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Abstract.   In  this  paper,  we  consider  the  equations  px + (p + 1)y + (p + 2)z  = M3  when   
p  is prime and  x, y, z  are integers satisfying 1 ≤ x, y, z ≤ 2.  We establish:  (i)  A unique 
solution exists when  p = 2.  (ii)  No solutions exist when  p = 4N + 1. (iii)  Infinitely many 
solutions exist when  p = 4N + 3, and  x = y = z = 1. No solutions exist for all other 
possibilities. 
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1.   Introduction 
The field of Diophantine equations is ancient, vast, and no general method exists to decide 
whether a given Diophantine equation has any solutions, or how many solutions. 
       The famous general equation 

px + qy = z2 
has many forms.  The literature contains a very large number of articles on non-linear such 
individual equations involving particular primes and powers of all kinds. Among them are 
for example [3, 4, 8, 9].  
 
       In  [2],  in a preliminary step towards larger equations, we have extended the above  
equation  to  equations   of  the   form    px + (p + 1)y + (p + 2)z  = M2  for  all  primes  p ≥ 2  
when  1 ≤ x, y, z ≤ 2.  In [1, 2], we have determined  all the solutions for all primes p ≥ 2  
when  1 ≤ x, y, z ≤ 2.  In this paper, the equations  px + (p + 1)y + (p + 2)z  = M2  are taken 
one step ahead, and we consider now equations of the form  px + (p + 1)y + (p + 2)z  = M3  
when  1 ≤ x, y, z ≤ 2.  For all primes  p ≥ 2,  we establish all the solutions for  px + (p + 1)y 
+ (p + 2)z  = M3  when  1 ≤ x, y, z ≤ 2.  This is done in the respective Sections 2, 3  and  4  
in which all theorems and all cases are considered separately and are self-contained. 

2.   All the solutions of   px + (p + 1)y + (p + 2)z = M3  when  p = 2,  1 ≤ x, y, z ≤ 2 
In this section all the solutions of  2x + 3y + 4z = M3  are determined.  

Theorem 2.1.   Let  1 ≤ x, y, z ≤ 2.  Then  2x + 3y + 4z = M3  has  a  unique  solution  when   
x = 1,  y = z = 2.   
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Proof:   When  1 ≤ x, y, z ≤ 2,  the eight cases of  2x + 3y + 4z = M3 are listed below.  
 

(1) 2 + 3 + 4 = 9 ≠ M3. 
(2) 2 + 3 + 42 = 21 ≠ M3. 
(3) 2 + 32 + 4 = 15 ≠ M3. 
(4) 22 + 3 + 4 = 11 ≠ M3. 
(5) 2 + 32 + 42 = 33 = M3. 
(6) 22 + 3 + 42 = 23 ≠ M3. 
(7) 22 + 32 + 4 = 17 ≠ M3. 
(8) 22 + 32 + 42 = 29 ≠ M3. 

 
       It follows that case  (5)  when  x = 1, y = z = 2  yields a solution for which  M = 3, 
whereas in all other cases  (1) – (4),  (6) – (8)  no solutions exist.    
 
       This completes the proof of Theorem 2.1.                                □  
 
3.   All the solutions of  px + (p + 1)y + (p + 2)z = M3  when  p = 4N + 1,  1 ≤ x, y, z ≤ 2 
Here we consider  px + (p + 1)y + (p + 2)z = M3  for all primes  p = 4N + 1, when  1 ≤ x, y, z 
≤ 2.  In Theorem  3.1 we establish that the equations have no solutions. 
 
Theorem  3.1.   Let  1 ≤ x, y, z ≤ 2.  If   p = 4N + 1, then  px + (p + 1)y + (p + 2)z = M3  have 
no solutions.    
 
Proof:   When  1 ≤ x, y, z ≤ 2  and  p = 4N + 1 is prime, eight cases exist: 
 
(1) (4N + 1) + (4N + 2) + (4N + 3) = M3. 
(2) (4N + 1) + (4N + 2) + (4N + 3)2 = M3. 
(3) (4N + 1) + (4N + 2)2 + (4N + 3) = M3. 
(4) (4N + 1)2 + (4N + 2) + (4N + 3) = M3. 
(5) (4N + 1) + (4N + 2)2 + (4N + 3)2 = M3. 
(6) (4N + 1)2 + (4N + 2) + (4N + 3)2 = M3. 
(7) (4N + 1)2 + (4N + 2)2 + (4N + 3) = M3. 
(8) (4N + 1)2 + (4N + 2)2 + (4N + 3)2 = M3. 

