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Abstract. In this article, we introduce the concept of feebly �-clean ideal and feebly ∗-�-
clean ideal. An ideal � of a ring � is called a feebly �-clean ideal if for every � ∈ �, there 
exists a regular element � ∈ � and orthogonal idempotents �, 	 of � such that � 
 � � � �

	. An ideal � of a ring � is called feebly ∗-�-clean ideal if for every � ∈ �, there exist a 
regular element � ∈ � and two orthogonal projection 
, � of � such that � 
 � � 
 � �. 
Further we discuss some interesting properties of feebly �-clean ideal, feebly ∗-�-clean 
ideal and their relation with feebly �-clean ring and feebly ∗-�-clean ring respectively have 
been discussed. 
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1. Introduction and preliminaries 
Throughtout this paper, all rings are assumed to be associative with identity. As defined by 
Nicholson [5], an element �  in a ring �  is clean, if there exist a unit � ∈ �  and an 
idempotent � ∈ � such that � 
 � � �. � is clean ring, if each of its element is clean. H. 
Nitin Arora and S. kundu [1] defined feebly clean if every element � ∈ �, there exist unit 
� ∈ � and there exists orthogonal idempotenets �, 	 ∈ � such that � 
 � � � � 	. Recall 
that, an element � of a ring R is a regular (Von Neumann), if there exists � ∈ � such that 
� 
 ���. Ashrafi and Nasibi [3] defined, an element � of a ring � is �-clean if each of its 
element is �-clean. We call a ring � is feebly �-clean if for every � in � such that � 
 � �

� � 	, where � is a unit in � and �, 	 are orthogonal elements in �. Chen and M. Chen [4] 
defined, an ideal � of a ring � to be clean ideal if for every � ∈ �, there exist a unit � ∈ � 
and an idempotent � ∈ � such that � 
 � � �. 
        In this paper we introduce the concept of feebly �-clean ideal and feebly ∗-�-clean 
ideal. Recall that, a ring � is ∗-ring if there exists an operation ∗: � → � such that �� �
��∗ 
 �∗ � �∗, ����∗ 
 �∗�∗ and ��∗�∗ 
 �, for all �, � ∈ �. An element 
 of a ∗-ring is 
projection if 
� 
 
 
 
∗. L.Vas [6] defined, A ∗-ring R is called a ∗-clean ring if for every 
element of R is the sum of a unit � and a projection. We defined an element � in a ∗-ring 
�  is feebly ∗-clean if � 
 � � 
 � �  where �  is a unit �  in �  and 
, �  are orthogonal 
projections in � and an element � in a ∗-ring � is feebly ∗-�-clean if � 
 � � 
 � � where 
� is a regular and 
, � are orthogonal projections in �. We define, an ideal � of a ring � is 
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feebly �-clean ideal if for every � ∈ �, there exist a regualr element � ∈ � and orthogonal 
idempotents �, 	 ∈ � such that � = � + � − 	 and an ideal � of a ring � is feebly ∗-�-clean 
ideal if for every � ∈ �, there exist a regular element � ∈ � and orthogonal projections 

, � ∈ � such that � = � + 
 − �.  
        Further, Let � be a commutative ring and � be a �-module, Then the idealization of 
� and � is the ring �(�) with underlying set � × � under coordinatewise addition given 
by (��, ��) + (��, ��) = (�� + ��, �� + ��)  and multiplication given by 
(��, ��)(��, ��) = (����, ���� + ����) for all ��, �� ∈ � and ��, �� ∈ �. Also If � is an 
ideal of � then for any submodule �� of �, �(��) = {(�, ��): � ∈ �, �� ∈ �} is an ideal of 
�(�). A Morita context denoted by (�, �, �,  , !, ") consists of two rings � and �, two 
bimodules �#$ and �$#, a pair of bimodule homomorphims !:  ⊗ � → � and !: � ⊗
 → �  which satisfies the following associativity: !(� ⊗ �)�� = �"(� ⊗ ��)  and 
"(� ⊗ �)�� = �!(� ⊗ ��), for any �,�� ∈ � and �, �� ∈  . These conditions ensure 

that the set of matrices &� �
� ' (, where � ∈ �, ' ∈ �, � ∈ � and � ∈  , forms a ring 

denoted by ), called the ring of the context. Further we investigate the properties of feebly 
�-clean ideal and feebly ∗-�-clean ideal.  
        For a ring �, the set of regular elements, the set of units, the set of jacobson radicals, 
the set of idempoptents and set of projections are denoted by ��*(�), +(�), ,(�), �-(�) 
and .(�) respectively. 
 
