Annals of
 Pure and Applied
 Mathematics

www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.v23n1a03810

All the Solutions of the Diophantine Equations $\boldsymbol{p}^{4}+\boldsymbol{q}^{y}=z^{4}$ and $p^{4}-q^{y}=z^{4}$ when p, q are Distinct Primes Nechemia Burshtein

117 Arlozorov Street, Tel - Aviv 6209814, Israel
Email: anb17@netvision.net.il
Received 18 December 2020; accepted 21 January 2021
$\boldsymbol{A b s t r a c t}$. In this paper, we consider the two equations $p^{4}+q^{y}=z^{4}$ and $p^{4}-q^{y}=z^{4}$ when p, q are distinct primes and y, z are positive integers. For all primes p, q we establish that both equations have no solutions.
Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$
p^{x}+q^{y}=z^{2}
$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In this paper we consider the two equations $p^{4}+q^{y}=z^{4}$ and $p^{4}-q^{y}=z^{4}$. By using elementary methods, we establish for all distinct primes p, q that both equations have no solutions. This is done in the respective Sections 2 and 3. Although existing similarities, we nevertheless consider both equations separately, in which all theorems and cases are self-contained.
2. All the solutions of $p^{4}+q^{y}=z^{4}$ when p, q are distinct primes

In this section, we discuss the equation $p^{4}+q^{y}=z^{4}$ and its solutions. This is done in the following theorem.

Theorem 2.1. Let y, z be positive integers. For all three possibilities
(a) $p=2$ and q an odd prime,
(b) $\quad p$ an odd prime and $q=2$,
(c) p, q distinct odd primes,
the equation $p^{4}+q^{y}=z^{4}$ has no solutions.
Proof: All three cases are considered separately, and are self-contained.

Nechemia Burshtein

(a) Suppose that $p=2$ and q is an odd prime. If for some prime q, there exist values y and z satisfying

$$
2^{4}+q^{y}=z^{4}
$$

then $q^{y}=z^{4}-2^{4}$ or

$$
q^{y}=\left(z^{2}-2^{2}\right)\left(z^{2}+2^{2}\right)=(z-2)(z+2)\left(z^{2}+2^{2}\right) .
$$

Denote

$$
\begin{equation*}
z-2=q^{A}, \quad z+2=q^{B}, \quad z^{2}+2^{2}=q^{C}, \quad A<B<C, \quad q^{y}=q^{A+B+C} . \tag{1}
\end{equation*}
$$

From (1), $z=2+q^{A}$. If $A=0$, then $z=3$. Hence $z+2=5=q^{B}$ and $q=5, B=1$. The equation $2^{4}+q^{y}=\mathrm{z}^{4}$ then yields $2^{4}+5^{y}=3^{4}$ which has no solutions. Thus $A \neq 0$. When $A>0$, then from (1) we have $z=2+q^{A}$ and $4+q^{A}=q^{B}$ implying that $q \mid 4$ which is impossible since q is an odd prime. Therefore $A \ngtr 0$, and the conditions in (1) are not satisfied. Hence, when $p=2$ and q is an odd prime, then $2^{4}+q^{y} \neq z^{4}$.
Part (a) is complete.
(b) Suppose that p is an odd prime and $q=2$. If for some prime p, there exist values y and z for which

$$
p^{4}+2^{y}=z^{4}
$$

then

$$
2^{y}=z^{4}-p^{4}=\left(z^{2}-p^{2}\right)\left(z^{2}+p^{2}\right)=(z-p)(z+p)\left(z^{2}+p^{2}\right) .
$$