 
These eight cases each of which is self-contained are considered separately.  
 
(1)    The case  (4N + 1) + (4N + 2) + (4N + 3) = M3. 
         The left side of the equation yields 

(4N + 1) + (4N + 2) + (4N + 3) = 12N + 6 = 6(2N + 1). 
The prime  2  in the factor  6  has an odd exponent equal to  1.  Since  (2N + 1)  is odd, it 
follows that  6(2N + 1)  is not equal to  M3. 
       The equation  (4N + 1) + (4N + 2) + (4N + 3) = M3  has no solutions. 
 
(2)     The case   (4N + 1) + (4N + 2) + (4N + 3)2 = M3.  
          The left side of the equation yields 

(4N + 1) + (4N + 2) + (16N2 + 24N + 9) = 4(4N2 + 8N + 3). 
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The prime  2  in the factor  4  has an even exponent equal to  2.  Since  (4N2 + 8N + 3)  is 
odd for all values  N,  it follows that  4(4N2 + 8N + 3) ≠ M3.   
       The equation  (4N + 1) + (4N + 2) + (4N + 3)2 = M3  has no solutions. 
 
(3)     The case  (4N + 1) + (4N + 2)2 + (4N + 3) = M3.  
          Rewriting in terms of  p  the left side of the equation, we obtain 

p + (p + 1)2 + ( p + 2) = p2 + 4p + 3 = (p + 2)2 – 1. 

If   (p + 2)2 – 1 = M3,  then  (p + 2)2 – M3 = 1.  All four values   (p + 2), 2,  M  and  3  satisfy 
the conditions of Catalan's Conjecture which states that  32 – 23 = 1  is the only solution of 
the above equation.  Since this is impossible, it follows that  (p + 2)2 – 1 ≠ M3.  
         The equation  (4N + 1) + (4N + 2)2 + (4N + 3) = M3  has no solutions.   
 
(4)     The case  (4N + 1)2 + (4N + 2) + (4N + 3) = M3.  
          The left side of the equation yields 

(16N2 + 8N + 1) + (4N + 2) + (4N + 3) = 2(8N2 + 8N + 3). 

The prime  2  has an odd exponent equal to  1, and the factor  (8N2 + 8N + 3)  is odd for all 
values  N.  Hence  2(8N2 + 8N + 3)  ≠ M3. 
       The equation  (4N + 1)2 + (4N + 2) + (4N + 3) = M3  has no solutions. 
 
(5)     The case  (4N + 1) + (4N + 2)2 + (4N + 3)2 = M3.  
          The left side of the equation yields 

(4N + 1) + (16N2 + 16N + 4) + (16N2 + 24N + 9) = 2(16N2 + 22N + 7). 

The prime  2  has an odd exponent equal to  1,  and the factor  (16N2 + 22N + 7)  is odd for 
all values  N.  Thus  2(16N2 + 22N + 7) ≠ M3. 
       The equation  (4N + 1) + (4N + 2)2 + (4N + 3)2 = M3  has no solutions. 
 
(6)     The case  (4N + 1)2 + (4N + 2)  + (4N + 3)2 = M3.  
          Rewriting in terms of  p  the left side of the equation, we obtain 
 

p2 + (p + 1) + ( p + 2)2 = 2p2 + 5p + 5 = (2p2 + 5p + 3) + 2. 
 
We shall assume that for some prime  p,  (2p2 + 5p + 3) + 2 = M3  has a solution and reach 
a contradiction. 
 
       The value  (2p2 + 5p + 3)  is even for all primes  p.  Our assumption that  (2p2 + 5p + 
3) + 2 = M3  implies that  (2p2 + 5p + 3) + 2,  M  are even,  and  M3 – (2p2 + 5p + 3) = 2  is 
the smallest possible difference of two consecutive even integers.  We shall consider both 
possibilities of  p = 4N + 1,  namely when  N  is even and when  N  is odd. 
 
       It is easily seen that  2p2 + 5p + 5 = 4(8N2 + 9N  + 3).  If  N  is even, then  (8N2 + 9N  
+ 3)  is odd.  The factor  4 = 22  then implies that  4(8N2 + 9N  + 3) ≠ M3  contrary to our 
assumption.  Therefore,  N  is not even, and by our assumption  N  is odd. 
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       When  N  is odd,  say  N = 2n + 1 (n an integer),  then  p = 4N + 1 = 8n + 5.  In the 
following Table 1, the first seven such primes are presented.  The even values  M  are taken 
as the smallest possible values  (min M)  for which  min M3  exceeds  (2p2 + 5p + 3)  for 
 the first time, in order to achieve the smallest possible difference  M3 – (2p2 + 5p + 3) = t 
= 2. 