2. Feebly r-clean ideal 
Some basic definitions and terminologies are presented here. 
 
Definition 2.1. An ideal � of a ring � is called feebly �-clean ideal of �, if for every � ∈ �, 
there exist a regular � ∈ ��*(�) and orthogonal idempotents �, 	 ∈ �-(�) such that � =
� + � − 	.  
 
Proposition 2.2. Every homomorphic image of feebly �-clean ideal of a ring is feebly �-
clean ideal. 
 
Theorem 2.3. Let {�/} be a family of rings and �/ ’s are ideals of �/. Then the ideal � = ∏�/ 
of � = ∏�/ is feebly �-clean ideal if and only if each �/ is feebly �-clean ideal of {�/}. 
Proof: ( ⇒ ) This is immediate since the homomorphic image of a regular (resp., 
idempotent) is a regular (resp., idempotent). 
        (⇐) Suppose each �/  is feebly �-clean ideal of �/ . Let � = (�/) ∈ ∏�/ . For each i, 
there exist unit �/ ∈ ��*(�/) and orthogonal idempotents �/, 	/ ∈ �-(�/) such that �/ =
�/ + �/ − 	/ . Then � = � + � − 	  where � = (�/) ∈ ��*(∏�/)  and � = (�/),   	 = (	/) 
are orthogonal idempotents in ∏�/. Hence ∏�/ is feebly �-clean ideal. 
 
Proposition 2.4. Let � be a ring with no zero divisor. Then � is feebly clean ideal if and 
only if � is feebly �-clean ideal. 
Proof: (⇒) Suppose � is a feebly clean ring. For 4 ∈ �, then there exist � ∈ +(�) and 
orthogonal idempotents �, 	 ∈ �-(�) such that 4 = � + � − 	. Since � ∈ ��*(�), hence 
� is feebly �-clean ideal. 



Feebly r-clean Ideal and Feebly *-r-clean Ideal 

3 
 

 

        (⇐) Let � be a feebly �-clean ideal. For � ∈ �, there exist � ∈ ��*(�) and orthogonal 
idempotents �, 	 ∈ �-(�)  such that � = � + � − 	 . Let �(≠ 0) ∈ ��*(�) , then there 
exists � ∈ �  such that � = ��� , which implies �(1 − ��) = 0, thus � is a unit, so � ∈
��*(�). Therefore, � is a feebly �-clean ring. 

Lemma 2.5. Let � be a ring. If every proper ideal of a ring � is feebly �- clean ideal then 
the ring � is feebly �-clean ring. 
Proof: Since every unit of a ring R is feebly �-clean, so take � ∈ �\+(�). Then the ideal 
� =< � > is proper ideal of �. Hence � is feebly �-clean in � 

Corollary 2.6. � is feebly �-clean if and only if every proper ideal of � is feebly �-clean. 

Lemma 2.7. If � is �-feebly �-clean ideal of � then ,(�) ⊆ �. 
Proof: Let � ∈ ,(�), then there exist �, 	 ∈ Id(�) such that � + � − 	 ∈ �. If 	 = 0 then 
� = � + �. Also (� − �)�=� − �, which shows �(1 − �) ∈ �. But 1 − � is unit. Hence � ∈
�. If � = 0, then � = � + 	. Also (� − �)� = � − �, which shows �(1 − �) ∈ �. But 1 − � 
is a unit. Hence � ∈ �. 

        The converse of Lemma 2.6 is not true. Take � = 3ℤ in ℤ, ,(ℤ)= {0}, Also {0} ⊆ 3ℤ, 
But � = 3ℤ is not feebly �-clean ideal. 

