio-temporal
forecasting models [25] instead. In this approacimyvolutional neural networks (CNNs)
are employed to capture the dynamic behavior otlveggatterns. This strategy enables a
parallel and manageable training process throughulti-layer convolutional structure,
facilitating hierarchical representation.

The input for each node in temporal convolution ¢enseen as a temporal
sequence of length with C; channels, denoted #se R7*¢:. The convolution kerndl €
RKexCix2Co s crafted to transform the aforementioned inptt ia desired outpyPQ] €
RT—Ke+1)x2Co \whereK, represents the number of neighbors for each nodegraph.
Here,P andQ are split evenly with the same channel size, amsequently, temporal
gated convolution can be defined as:

F+ Y =PQoa(Q) € RIK+1)xCo (6)

whereP andQ serve as inputs for gates in the Gated Linear (@ii{J), © denotes the
Hadamard product, and represents the sigmoid gate, determining the aelew of the
input P for the current states. The other mechanisms reidantical to those of the model
[25].

4. Results and discussion

The Figurel illustrates the detailed process of our methothfiaception to termination.
In the first step, we collect daily weather datanfrall geographic locations in Nepal. Next,
we construct a graph using the approach discussebpsly. We then train a model in a
supervised manner, using 60 graph snapshots (oreaft day over a 60-day period) as
the input to the model and predicting 24 days ddtier information as the output.
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Spatio Spatio
T, Temporal Temporal Linear
0 Conv Conv

Spatio
Temporal
Conv

Output

Figure 1:Architecture of Spatid-emporal Graph Convolutional Networks (STGCN
composed of three Spatiemporal Graph (STConv) blocks followed by a linéayer
Within eachSTConv block, the model integrates graph convatutio capture spati
information, which is interleaved with temporal g@tconvolution to handle tempc
dynamics.

In our endeavor to gather comprehensive data fathvee analysis, our focus was
on the geographical diversity of Nepal's 753 logavernments, ranging from the Terai
lowlands to the towering Himalayan peaks. Upon déa$ipn, three locations were
identified with corrupted data, leading to theickssion from our dataset, leaving us with
a total of 750 locations.

We meticulously constructed a graphical represiemtancorporating these 750
stations, each serving as a node in the graphterhporal dimension of our dataset spans
from January 4, 1981, to February 24, 2024, capdutdiily granularity across 18 distinct
weather parameters. In this work, we have incotpdrahese 18 attributes namely
PRECTOT: Precipitation (mm/day), PS: Surface PmesskPa), QV2M: Specific
Humidity at 2 Meters (g/kg), RH2M: Relative Humiditat 2 Meters (%), T2M:
Temperature at 2 Meters (C), T2MWET: Wet Bulb Temapge at 2 Meters (C),
T2M_MAX: Maximum Temperature at 2 Meters (C), T2MINM Minimum Temperature
at 2 Meters (C), T2M_RANGE: Temperature Range aeters (C), TS: Earth Skin
Temperature (C), WS10M: Wind Speed at 10 Meters)nwWS10M_MAX: Maximum
Wind Speed at 10 Meters (m/s), WS10M_MIN: Minimunmd/Speed at 10 Meters (m/s),
WS10M_RANGE: Wind Speed Range at 10 Meters (m/s35@0M: Wind Speed at 50
Meters (m/s), WS50M_MAX: Maximum Wind Speed at 5@tkfs (m/s), WS50M_MIN:
Minimum Wind Speed at 50 Meters (m/s), WS50M_RANGHNnd Speed Range at 50
Meters (m/s). as features for each node in thehgrap

To ensure the comprehensiveness of our data doteefforts, we strategically
identified landmarks within our target regions. eeaging Application Programming
Interfaces (APIs) and geographical coordinatespreperly and systematically gathered
weather parameters for each landmark over a spamooé than four decades. This
exhaustive approach encompassed all 750 landmandegding a holistic understanding
of the country’s climatic dynamics.
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To prepare this extensive dataset for analysisajamstep of standardization was
employed. We normalized the features across thghgrsing mean and variance, ensuring
equitable treatment of each weather parameter éynéitwork. This meticulous process
laid the foundation for accurate and unbiased amabnd predict.

—— Training Loss
0.5 Validation Loss
0.4 4
@ 0.3 1
o
-
0.2
0.1 4
O-O T T T T T T T T
0 20 40 60 80 100 120 140
Epoch

Figure 2: Both curves show a decreasing trend, which indstat the model is learni
effectively without ovefitting, as there is no significant divergence batw the trainin
and validation losses

Recreating each available weather forecasting rdsttwe have posed significant
challenges due to unavailability of datasets, pulibde and limited access to
computational lab. Our study has reported the destage evaluation scores from existing
papers for different datasets. The figdridustrates the mean square error (MSE) loss for
both training and validation datasets indicatirfgetfve learning capabilities of our model
in weather forecasting.