Denote

$$
\begin{equation*}
z-p=2^{A}, \quad z+p=2^{B}, \quad z^{2}+p^{2}=2^{C}, \quad A<B<C, \quad 2^{y}=2^{A+B+C}, \tag{2}
\end{equation*}
$$

where all three conditions in (2) must be satisfied simultaneously.
The first two conditions $z-p=2^{A}$ and $z+p=2^{B}$ yield $2 p+2^{A}=2^{B}$ or

$$
2 p=2^{B}-2^{A}=2^{A}\left(2^{B-A}-1\right)
$$

The product $2 p$ is a multiple of 2 only implying that $A=1$. Thus $z=p+2$. For the third condition we then obtain

$$
z^{2}+p^{2}=2 p^{2}+4 p+4=2\left(p^{2}+2 p+2\right)=2^{C} .
$$

Since $\left(p^{2}+2 p+2\right)$ is odd for all primes p, it follows that

$$
2\left(p^{2}+2 p+2\right) \neq 2^{C}
$$

The three conditions are not satisfied simultaneously, and therefore $p^{4}+2^{y} \neq z^{4}$.
This concludes case (b).
(c) Suppose that p, q are distinct odd primes. If there exist primes p, q and values y, z which satisfy $p^{4}+q^{y}=z^{4}$, then

$$
q^{y}=z^{4}-p^{4}=\left(z^{2}-p^{2}\right)\left(z^{2}+p^{2}\right)=(z-p)(z+p)\left(z^{2}+p^{2}\right) .
$$

Denote

$$
\begin{equation*}
z-p=q^{A}, \quad z+p=q^{B}, \quad z^{2}+p^{2}=q^{C}, \quad A<B<C, \quad q^{y}=q^{A+B+C} \tag{3}
\end{equation*}
$$

The first two conditions in (3) namely $z-p=q^{A}$ and $z+p=q^{B}$ yield $2 p+q^{A}=q^{B}$. If $A=0$, then $q^{A}=q^{0}=1$ and $z=p+1$. Thus $2 p+1=q^{B}$. The third condition yields

$$
z^{2}+p^{2}=2 p^{2}+2 p+1=2 p^{2}+q^{B}=q^{C}
$$

and $0=A<B<C$ then imply that $q \mid p$ which is impossible. Hence $A \neq 0$. When $A>0$, it follows from the equality $2 p+q^{A}=q^{B}$ that $q \mid p$ which is impossible. Thus $A \ngtr 0$. The conditions in (3) are not satisfied simultaneously. Therefore $p^{4}+q^{y} \neq z^{4}$.

This concludes case (c) and the proof of Theorem 2.1.

All the Solutions of the Diophantine Equations $p^{4}+q^{y}=z^{4}$ and $p^{4}-q^{y}=z^{4}$ when p, q are Distinct Primes

3. All the solutions of $p^{4}-q^{y}=z^{4}$ when p, q are distinct primes

In this section, we consider in Theorem 3.1 the solutions of the equation $p^{4}-q^{y}=z^{4}$.
Theorem 3.1. Let y, z be positive integers. For all three possibilities
(a) $p=2$ and q an odd prime,
(b) $\quad p$ an odd prime and $q=2$,
(c) p, q distinct odd primes,
the equation $p^{4}-q^{y}=z^{4}$ has no solutions.
Proof: All three cases are considered separately, and are self-contained.
(a) Suppose that $p=2$ and q is an odd prime. We have

$$
2^{4}-q^{y}=z^{4}
$$

One could easily see that the above equation has no solutions. Hence $2^{4}-q^{y} \neq z^{4}$.
(b) Suppose that p is an odd prime and $q=2$. We shall assume that

$$
\begin{equation*}
p^{4}-2^{y}=z^{4} \tag{4}
\end{equation*}
$$

has a solution, and reach a contradiction. For any solution of (4), the value z is odd. We then have

$$
2^{y}=p^{4}-z^{4}=\left(p^{2}-z^{2}\right)\left(p^{2}+z^{2}\right)=(p-z)(p+z)\left(p^{2}+z^{2}\right) .
$$

Denote

$$
\begin{equation*}
p-z=2^{A}, \quad p+z=2^{B}, \quad p^{2}+z^{2}=2^{C}, \quad A<B<C, \quad 2^{y}=2^{A+B+C}, \tag{5}
\end{equation*}
$$

where all three conditions in (5) must be satisfied simultaneously. The first two conditions $p-z=2^{A}$ and $p+z=2^{B}$ yield $2 p=2^{A}+2^{B}=2^{A}\left(2^{B-A}+1\right)$ implying that $A=1$ since $2 p$ is a multiple of 2 only. Hence $p=z+2$. For the third condition we then have