Proposition 2.8. Let � be an ideal of a commutative ring. Then � is feebly �-clean ideal of 
� if and only if the ideal �[[�]] is feebly �-clean ideal of �[[�]] 
Proof: (⇐) Suppose I[[x]] is feebly clean ideal of �[[�]], as a homomorphic copy of �[[�]], 
then � is a feebly clean ideal of �. 
        (⇒) Let � be a feebly �-clean ideal of ring �. Let 	(�) = ∑ 4/�/ ∈ �[[�]], then for 4A 
∈ �, there exist a regular �A ∈ ��*(�) and orthogonal idempotents �A, 	A ∈ �-(�) such 
that 4A = �A + �A − 	A . Then 	(�) = ∑ 4/�/  = �A − 	A + �A + 4�� + 4���+. ..  where 
�A + 4�� + 4���+. . . ∈ ��*(�[[�]])  and �A , 	A  ∈  �-(�)  ⊆  �-(�[[�]])  with �A	A =
	A�A = 0. Hence �[[�]] is feebly �-clean ideal of �[[�]]. 
Theorem 2.9. Let � be an ideal of a ring � containing ,(�) and idempotent can be lifted 
modulo ,(�), then � is feebly �-clean ideal of � if and only if �/,(�) is feebly �-clean 
ideal of �/,(�). 
Proof: (⇒) Suppose � is feebly �-clean ideal of �. Let � ∈ �, then there exist a regular � ∈
��*(�)  and orthogonal idempotents �, 	 ∈ �-(�)  such that � = � + � − 	 . For � ∈
��*(�), then � + ,(�) ∈ ��*(�/,(�)). Since �, 	 are orthogonal idempotents of �, then 
� + ,(�) ∈ �-(�/,(�))  and 	 + ,(�) ∈ �-(�/,(�))  are orthogonal idempotents of �/
,(�) . Let � = � + ,(�) ∈ �/,(�) , then � + ,(�) = � + ,(�) + � + ,(�) − 	 + ,(�) , 
which implies � = � + � − 	. Therefore, �/,(�) is feebly �-clean ideal of �/,(�). 
        (⇐) Suppose �/,(�) is feebly �-clean ideal of �/,(�). Let � ∈ �, then � = � + � − 	, 
where � ∈ ��*(�/,(�)) and �, 	 ∈ �-(�/,(�)) with �	 = 	� = 0. Hence, � − � + � −
	 ∈ ,(�). So � = � + � − 	 + D, where D ∈ ,(�). Since idempotents can be lifted modulo 
,(�), � is feebly �-clean ideal of �. 
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Proposition 2.10. Let �� and �� be two feebly �-clean ideal of a ring � and either �� ⊆
,��� or �� ⊆ ,��� then �� � �� is feebly �-clean ideal of �. 
Proof: Suppose ��  and ��  are feebly �-clean ideal of �. Without loss of generality we 
assume that �� ⊆ ,���. Take � ∈ �� + ��  then � = �� + ��  where �� ∈ ��  and �� ∈ �� ⊆
,(�). Since �� is feebly �-clean ideal of �, we can write �� = �� + �� − 	�, where �� ∈
��*(�) and ��, 	� ∈ �-(�) with ��	� = 	��� = 0. So � = �� + (�� − 	�) + ��, thus � is 
feebly �-clean element of �. Therefore, �� + �� is feebly �-clean ideal of �. 

Proposition 2.11. Let � be a commutative ring and �(�) be the idealization of � and �-
module �, Then an ideal � of a ring � is a feebly �-clean ideal of � if and only if for any 
submodule �� of �, �(��) is a feebly �-clean ideal of �(�). 
Proof: (⇐) Suppose � be feebly �-clean ideal of �. Consider an ideal �(��) of �(�) for 
some submodule �(��) of �. Take (�, �) ∈ �(��), then there exist a regular element � ∈
��*(�)  and orthogonal idempotents �, 	 ∈ �-(�)  such that � = � + � − 	 . Then 
(�, �) = (�, �) + (�, 0) − (	, 0) , where (�, �) ∈ ��*(�(�))  and (�, 0), (	, 0)  are 
orthogonal idempotent of �-(�(�)). 
        (⇒) Suppose �(��) is a feebly � -clean ideal of �(�). Take � ∈ � , then (�, 0) ∈
�(��). Since �(��) is feebly �-clean ideal, there exist a regular (�, 0) ∈ ��*(�(�)) and 
orthognal idempotents (�, 0), (	, 0) ∈ �-(�(�))  such that (�, 0) = (�, 0) + (�, 0) −
(	, 0). Therefore, � = � + � − 	 where � ∈ ��*(�) and �, 	 are orthogonal idempotents 
of �-(�) 

3. Feebly ∗-clean ideal and feebly ∗-r-clean ideal 
Definition 3.1. An ideal � of a ∗-ring � is called feebly ∗-clean ideal if for every � ∈ � 
such that � = � + 
 − � where � ∈ +(�) and 
, � are orthogonal projections of �.    

