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Abstract.  In this paper, we consider the two equations  p4 + qy = z4  and  p4 – qy = z4  when 
p, q  are distinct primes and  y, z  are positive integers.  For all primes  p, q  we establish  
that both equations have no solutions.   
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to decide 
whether a given Diophantine equation has any solutions, or how many solutions. 
       The famous general equation 

px + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear such 
individual equations involving particular primes and powers of all kinds. 
 
       In this paper we consider the two equations  p4 + qy = z4  and  p4 – qy = z4.  By using 
elementary methods, we establish for all distinct primes  p,  q  that both equations have no 
solutions.  This is done in the respective Sections  2  and 3.  Although existing similarities, 
we nevertheless consider both equations separately, in which all theorems and cases are 
self-contained. 
 
2.   All the solutions of  p4 + qy = z4  when  p, q  are distinct primes  
In this section, we discuss the equation  p4 + qy = z4  and its solutions. This  is done in the 
following theorem. 
 
Theorem  2.1.   Let  y, z  be positive integers.  For all three possibilities 
(a)      p = 2  and   q  an odd prime, 
(b)      p  an odd prime and  q = 2, 
(c)      p, q  distinct odd primes, 
the equation  p4 + qy = z4  has no solutions. 

Proof:    All three cases are considered separately, and are self-contained. 
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(a)   Suppose that  p = 2  and  q  is an odd prime.  If for some prime  q,  there exist values  
y  and   z  satisfying 

24 + qy = z4, 
then  qy = z4 – 24  or   

q y = (z2 – 22)(z2 + 22) = (z – 2)(z + 2)(z2 + 22). 
Denote 
                           z – 2 = qA,     z + 2 = qB,     z2 + 22 = qC,    A < B  < C,    qy = qA + B + C.        (1) 
From  (1),  z = 2 + qA.  If  A = 0,  then  z = 3.  Hence  z + 2 = 5 = qB  and  q = 5,  B = 1.  The 
equation  24 + qy = z4  then yields  24 + 5y = 34  which has no solutions.  Thus  A ≠ 0.  When   
A > 0,  then from  (1)  we have  z = 2 + qA  and  4 + qA = qB  implying that  q | 4  which is 
impossible since  q  is an odd prime.  Therefore  A ≯ 0,  and the conditions in  (1)  are not 
satisfied.  Hence, when  p = 2  and  q  is an odd prime,  then  24 + qy  ≠ z4.  
Part  (a)  is complete.  
 
(b)   Suppose that  p  is an odd prime and  q = 2.  If for some prime  p,  there exist values  
y  and  z  for which  

p4 + 2y = z4, 
then  

2y = z4 – p4 = (z2 – p2)(z2 + p2) = (z – p)(z + p)(z2 + p2). 
Denote 
                           z – p = 2A,     z + p = 2B,     z2 + p2 = 2C,    A < B  < C,    2y = 2A + B + C,        (2) 
where all three conditions in  (2)  must be satisfied simultaneously.   
The first two conditions   z – p = 2A  and   z + p = 2B  yield  2p + 2A = 2B  or   

2p = 2B – 2A = 2A(2 B - A – 1). 
The product  2p  is a multiple of  2  only  implying that  A = 1.  Thus   z = p + 2.  For the 
third condition we then obtain 

z2 + p2 = 2p2 + 4p + 4 = 2(p2 + 2p + 2) = 2C. 
Since  (p2 + 2p + 2)  is odd for all primes  p,  it follows that  

2(p2 + 2p + 2) ≠ 2C. 
The three conditions are not satisfied simultaneously, and therefore  p4 + 2y ≠  z4.   
This concludes case  (b).  
 
(c)     Suppose that  p , q  are distinct odd primes. If there exist primes  p, q  and values  y,  
z  which satisfy  p4 + qy = z4,  then  

qy = z4 – p4 = (z2 – p2)(z2 + p2) = (z – p)(z + p)(z2 + p2). 
Denote 
                      z – p = qA,     z + p = qB,     z2 + p2 = qC,    A < B  < C,    qy = qA + B + C.         (3) 
The first two conditions in  (3)  namely      z – p = qA   and    z + p = qB  yield  2p + qA = qB.   
If  A = 0,  then  qA = q0 = 1  and  z = p + 1.  Thus  2p + 1 = qB.  The third condition yields   

z2 + p2 = 2p2 + 2p + 1 = 2p2 + qB = qC, 
and   0 = A < B  < C  then  imply  that  q | p  which  is  impossible.   Hence   A ≠ 0.  When   
A > 0,  it  follows  from  the equality  2p + qA = qB  that  q | p  which  is  impossible.  Thus  
A ≯ 0.  The conditions in (3) are not satisfied simultaneously. Therefore p4 + qy  ≠  z4. 
 