Table 2:Comparison of statistical performance with existingthods

Methods MAE RMSE MAPE
CloudeNine [19] 0.1900 0.1500 -
Spatio-Temporal Graph Deep Neural Networks [8] 08B0 0.4310 -
Multi-Adversarial Spatio-Temporal Networks [12] QD - -
Multistream Graph Attention Networks [13] 1.2530 6@40 -
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Methods MAE RMSE MAPE
WeatherGNN (Ningbo) [17] 1.6100 2.1300 -
WeatherGNN (Ningxia) [17] 1.7100 2.2100 -
HiISTGNN (WD_ISR) [16] 2.9446  4.5606 14.1500
Graph Neural Networks with Spatio-Temporal 3.0800 5.4200 5.3900
Attention [14]

HiISTGNN (WD_USA) [16] 3.5419 4.7910 19.2800
Spatio-Temporal Adaptive Attention Graph 4.0700 5.7300 -
Convolution Networks (London) [15]

HiISTGNN (WD_BJ) [11] 4.2098 5.9705 36.2300
Group-aware Graph Neural Networks [13] 5.5600 10081 -
Multistream Graph Attention Networks 7.8800 110390 -

Highair [10]
PM, 5s-GNN [9]

Spatio-Temporal Adaptive Attention Graph
Convolution Networks (Beijing) [15]

Spatio-Temporal Adaptive Attention Graph

8.2700 11.1800 -
- 19.9300 -
12.7000 20.0800 -

15.0500 22.7800 -

Convolution Networks (Tianjin) [15]
Our Method 3.6569 5.6621 -

Our method exhibits a mixed performance when coegptr existing methods, as
depicted in Tablé.. Notably, our method achieves competitive resulterms of Mean
Absolute Error (MAE) and Root Mean Square Error (88), outperforming several
existing methods such as Graph Neural Networks ®jthtio-Temporal Attention and
Spatio-Temporal Adaptive Attention Graph Convolatibletworks on these metrics.
However, our method lags behind on certain metriesn compared to some of the state-
of-the-art approaches. Despite this, our method otstrates promising potential,
showcasing its ability to offer reliable predictioim certain scenarios. Additionally, our
method stands out for several reasons: it incotpsra larger dataset spanning 44 years,
effectively handles a large number of stations {/&fcludes a comprehensive set of
weather attributes to forecast seven weather Jagabmore than almost all existing
methods—and forecasts weather for diverse geogralplciations, ranging from the
lowlands of the Terai to the high-altitude landsnuduntainous regions, simultaneously.
The inclusion of these features underscores thastabss and versatility of our method in
tackling complex spatio-temporal forecasting ta3ke variability in performance across
different metrics underscores the complexity offtiecasting task and highlights the need
for further investigation into enhancing the metBodobustness and addressing its
limitations. The Table gives the details that those which are better tharmethod work
only locally (less than 15 stations) and one witts&tions. But our method works on 750
stations simultaneously. Thus we can say that aethad is more robust. Overall, our
method contributes valuable insights to the fidlying the groundwork for future
advancements in spatio-temporal forecasting metbhgas.
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We present two scenarios for the ablation studit,Rive explore the impact of
removing independent attributes. Initially, we ud@dweather attributes to forecast only
seven variables. In this ablation study, we dis¢hedadditional variables and consider
only the seven attributes exactly same as the dsted variables, allowing us to test the
effectiveness of including the other weather vdealin the forecasting process. Second,
we examine the effect of reducing the size of ttagply. Originally, we considered 25% of
the fully connected edges in the spatial graph,.ariing to approximately 70,000 edges
with 750 nodes. Concerned that even these 25% exighks$ cause over-smoothing when
applying graph neural networks, we reduced the edgmt to 10%, resulting in about
28,000 edges, to ensure the graph remains suftficisparse. Both of these effects have
been tested experimentally and compared with tiggnat results, as shown in Talide

Table 3:Comparison of original results under multiple caidis.

Methods MAE RMSE R?
Original 3.6569 5.6621 0.8624
Reduced features 3.960®.4853 0.8197

Reduced features & graph siz8.3215 5.9283 0.8448

Table2 shows that considering other related attribute$diiecasting certain variables is
beneficial. However, too much sparsifying edge emtion might not be advantageous.

5. Conclusion

In summary, our method offers a robust and veesaplproach to spatio-temporal weather
forecasting, leveraging a comprehensive datasetngpg over four decades and
encompassing 750 weather stations across Nepalersei landscape. Achieving
competitive performance against existing methods, approach excels in capturing
complex spatio-temporal relationships while for¢icgs seven weather variables
simultaneously. Notably, our method outperformsesahexisting methods on metrics like
Mean Absolute Error (MAE) and Root Mean Square E({RMSE), showcasing its
scalability and applicability to diverse geograploications. The conducted ablation study
provides valuable insights, emphasizing the impmeaof incorporating additional
weather attributes and maintaining an optimal grsiphicture for enhancing forecasting
accuracy. Overall, our method provides notable adements in spatio-temporal
forecasting, establishing a foundation for morecisepredictions in real-world scenarios.
However, developing a systematic approach for satpweather attributes as independent
variables to predict a dependent variable remaingaesolved issue.
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