Table 1. 
 

p = 4N + 1 = 8n + 5 2p2 + 5p + 3 min M   min M3   min M3 – (2p2 + 5p + 3) = t   
5 78 6 216 138 
13 406 8 512 106 
29 1830 14 2744 914 
37 2926 16 4096 1170 
53 5886 20 8000 2114 
61 7750 20 8000 250 
101 20910 28 21952 1042 

 
In Table 1, for each prime  p,  the respective data is self-explanatory. All values  min M3 – 
(2p2 + 5p + 3) = t  are even.  The smallest possible number  t  is equal to  106  and has  3  
digits.  If  D  denotes the number of digits of each number  t,  then  D ≥ 3.  It is clearly seen 
that  D = 1,  i.e.,  t = 2  is never attained. We can now state that our assumption is false 
when  N  is odd. 
       The equation  (4N + 1)2 + (4N + 2)  + (4N + 3)2 = M3  has no solutions. 
 
(7)     The case  (4N + 1)2 + (4N + 2)2 + (4N + 3) = M3.  
          Rewriting in terms of  p  the left side of the equation, we obtain  

p2 + (p + 1)2 + ( p + 2) = 2p2 + 3p + 3 = (2p2 + 3p + 1) + 2. 

We shall assume that for some prime  p, (2p2 + 3p + 1) + 2 = M3  and reach a contradiction. 
 
       The value   (2p2 + 3p + 1)  is even for all primes  p.  Our assumption that  (2p2 + 3p + 
1) + 2 = M3  implies that  (2p2 + 3p + 1) + 2,  M  are even, and  M3 – (2p2 + 3p + 1) = 2  is 
the smallest possible difference of two consecutive even integers.  We shall now consider 
both possibilities of   p = 4N + 1,  namely  N  odd and  N  even. 
 
      Denote  M = 2m.  When  N = 2n + 1,  then  p = 4N + 1 = 8n + 5.  Our assumption that  
M3 – (2p2 + 3p + 1) = 2  yields 

8m3– (2(8n+5)2+3(8n+5)+1) = 8m3– (128n2+184n+66) = 8(m3– 16n2– 23n – 8) – 2 = 2. 

But, for all values  m, n,  8(m3– 16n2– 23n – 8) – 2 ≠ 2.  Thus, our assumption is false when  
N  is odd.  
 
       When  N = 2n  is even, then  p = 4N + 1 = 8n + 1.  In the following Table 2,  the first 
seven such primes are presented.  The even values  M  are taken as the smallest possible 
values (min M)  for which min M3  exceeds (2p2 + 3p + 1)  for the first time, in order to 
achieve the smallest possible difference  M3 – (2p2 + 3p + 1)  = t = 2.  
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Table 2. 

p = 4N + 1 = 8n + 1 2p2 + 3p + 1 min M   min M3   min M3 – (2p2 + 3p + 1) = t  
17 630 10 1000 370 
41 3486 16 4096 610 
73 10878 24 13824 2946 
89 16110 26 17576 1466 
97 19110 28 21952 2842 
113 25878 30 27000 1122 
137 37950 34 39304 1354 

 
In Table 2, the primes presented and the data obtained are self-evident.  All values  min M3 
– (2p2 + 3p + 1) = t  are even.  The smallest possible number  t  is equal to  370  and has 3 
digits.  If  D  denotes the number of digits of each number  t,  then  D ≥ 3.  As  p, min M  
are increasing, so are  (2p2 + 3p + 1)  and  min M3.  Hence, the value  D = 1,  namely  t = 2  
which is one  digit  is never attained.  Since the numbers in Table 2 quite clearly indicate 
this fact,  we can therefore state that our assumption is false when  N  is even. 
       The equation  (4N + 1)2 + (4N + 2)2 + (4N + 3) = M3  has no solutions. 

