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Abstract. In this study, we introduce the modified elliptice\®n index and its

corresponding exponential of a graph. Furthermare compute the elliptic Revan and
modified elliptic Revan indices and their corresgiog exponentials for two families of
nanotubes.
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1. Introduction

Let G = (V(G), E(G)) be a finite, simple connected graph. The dedsés the number of
vertices adjacent ta. LetA(G) (6(G)) denote the maximum (minimum) degree among the
vertices ofG. The Revan vertex degree of a venter G is defined as, = A(G) +5(G) —

du. We refer to the book [1] for undefined terms atation.

A molecular graph is a graph whose vertices comegpo the atoms and the edges
of the bonds. Chemical graph theory has an impbe#iact on the development of the
Chemical Sciences. A single number that can be tesetaracterize some properties of
the graph of molecular is called a topological iddumerous topological indices have
been considered in Theoretical Chemistry see [2, 3]

The elliptic Revan index [4] of a grajghis defined as
ER(G)= > (r, +r,)r2 +r2.
wlE(G)

The elliptic Revan exponential [4] of a grahs defined as
1

m ER(G, X) — Z X(ru+rv)« r2+r2
wlE(G)
Recently, some elliptic indices were studied ir9]5-

We put forward the modified elliptic Revan indexeofraphs and it is defined as
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1

wa;@ (r, +1,)r2 +12

We define the modified elliptic Revan exponentidhe graphG as
1

"ER(G) =

"ER(G,x)= Y N
wiE(G)
Recently, some new graph indices were studieddn1].
In this paper, we determine the modified elliptiev@n index and its exponential of two
families of nanotubes.

2. Results forHCsC/[p,q] nanotubes

We consideHCsC/[p,g] nanotubes in whicp is the number of heptagons in the first row
andqg rows of pentagons repeated alternately. Tl I&ttice of nanotub&1CsC-[8,4] is
shown in Figure 1.

Figure 1.2D Iattlce ofHC507[8,4] nanotube

Let H be the graph dfiCsC7[p,g] nanotube. We obtain thit has 4q vertices and
6pq —p edges. IrH, there are two types of edges as follows:

Ei={uveE(H) |d.=2,dv =3}, Ei=4%

E>={weEH)|d,=d =3},  Fol=6q- 5.
We haveA(H) = 3 and§(H) = 2. Thus=A(H) + 6(H) —dy = 5 —d..
Thus there are two types of Revan edges as follows:

RE:= {uveE(H) |ru=3,rv=2}, RE|=4d

RE; = {uveE(H)|ru=rv= 2}, RE2| = 60— 5p.

Theorem 1.LetHCsC/[p,g] be the nanotubes. Then

ER(H) =48/2pq+( 20/13- 49 2pJ 2.

Proof: We have
ER(H)= > (r, +r,)yr2 +r]

A\
uwE(H)

=4p(3+ V3 + Z +(@g- P)( 2 I 2+ 2
=48/2pq +(20/13- 49" Ipy 2.

Theorem 2.LetHCsC/[p,g] be the nanotubes. Then
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ER(H,x) = 4px>® +(6pg —5p ) x¥2
Proof: We have

ER(H,x) Z sl = 4pxe2VFZ +(6pgq —5p )xZH 22

wE(H

=4p'P +(6pg —5p ) x*?
Theorem 3.LetHCsCy[p,q] be the nanotubes Then
"ER(H) =

f (5«/_3 85/5_2%'

Proof: We have
1 _ 4p N (6pg - 5p)

uvmze(:H)(ru +1, )1+ 1} _(3+ INF+2Z2 (2+ IV Z+ 2

"ER(H) =

Theorem 4.Let HCsC/[p,g] be the nanotubes. Then

1 1

"ER(H,x) = 4px*' +(6pg —5p ) x*2 .
Proof: We have
1

1 1
mER H, X : z xuth) il 4px(3+2N32+22 +(6pq _aj)x(2+2)«/22+2

WOE(H)
1 1

x> + (6pg —5p ) x®2

3. Results forSCsCr[p,q] nanotubes

We consideSCsCr[p,g] nanotubes in which is the number of heptagons in the first row
and g rows of vertices and edges are repeated alteynatbe 2D lattice of nanotube
SCsC[8,4] is depicted in Figure 2.

Figure 2: 2-D lattice of nhanotub&CsC[8,4]

Let Sbe the graph dBCsC+[p,q] nanotubes. We obtain th&has 4q vertices and j5g —p
edges. IrH, there are three types of edges as follows:

Ei={uveE(S) |dy =dy = 2}, Eud=q
Ex={uweE®S |d,=2,d.=3}, E|=6
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Es={uveE(9 |du=d, = 3}, Es| = 6g-p-— 70.
We haveA(S = 3 ands(S = 2. Thug=A(9 +6(9 —d, =5 —d..
Thus there are three types of Revan edges asvfollo

RE; = {uweE(S) |ru=r, = 3}, RE1| =q.
REZ = {UVEE(S | = 3, ry= 2}, IRE2| = m
REs = {uveE(S) |ry=rv = 2}, REs| = 60 —p — 70.

Theorem 5.Let SCsCy[p,q] be the nanotubes. Then
ER(S) =48/2pq - 8/2p+( 36/ 13- 3¢ Jg

Proof: We have

ER(S)= 3 (r, +1,)\fr2+12

wiE(S)

=q(3+3VF+ T+ @(3r 38+ 2+(pa-p- @)( 2 B/ 2 2
=48/2pq - 8/20+( 30/13- 3¢ Jg

Theorem 6.Let SCsCr[p,q] be the nanotubes. Then
ER(S,x) = <™? +6qx™ +(6pq —p- %1 ) x¥ 2.
Proof: We have
ER(S,x)= 3 xlurhus
WE(S)

:qx(3+3)\/32+32 +6qx(3+2x/§+é+(6pq _p_7q)x(32\/ 2+ 2
= g™ +60x*/ "+ (6pg —p- T ) x V7.

Theorem 7.Let SCsCr[p,q] be the nanotubes. Then

" 3 1 1 6 7
ER(S)_Mqu 8\/_2p+(18/_2+ § 13 d‘;q'

Proof: We have

"ER(S)= ) !
uvDE(S)(ru +rv) rZ+r?
_ q N 6q . (6pg-p-7q)
(3+3)vF+3F (3+ IV3+ 2 (2 P 2+ 2

_ 3 1 +[1+6_7;
"2 e e s g

Theorem 8.Let SCsC/[p,q] be the nanotubes. Then

1 1 1
m ER(S, X) - qxla/’z +6qx5“—3 _,_(qu -p- 7 )Xsﬁ
Proof: We have
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1

"ER(SX)= ¥ i
uwiE(S)

1

1 1
:qx(3+3)«/32+§ +6qx(3+3xl 3+ 2 +(6pq -p- 7 )X(2+2)«/22+f

1

1 1
= qx'®/? +60x +(6pq —p- T ) x>

4. Conclusion

We have introduced the modified elliptic Revan ided its exponential of a graph.
Furthermore, the elliptic Revan and modified eitiptRevan indices and their
corresponding exponentials for two families of nabes are determined.
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