$$
p^{2}+z^{2}=2 z^{2}+4 z+4=2\left(z^{2}+2 z+2\right)=2^{C} .
$$

Since z is odd, the factor $\left(z^{2}+2 z+2\right)$ is odd. It then follows that

$$
2\left(z^{2}+2 z+2\right) \neq 2^{C}
$$

The three conditions are not satisfied simultaneously, and the contradiction has been derived. Hence $p^{4}-2^{y} \neq z^{4}$.
This concludes case (b).
(c) Suppose that p, q are distinct odd primes. If $p^{4}-q^{y}=z^{4}$ has a solution, we have

$$
q^{y}=p^{4}-z^{4}=\left(p^{2}-z^{2}\right)\left(p^{2}+z^{2}\right)=(p-z)(p+z)\left(p^{2}+z^{2}\right)
$$

Denote

$$
\begin{equation*}
p-z=q^{A}, \quad p+z=q^{B}, \quad p^{2}+z^{2}=q^{C}, \quad A<B<C, \quad q^{y}=q^{A+B+C} \tag{6}
\end{equation*}
$$

and all three conditions in (6) must be satisfied simultaneously.
The first two conditions in (6) $p-z=q^{A}$ and $p+z=q^{B}$ yield

$$
\begin{equation*}
2 p=q^{A}+q^{B}=q^{A}\left(q^{B-A}+1\right) \tag{7}
\end{equation*}
$$

If $A \geq 1$ in (7), then $q \mid p$ which is impossible since $\operatorname{gcd}(p, q)=1$. Thus $A \geq 1$. If A $=0$ in (6), then $p-z=q^{0}=1$ or $p=z+1$. The second condition then implies that $p+$ $z=2 z+1=q^{B}$, whereas the third condition implies that $p^{2}+z^{2}=(z+1)^{2}+z^{2}=2 z^{2}+2 z$ $+1=2 z^{2}+q^{B}=q^{C}$. From $2 z^{2}+q^{B}=q^{C}$ and since $0=A<B<C$, it then follows that $q \mid z$, contrary to the fact that $\operatorname{gcd}(q, z)=1$. Therefore $2 z^{2}+q^{B} \neq q^{C}$, and $A \neq 0$. The three conditions are not satisfied simultaneously. Hence $p^{4}-q^{y} \neq z^{4}$.

This concludes case (c) and the proof of Theorem 3.1.

Nechemia Burshtein

Final remark. We have shown for all distinct primes p, q and positive integers y, z that both equations $p^{4}+q^{y}=z^{4}$ and $p^{4}-q^{y}=z^{4}$ have no solutions. The results were achieved in a simple and elementary manner.

Acknowledgement. The author is thankful to the reviewers for their valuable comments.

REFERENCES

1. N. Burshtein, On the diophantine equations $2^{x}+5^{y}=z^{2}$ and $7^{x}+11^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 21 (1) (2020) 63-68.
2. $\quad \mathrm{N}$. Burshtein, All the solutions of the diophantine equations $p^{x}+p^{y}=z^{2}$ and $p^{x}-p^{y}$ $=z^{2}$ when $p \geq 2$ is prime, Annals of Pure and Applied Mathematics, 19 (2) (2019) 111-119.
3. N . Burshtein, On solutions of the diophantine equations $p^{3}+q^{3}=z^{2}$ and $p^{3}-q^{3}=z^{2}$ when p, q are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) 51-57.
4. N. Burshtein, On solutions to the diophantine equation $p^{x}+q^{y}=z^{4}$, Annals of Pure and Applied Mathematics, 14 (1) (2017) 63-68.
5. Md.A.-A. Khan, A. Rashid, Md. S.Uddin, Non-negative integer solutions of two diophantine equations $2^{x}+9^{y}=z^{2}$ and $5^{x}+9^{y}=z^{2}$, Journal of Applied Mathematics and Physics, 4 (2016) 762-765.
6. B. Poonen, Some diophantine equations of the form $x^{n}+y^{n}=z^{m}$, Acta Arith., 86 (1998) 193-205.
7. B. Sroysang, On the Diophantine equation $5^{x}+7^{y}=z^{2}$, Int. J. Pure Appl. Math., 89 (2013) 115-118.
