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Abstract. In this study, we introduce the modified elliptic Revan index and its 
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nanotubes.  
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1. Introduction 
Let G = (V(G), E(G)) be a finite, simple connected graph. The degree du is the number of 
vertices adjacent to u. Let ∆(G) (δ(G)) denote the maximum (minimum) degree among the 
vertices of G. The Revan vertex degree of a vertex u in G is defined as ru = ∆(G) +δ(G) – 
du. We refer to the book [1] for undefined terms and notation. 

A molecular graph is a graph whose vertices correspond to the atoms and the edges 
of the bonds. Chemical graph theory has an important effect on the development of the 
Chemical Sciences. A single number that can be used to characterize some properties of 
the graph of molecular is called a topological index. Numerous topological indices have 
been considered in Theoretical Chemistry see [2, 3].  
 

The elliptic Revan index [4] of a graph G is defined as 
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 The elliptic Revan exponential [4] of a graph G is defined as               
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Recently, some elliptic indices were studied in [5-9]. 
 

We put forward the modified elliptic Revan index of a graph G and it is defined as 
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We define the modified elliptic Revan exponential of the graph G as               
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Recently, some new graph indices were studied in [10, 11]. 
In this paper, we determine the modified elliptic Revan index and its exponential of two 
families of nanotubes. 
 
2. Results for HC5C7[p,q] nanotubes 
We consider HC5C7[p,q] nanotubes in which p is the number of heptagons in the first row 
and q rows of pentagons repeated alternately. The 2-D lattice of nanotube HC5C7[8,4] is 
shown in Figure 1. 

 
 
 
 
 
 
 
 
 

                                Figure  1: 2-D lattice of HC5C7[8,4] nanotube 

Let H be the graph of HC5C7[p,q] nanotube. We obtain that H has 4pq vertices and 
6pq – p edges. In H, there are two types of edges as follows: 

E1= {uv∈E(H) | du = 2, dv = 3},     |E1| = 4p. 
E2 = {uv∈E(H)| du = dv = 3},         |E2| = 6pq – 5p. 

We have Δ(H) = 3 and �(H) = 2. Thus ru=Δ(H) + �(H) – du = 5 – du. 
Thus there are two types of Revan edges as follows: 

RE1 = {uv∈E(H) | ru = 3, rv = 2},     |RE1| = 4p. 
RE2 = {uv∈E(H)| ru = rv = 2},          |RE2| = 6pq – 5p. 

 
Theorem 1. Let HC5C7[p,q] be the nanotubes. Then  

( ) ( )48 2 20 13 40 2 2.ER H pq p= + −  

Proof: We have 
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                ( ) ( ) ( )2 2 2 24 3 2 3 2 6 5 2 2 2 2p pq p= + + + − + +  

                ( )48 2 20 13 40 2 2.pq p= + −   

 
Theorem 2. Let HC5C7[p,q] be the nanotubes. Then  
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( ) ( )5 13 8 2, 4 6  – 5  .ER H x px pq p x= +  
Proof: We have 
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Theorem 3. Let HC5C7[p,q] be the nanotubes. Then  
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Proof: We have 
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Theorem 4. Let HC5C7[p,q] be the nanotubes. Then  
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Proof: We have 
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3. Results for SC5C7[p,q] nanotubes 
We consider SC5C7[p,q] nanotubes in which p is the number of heptagons in the first row 
and q rows of vertices and edges are repeated alternately. The 2-D lattice of nanotube 
SC5C7[8,4] is depicted in Figure 2. 

 
Figure 2: 2-D lattice of nanotube SC5C7[8,4] 

Let S be the graph of SC5C7[p,q] nanotubes. We obtain that S has 4pq vertices and 6pq – p 
edges. In H, there are three types of edges as follows: 

E1 = {uv∈E(S) | du = dv = 2},        |E1| = q. 
E2 = {uv∈E(S) | du = 2, dv = 3},    |E2| = 6q. 
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E3 = {uv∈E(S) | du = dv = 3},        |E3| = 6pq – p – 7q. 
We have Δ(S) = 3 and �(S) = 2. Thus ru=Δ(S) + �(S) – du = 5 – du. 
 Thus there are three types of Revan edges as follows: 

RE1 = {uv∈E(S) | ru = rv = 3},               |RE1| = q. 
RE2 = {uv∈E(S) | ru = 3, rv = 2},           |RE2| = 6q. 
RE3 = {uv∈E(S) | ru = rv = 2},               |RE3| = 6pq – p – 7q. 

 
Theorem 5. Let SC5C7[p,q] be the nanotubes. Then  

( ) ( )48 2 8 2 30 13 38 2 .ER S pq p q= − + −  

Proof: We have 
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Theorem 6. Let SC5C7[p,q] be the nanotubes. Then  
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Proof: We have 
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Theorem 7. Let SC5C7[p,q] be the nanotubes. Then  

( ) 3 1 1 6 7
.

4 2 8 2 18 2 5 13 8 2
m ER S pq p q

 = − + + − 
 

 

Proof: We have 
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Theorem 8. Let SC5C7[p,q] be the nanotubes. Then  

( ) ( )
11 1

5 1318 2 8 2, 6 6  – 7  .m ER S x qx qx pq p q x= + + −  
Proof: We have 
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4. Conclusion 
We have introduced the modified elliptic Revan index and its exponential of a graph. 
Furthermore, the elliptic Revan and modified elliptic Revan indices and their 
corresponding exponentials for two families of nanotubes are determined. 
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