       This concludes case (c)  and the proof of Theorem  2.1.                       □ 
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3.   All the solutions of  p4 – qy = z4  when  p, q  are distinct primes  
In this section, we consider in Theorem 3.1 the solutions of the equation  p4 – qy = z4.   

Theorem  3.1.   Let  y, z  be positive integers.  For all three possibilities   
(a)      p = 2  and   q  an odd prime, 
(b)      p  an odd prime and  q = 2, 
(c)      p, q  distinct odd primes, 
the equation  p4 – qy = z4  has no solutions. 

Proof:    All three cases are considered separately, and are self-contained. 
(a)   Suppose that  p = 2  and  q  is an odd prime.  We have  

24 – qy = z4. 
One could easily see that the above equation has no solutions.  Hence  24 – qy ≠ z4.   
 
(b)   Suppose that  p  is an odd prime and  q = 2.  We shall assume that  
                                                               p4 – 2y = z4                                                            (4) 
has a solution, and reach a contradiction.  For any solution of  (4),  the value  z  is odd.  We 
then have 
                                   2y = p4 – z4 = (p2 – z2)(p2 + z2) = (p – z)(p + z)(p2 + z2).                
Denote  
                          p – z = 2A,     p + z = 2B,     p2 + z2 = 2C,    A < B  < C,    2y = 2A + B + C,          (5) 
where all three conditions in  (5)  must be satisfied simultaneously.  The first two conditions 
p – z = 2A  and   p + z = 2B   yield   2p = 2A + 2B = 2A(2 B - A + 1)  implying that  A = 1  since 
2p  is a multiple of  2  only.  Hence  p = z + 2.  For the third condition we then have  

p2 + z2 = 2z2 + 4z + 4 = 2(z2 + 2z + 2) = 2C. 
Since  z  is odd, the factor  (z2 + 2z + 2)  is odd.  It then follows that   

2(z2 + 2z + 2) ≠ 2C. 
The three conditions are not satisfied simultaneously, and the contradiction has been 
derived.  Hence  p4 – 2y ≠ z4. 
This concludes case  (b). 
 
(c)     Suppose that  p , q  are distinct odd primes.  If  p4 – qy = z4  has a solution, we have 

qy = p4 – z4 = (p2 – z2)(p2 + z2) = (p – z)(p + z)(p2 + z2). 
Denote 
                            p – z = qA,   p + z = qB,   p2 + z2 = qC,    A < B  < C,   qy = qA + B + C,         (6) 
and all three conditions in  (6)  must be satisfied simultaneously. 
The first two conditions in  (6)  p – z = qA  and  p + z = qB  yield   
                                                      2p = qA + qB = qA(qB - A + 1).                                           (7) 
If  A ≥ 1  in  (7),  then  q | p  which is impossible since  gcd (p, q) = 1.  Thus  A ≱ 1.  If  A 
= 0  in  (6),  then  p – z = q0 =1  or   p = z + 1.  The second condition then implies that  p + 
z = 2z + 1 = qB,  whereas the third condition implies that  p2 + z2 = (z + 1)2 + z2 = 2z2 + 2z 
+ 1 = 2z2 + qB = qC.  From  2z2 + qB = qC  and   since  0 = A < B  < C,  it then  follows  that   
q | z,  contrary to the fact that  gcd (q, z) = 1. Therefore  2z2 + qB ≠ qC, and  A ≠ 0.  The 
three conditions are not satisfied simultaneously.  Hence  p4 – qy ≠ z4.   
 
        This concludes case (c)  and the proof of Theorem  3.1.                       □ 
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Final remark.   We have shown for all distinct primes  p, q  and positive integers  y, z  that 
both equations  p4 + qy = z4  and  p4 – qy = z4  have no solutions.  The results were achieved 
in a simple and elementary manner. 
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