Annals of Pure and Applied Mathematics Vol. 23, No. 1, 2021, 17-20 ISSN: 2279-087X (P), 2279-0888(online) Published on 23 January 2021 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v23n1a03810

Annals of **Pure and Applied** Mathematics

All the Solutions of the Diophantine Equations $p^4 + q^y = z^4$ and $p^4 - q^y = z^4$ when p, q are Distinct Primes

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 18 December 2020; accepted 21 January 2021

Abstract. In this paper, we consider the two equations $p^4 + q^y = z^4$ and $p^4 - q^y = z^4$ when p, q are distinct primes and y, z are positive integers. For all primes p, q we establish that both equations have no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In this paper we consider the two equations $p^4 + q^y = z^4$ and $p^4 - q^y = z^4$. By using elementary methods, we establish for all distinct primes p, q that both equations have no solutions. This is done in the respective Sections 2 and 3. Although existing similarities, we nevertheless consider both equations separately, in which all theorems and cases are self-contained.

2. All the solutions of $p^4 + q^y = z^4$ when p, q are distinct primes

In this section, we discuss the equation $p^4 + q^y = z^4$ and its solutions. This is done in the following theorem.

Theorem 2.1. Let y, z be positive integers. For all three possibilities

- (a) p = 2 and q an odd prime,
- (b) p an odd prime and q = 2,
- (c) p, q distinct odd primes,

the equation $p^4 + q^y = z^{\overline{4}}$ has no solutions.

Proof: All three cases are considered separately, and are self-contained.

Nechemia Burshtein

(a) Suppose that p = 2 and q is an odd prime. If for some prime q, there exist values y and z satisfying

$$2^4 + q^y = z^4,$$

then $q^{y} = z^{4} - 2^{4}$ or

$$q^{y} = (z^{2} - 2^{2})(z^{2} + 2^{2}) = (z - 2)(z + 2)(z^{2} + 2^{2}).$$

Denote

 $z-2 = q^{A}, \quad z+2 = q^{B}, \quad z^{2}+2^{2} = q^{C}, \quad A < B < C, \quad q^{y} = q^{A+B+C}.$ (1) From (1), $z = 2 + q^{A}$. If A = 0, then z = 3. Hence $z+2 = 5 = q^{B}$ and q = 5, B = 1. The equation $2^{4} + q^{y} = z^{4}$ then yields $2^{4} + 5^{y} = 3^{4}$ which has no solutions. Thus $A \neq 0$. When A > 0, then from (1) we have $z = 2 + q^{A}$ and $4 + q^{A} = q^{B}$ implying that $q \mid 4$ which is impossible since q is an odd prime. Therefore $A \ge 0$, and the conditions in (1) are not satisfied. Hence, when p = 2 and q is an odd prime, then $2^4 + q^y \neq z^4$. Part (a) is complete.

(b) Suppose that p is an odd prime and q = 2. If for some prime p, there exist values y and z for which $p^4 + 2^y = z^4$,

then

w

$$2^{y} = z^{4} - p^{4} = (z^{2} - p^{2})(z^{2} + p^{2}) = (z - p)(z + p)(z^{2} + p^{2}).$$

(2)

Denote

$$z-p=2^{A}$$
, $z+p=2^{B}$, $z^{2}+p^{2}=2^{C}$, $A < B < C$, $2^{y}=2^{A+B+C}$,
where all three conditions in (2) must be satisfied simultaneously.
The first two conditions $z-p=2^{A}$ and $z+p=2^{B}$ yield $2p+2^{A}=2^{B}$ or
 $2p=2^{B}-2^{A}=2^{A}(2^{B+A}-1)$.

The product 2p is a multiple of 2 only implying that A = 1. Thus z = p + 2. For the third condition we then obtain

$$z^2 + p^2 = 2p^2 + 4p + 4 = 2(p^2 + 2p + 2) = 2^C$$
.
Since $(p^2 + 2p + 2)$ is odd for all primes p , it follows that
 $2(p^2 + 2p + 2) \neq 2^C$.

The three conditions are not satisfied simultaneously, and therefore $p^4 + 2^y \neq z^4$. This concludes case (b).

(c) Suppose that p, q are distinct odd primes. If there exist primes p, q and values y, z which satisfy $p^4 + q^y = z^4$, then

$$q^{y} = z^{4} - p^{4} = (z^{2} - p^{2})(z^{2} + p^{2}) = (z - p)(z + p)(z^{2} + p^{2}).$$

Denote

 $z - p = q^{A}, \quad z + p = q^{B}, \quad z^{2} + p^{2} = q^{C}, \quad A < B < C, \quad q^{y} = q^{A + B + C}.$ (3) The first two conditions in (3) namely $z - p = q^{A}$ and $z + p = q^{B}$ yield $2p + q^{A} = q^{B}$. If A = 0, then $q^{A} = q^{0} = 1$ and z = p + 1. Thus $2p + 1 = q^{B}$. The third condition yields $z^{2} + p^{2} = 2p^{2} + 2p + 1 = 2p^{2} + q^{B} = q^{C}$,

and 0 = A < B < C then imply that $q \mid p$ which is impossible. Hence $A \neq 0$. When A > 0, it follows from the equality $2p + q^A = q^B$ that $q \mid p$ which is impossible. Thus $A \ge 0$. The conditions in (3) are not satisfied simultaneously. Therefore $p^4 + q^y \ne z^4$.