Proposition 3.2. Homomorphic image of feebly ∗-clean ideal is feebly ∗-clean ideal. 

Theorem 3.3. Let � be a ring and �� be an ideal containing the feebly ∗-clean ideal �, then 
�� is a feebly �-clean ideal of � if and only if ��/� is a feebly ∗-clean ideal of �/�. 
Proof: (⇒)Let �� is a feebly ∗-clean ideal of �, then clearly ��/� is feebly ∗-clean ideal of 
�/�. 
        (⇐) Let ��/� be a feebly ∗-clean ideal of �/� and � ∈ ��, then � = � + 
 - �, where 

, � ∈ .(�/�) and � ∈ +(�/�). Since idempotents can be lifted modulo ideal, so lift � to 
� ∈ �� and 	 to 	 ∈ �. Then � − � + 	 is a unit in �� modulo �. Hence � + � − 	 is unit in 
��. 
Theorem 3.4. Let {�/} be a family of rings and �/ ’s are ideals of �/. then the ideal � = ∏E

/F�  
�/ of � = ∏E

/F�  �/  is feebly ∗-clean ideal if and only if each �/ is feebly ∗-clean ideal of 
{�/}. 
Proof: (⇒) This is immediate, since the homomorphic image of a unit (resp., projection) 
is a unit (resp., projection). 
        (⇐) Suppose each �/ is feebly ∗-clean ideal of �/. Let � = (�/) ∈ ∏�/. For each i there 
exist nilpotent �/ ∈ +(�/) and two orthogonal idempotents �/, 	/ ∈ �-(�/) such that �/ =
�/ + �/ − 	/ . Then � = � + � − 	  where � = (�/) ∈ +(∏�/�  and � 
 ��/�, 	 = (	/) ∈
�-(∏�/�. Hence ∏�/ is feebly ∗- clean ideal. 
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Theorem 3.5. If � ba an feebly ideal of a ring �. Then �G��� is a feebly clean ideal of 
�G���. 
Proof: Clearly, the resul holds for n=1. Assume that result holds for � 
 H � 1, �H ≥ 2�. 

Suppose that K ∈ �L(�) , write K = &4 M
' N( , where � ∈ � , N ∈ �LO�(�) . Since �  is a 

feebly clean ideal of � , for � ∈ �  then there exist unit � ∈ +(�)  and orthogonal 
idempotents �, 	 ∈ �-(�)  such that � = � + � − 	 . Since N − '�O�M ∈ �LO�(�) , there 
exist orthogonal idempotents P = P� ∈ �LO�(�) , Q = Q� ∈ �LO�(�)  and unit R ∈
STLO�(�) such that N − '�O�M = R + P − Q. Set P� = &� 0

0 P(,  Q� = &	 0
0 Q(  and  

+ = &� M
' R + '�O�M(. Also P� = P��, Q� = Q�� and 

+ &�O� + �O�MRO�'�O� �O�MRO�
−RO�'�O� RO� (

= &�O� + �O�MRO�'�O� �O�MRO�
−RO�'�O� RO� ( + 

                          = U1 0
0 �LO�

V ∈ �L(�). 

Thus, + ∈ STL(�). Clearly, K = + + P� − Q�, where P�, Q� are orthogonal idempotents of 
�L(�) and + is a unit of �L(�). Therefore, �L(�) is feebly clean ideal of �L(�). By 
induction, we complete the proof. 

Proposition 3.6. Let � be an ideal of a commutative ring. Then � is feebly ∗-clean ideal of 
� if and only if the ideal �[[�]] is feebly ∗-clean ideal of �[[�]] 
Proof: (⇐) Suppose I[[x]] is feebly ∗clean ideal of �[[�]], as a homomorphic copy of 
�[[�]], then � is a feebly ∗-clean ideal of �. 
        (⇒) Suppose � be a feebly ∗-clean ideal of ring �. Let 	(�) = ∑ 4/�/ ∈ �[[�]], then 
for 4A ∈ �, there exist unit �A ∈ +(�) and orthogonal projections 
A, �A ∈ .(�) such that 
4A = �A + 
A − �A . Then 	(�) = ∑ 4/�/  = 
A − �A + �A + 4�� + 4���+. .. where �A +
4�� + 4���+. ..  ∈  +(�[[�]])  and 
A , �A ∈ .(�)  ⊆  .(�[[�]])  with 
A�A = 
A�A = 0 . 
Hence �[[�]] is feebly ∗-clean ideal of �[[�]]. 
Definition 3.7. An ideal � of a ∗-ring � is called feebly ∗-�-clean ideal if for every � ∈ � 
such that � = � + 
 − � where � ∈ ��*(�) and 
, � are orthogonal projections of �.    