(8)     The case   (4N + 1)2 + (4N + 2)2 + (4N + 3)2 = M3.  
          The left side of the equation yields 

 (16N2 + 8N + 1) + (16N2 + 16N + 4) + (16N2 + 24N + 9) = 2(24N2 + 24N + 7). 
The prime  2  has an odd exponent equal to  1. Since  (24N2 + 24N + 7)  is odd for all values  
N,  it follows that  2(24N2 + 24N + 7)  ≠ M3. 
       The equation  (4N + 1)2 + (4N + 2)2 + (4N + 3)2 = M3  has no solutions. 
 
       This concludes the proof of Theorem  3.1.                     □  

4.   All the solutions of  px + (p + 1)y + (p + 2)z = M3  when  p = 4N + 3,  1 ≤ x, y, z ≤ 2 
In  this  section  we  consider   px + (p + 1)y + (p + 2)z = M3  when  1 ≤ x, y, z ≤ 2,  and   
p = 4N + 3.  

Theorem  4.1.   Let  1 ≤ x, y, z ≤ 2.  Suppose that p = 4N + 3. Then  px + (p + 1)y + (p + 2)z 

= M3   has:  (i)  Infinitely many solutions when  x = y = z = 1.  (ii)  No solutions for all other 
possibilities. 

Proof:   When 1 ≤ x, y, z ≤ 2  and   p = 4N + 3  is prime, eight cases exist: 

(1) (4N + 3) + (4N + 4) + (4N + 5) = M3. 
(2) (4N + 3) + (4N + 4) + (4N + 5)2 = M3. 
(3) (4N + 3) + (4N + 4)2 + (4N + 5) = M3. 
(4) (4N + 3)2 + (4N + 4) + (4N + 5) = M3. 
(5) (4N + 3) + (4N + 4)2 + (4N + 5)2 = M3. 
(6) (4N + 3)2 + (4N + 4) + (4N + 5)2 = M3. 
(7) (4N + 3)2 + (4N + 4)2 + (4N + 5) = M3. 
(8) (4N + 3)2 + (4N + 4)2 + (4N + 5)2 = M3. 
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Each case is considered separately, and is self-contained. 
 
(1)    The case  (4N + 3) + (4N + 4) + (4N + 5)  =  M3. 
         The left side of the equation yields  

(4N + 3) + (4N + 4) + (4N + 5) = 12N + 12 = 12(N + 1). 

The  factor   12 = 22⸱3.   If   12(N + 1) =  M3,   it  then  follows  that  (N + 1)  is of the form  
N + 1 = 21 + 3a

⸱32 + 3b
⸱K3  where  a ≥ 0,  b ≥ 0  and  K ≥ 1  are integers.  Evidently,  N + 1  is 

always a multiple of  18.  The value  N = 21 + 3a⸱32 + 3b⸱K3 – 1  must satisfy  

                                              4N + 3 = 4(21 + 3a⸱32 + 3b⸱K3 – 1) + 3 = p.                                 (1) 

Some examples satisfying  (1)  which are solutions of the equation are demonstrated as 
follows: 
Example 1. If  a = 0, b = 0, K = 1, then N = 17, p = 71, M = 6. 
Example 2. If  a = 1, b = 1, K = 1, then N = 3887, p = 15551, M = 36. 
Example 3. If  a = 1, b = 0, K = 5, then N = 17999, p = 71999, M = 60. 

 
       Certainly, there exist infinitely many values  a, b, K  for which  (1)  is prime.   
       The equation  (4N + 3) + (4N + 4) + (4N + 5)  =  M3  has infinitely many solutions. 
 
(2)    The case  (4N + 3) + (4N + 4) + (4N + 5)2 = M3. 
         The left side of the equation yields   

   (4N + 3) + (4N + 4) + (16N2 + 40N + 25) = 16(N2 + 3N + 2) = 16(N + 1)(N + 2).         (2) 

We shall assume that for some value  N,  16(N + 1)(N + 2) = M3  and reach a contradiction. 
 
       The factors  (N + 1),  (N + 2)  are two consecutive integers.  Therefore, either  (N + 1)  
is even and  (N + 2)  is odd or vice versa.  Without any loss of generality, we shall assume 
that  (N + 1)  is even, and  (N + 2)  is odd.  Observe that if the even value  (N + 1)  is not a 
multiple of  4,  then since  (N + 2)  is odd, it follows that  16(N + 1)(N + 2) ≠ M3 contrary 
to our assumption.  Therefore, by  (2)  and our assumption we have 

N + 1 = 4A3,       N + 2 = 4A3 + 1 = Q3,        42(4A3)(4A3 + 1) = M3, 

where  A  assumes odd and even values, and  Q  is odd.  We also note that the above values  
N + 1  and  N + 2  must be satisfied simultaneously.  
        We will now show that  4A3 + 1 = Q3,  or  Q3 – 4A3 = 1  is never achieved.  In the 
following  Table 3  we consider the first  10  values  A.  The values  Q  are taken as the 
smallest possible values  Q  denoted by  min Q,  for which  min Q3  exceeds  4A3  for the 
first time in order to achieve the smallest possible difference  Q3 – 4A3 = t.  
 