This concludes case (c) and the proof of Theorem 2.1. All the Solutions of the Diophantine Equations $p^4 + q^y = z^4$ and $p^4 - q^y = z^4$ when p, q are Distinct Primes

3. All the solutions of $p^4 - q^y = z^4$ when p, q are distinct primes

In this section, we consider in Theorem 3.1 the solutions of the equation $p^4 - q^y = z^4$.

Theorem 3.1. Let y, z be positive integers. For all three possibilities

(a) p = 2 and q an odd prime,

- (b) p an odd prime and q = 2,
- (c) p, q distinct odd primes,

the equation $p^4 - q^y = z^4$ has no solutions.

Proof: All three cases are considered separately, and are self-contained.

(a) Suppose that
$$p = 2$$
 and q is an odd prime. We have

$$2^4 - q^y = z$$

One could easily see that the above equation has no solutions. Hence $2^4 - q^{\nu} \neq z^4$.

(b) Suppose that p is an odd prime and q = 2. We shall assume that $p^4 - 2^y = z^4$

has a solution, and reach a contradiction. For any solution of (4), the value z is odd. We then have

$$2^{y} = p^{4} - z^{4} = (p^{2} - z^{2})(p^{2} + z^{2}) = (p - z)(p + z)(p^{2} + z^{2}).$$

Denote

$$p-z=2^{A}, \quad p+z=2^{B}, \quad p^{2}+z^{2}=2^{C}, \quad A < B < C, \quad 2^{y}=2^{A+B+C},$$
 (5)

where all three conditions in (5) must be satisfied simultaneously. The first two conditions $p-z = 2^A$ and $p+z = 2^B$ yield $2p = 2^A + 2^B = 2^A(2^{B-A} + 1)$ implying that A = 1 since 2p is a multiple of 2 only. Hence p = z + 2. For the third condition we then have $p^2 + z^2 = 2z^2 + 4z + 4 = 2(z^2 + 2z + 2) = 2^C$.

Since z is odd, the factor $(z^2 + 2z + 2)$ is odd. It then follows that $2(z^2 + 2z + 2) \neq 2^C$.

The three conditions are not satisfied simultaneously, and the contradiction has been derived. Hence $p^4 - 2^y \neq z^4$.

This concludes case (b).

(c) Suppose that p, q are distinct odd primes. If $p^4 - q^y = z^4$ has a solution, we have $q^y = p^4 - z^4 = (p^2 - z^2)(p^2 + z^2) = (p - z)(p + z)(p^2 + z^2)$.

Denote

$$p-z = q^A$$
, $p+z = q^B$, $p^2 + z^2 = q^C$, $A < B < C$, $q^y = q^{A+B+C}$, (6)
additions in (6) must be satisfied simultaneously.

and all three conditions in (6) must be satisfied simultaneously. The first two conditions in (6) $p-z = q^A$ and $p+z = q^B$ yield

$$2p = q^{A} + q^{B} = q^{A}(q^{B-A} + 1).$$
(7)

If $A \ge 1$ in (7), then $q \mid p$ which is impossible since gcd(p, q) = 1. Thus $A \ge 1$. If A = 0 in (6), then $p - z = q^0 = 1$ or p = z + 1. The second condition then implies that $p + z = 2z + 1 = q^B$, whereas the third condition implies that $p^2 + z^2 = (z + 1)^2 + z^2 = 2z^2 + 2z + 1 = 2z^2 + q^B = q^C$. From $2z^2 + q^B = q^C$ and since 0 = A < B < C, it then follows that $q \mid z$, contrary to the fact that gcd(q, z) = 1. Therefore $2z^2 + q^B \neq q^C$, and $A \neq 0$. The three conditions are not satisfied simultaneously. Hence $p^4 - q^y \neq z^4$.

This concludes case (c) and the proof of Theorem 3.1.

(4)

Nechemia Burshtein

Final remark. We have shown for all distinct primes p, q and positive integers y, z that both equations $p^4 + q^y = z^4$ and $p^4 - q^y = z^4$ have no solutions. The results were achieved in a simple and elementary manner.

Acknowledgement. The author is thankful to the reviewers for their valuable comments.

REFERENCES

- 1. N. Burshtein, On the diophantine equations $2^{x} + 5^{y} = z^{2}$ and $7^{x} + 11^{y} = z^{2}$, Annals of *Pure and Applied Mathematics*, 21 (1) (2020) 63-68.
- 2. N. Burshtein, All the solutions of the diophantine equations $p^x + p^y = z^2$ and $p^x p^y = z^2$ when $p \ge 2$ is prime, *Annals of Pure and Applied Mathematics*, 19 (2) (2019) 111-119.
- 3. N. Burshtein, On solutions of the diophantine equations $p^3 + q^3 = z^2$ and $p^3 q^3 = z^2$ when *p*, *q* are primes, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 51-57.
- 4. N. Burshtein, On solutions to the diophantine equation $p^x + q^y = z^4$, Annals of Pure and Applied Mathematics, 14 (1) (2017) 63-68.
- 5. Md.A.-A. Khan, A. Rashid, Md. S. Uddin, Non-negative integer solutions of two diophantine equations $2^x + 9^y = z^2$ and $5^x + 9^y = z^2$, *Journal of Applied Mathematics and Physics*, 4 (2016) 762-765.
- 6. B. Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, Acta Arith., 86 (1998) 193-205.
- 7. B. Sroysang, On the Diophantine equation $5^x + 7^y = z^2$, *Int. J. Pure Appl. Math.*, 89 (2013) 115-118.