Proposition 3.8. Homomorphic image of feebly ∗-�-clean ideal is feebly ∗-�-clean ideal.    

Theorem 3.9. Let {�/} be a family of rings and �/ ’s are ideals of �/. then the ideal � = ∏E
/F�  

�/ of � = ∏E
/F�  �/ is feebly ∗-�-clean ideal if and only if each �/ is feebly ∗-�-clean ideal of 

{�/}. 
Proof: Similar to the proof of Theorem 3.4. 
 

Proposition 3.10. Let � =# �$ be a bimodule. If � = &K 0
� N( a formal triangular matrix 

ideal is feebly ∗-�-clean then K and N are feebly ∗-�-clean ideal. 
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Proof: Let � ∈ K , � ∈ N  and � ∈ � . Take 4 = U� 0
� �V  ∈  � , Then 4 = U� 0

� �V =
U�� 0

�� �W
V + U
� 0


� 
W
V − U�� 0

�� �W
V, where U�� 0

�� �W
V ∈ ��*()) and U
� 0


� 
W
V, U�� 0

�� �W
V 

are orthogonal idempotents of �. Clearly, 
�, �� are orthogonal projections in K and 
W, �W 
are orthogonal projections in N  respectively. Also �� , ��  regular element in K  and N 
respectively. Then � = �� + 
� − ��  and � = �W + 
W − �W . Hence K  and N  are both 
feebly ∗-�-clean ideals. 

Theorem 3.11. Let ��(�) be a 2 ×2 upper triangular matrix ring over �. Then an ideal 

U�� �
0 ��

V of ��(�) is a feebly ∗-�-clean ideal if and only if �� and �� are feebly ∗-�-clean 

ideal of �. 

Proof: Suppose �� and �� are feebly ∗-�-clean ideal of �. Let K = U�� �
0 ��

V ∈ U�� �
0 ��

V. 

Since �� is feebly ∗-�-clean ideal of �, then there exist a regular element �� ∈ ��*(��) and 
orthogonal projections 
�, �� ∈ .(�) such that �� = �� + 
� − ��. Since �� is feebly ∗-�-
clean ideal of �, then there exist nilpotent �� ∈  (��) and orthogonal projections 
�, �� ∈
�-(�) such that �� = �� + 
� − �� . Then K = &�� �

0 ��( + U
� 0
0 
�

V - U�� 0
0 ��

V, where 

&�� �
0 ��(  ∈   (��(�))  and U
� 0

0 
�
V , U�� 0

0 ��
V  ∈  �-(��(�))  with U
� 0

0 
�
V 

U�� 0
0 ��

V=U�� 0
0 ��

V U
� 0
0 
�

V= &0 0
0 0(. Therefore, U�� �

0 ��
V is a feebly ∗-�-clean ideal 

of ��(�). 
        Conversely, Suppose not �� and �� are not feebly ∗-�-clean ideal of �, As �� is not a 
feebly ∗-�-clean ideal of �, then there exists �� ∈ �� such that �� ≠ �� + 
� − ��, where �� 
∈ ��*(�) and orthogonal projections 
�, �� ∈ .(�), the same argument, As �� is not a 
feebly ∗-�-clean ideal of �, then there exists �� ∈ �� such that �� ≠ �� + 
� − ��, where 

�� ∈ ��*(�) and orthogonal projections 
�, �� ∈ .(�), which shows U�� 0
0 ��

V is not a 

feebly ∗-�-clean element of ��(�). 

3. Conclusion 
In this paper, we introduce the feebly r-clean ideal, feebly ∗-�-clean ideal and investigate 
its properties. The future scop of this study is to investigate its properties in an amalgamated 
ring 
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