In Table 3, the numbers A,Q  and the data obtained present a clear-cut view as to 
the behavior of the equality  min Q3 – 4A3 = t.  The smallest possible number  t  is  t = 17.  
As  A,Q  are increasing, so does  t.  All numbers  t  in Table  3  consist of two and three 
digits.  Evidently, the smallest one digit number which is equal to  1  is never attained.  
This implies that our assumption is false. 
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Table 3. 

A A3 4A3 min Q min Q3 min Q3 – 4A3 = t 
1 1 4 3 27 23 
2 8 32 5 125 93 
3 27 108 5 125 17 
4 64 256 7 343 87 
5 125 500 9 729 229 
6 216 864 11 1331 467 
7 343 1372 13 2197 825 
8 512 2048 13 2197 149 
9 729 2916 15 3375 459 
10 1000 4000 17 4913 913 

 
       The equation  (4N + 3) + (4N + 4) + (4N + 5)2 = M3  has no solutions. 
 
(3)       The case  (4N + 3) + (4N + 4)2 + (4N + 5)  =  M3. 
            The left side of the equation yields 
    (4N + 3) + (16N2 + 32N + 16) + (4N + 5) = 8(2N2 + 5N + 3) = 8(N + 1)(2N + 3).       (3)  
We shall assume that for some value  N,  8(N + 1)(2N + 3) = M3  has a solution and reach 
a contradiction. The sum  2N + 3 = 2(N + 1) + 1, and  gcd(N + 1, 2(N + 1) + 1) = 1.  This 
fact together with our assumption imply that  (3)  must simultaneously satisfy  the equalities  

N + 1 = A3,           2N + 3 = 2(N + 1) + 1 = 2A3 + 1 = B3,          8A3B3 = M3. 
We will now show that   
                                                        2A3 + v = B3,          v ≥ 1                                             (4) 
is false when  v = 1. 
       In order to achieve the smallest possible value  v  in  (4),  we consider the largest 
possible value  A  so that the difference  B3 – 2A3  yields the smallest possible value  v.  Set  
A = B – 1. It is easily seen when  A = 1, 2, 3,  that  B = 2, 3, 4,  and that the respective 
numbers v yield  v = 6, 11, 10.  For all values  A ≥ 4  and  B = A + 1, then B3 – 2A3 = v < 0. 
Thus, the difference  B3 – 2A3 = v =1  is never attained.  This implies that our assumption 
is false. 
       The equation  (4N + 3) + (4N + 4)2 + (4N + 5) =  M3  has no solutions. 
 
(4)       The case  (4N + 3)2 + (4N + 4) + (4N + 5)  =  M3. 
            The left side of the equation yields 

(16N2 + 24N + 9) + (4N + 4) + (4N + 5) = 2(8N2 + 16N + 9). 
The prime  2  has an odd exponent equal to  1.  The factor  (8N2 + 16N + 9)  is odd for all 
values  N.  It therefore follows that  2(8N2 + 16N + 9) ≠ M3. 
      The equation  (4N + 3)2 + (4N + 4) + (4N + 5)  =  M3  has no solutions. 
 
(5)       The case  (4N + 3) + (4N + 4)2 + (4N + 5)2  =  M3. 
            Rewriting in terms of  p  the left side of the equation yields 

p + (p2 + 2p + 1) + (p2 + 4p + 4) = 2p2 + 7p + 5. 
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We shall assume that  for some prime  p,  2p2 + 7p + 5 =  M3  has a solution and reach a 
contradiction.   
       The value  2p2 + 7p + 5 = (2p2 + 7p + 4) + 1 = M3  implies that  M3  is even for all 
primes  p,  and  2p2 + 7p + 4  is odd.  In the following Table 4 we consider the first ten  
primes  p.  The values  M  are taken as the smallest possible values  M  denoted by  min M,  
for which min M3 exceeds (2p2 + 7p + 4)  for the first time in order to obtain the smallest 
possible difference min M3 – (2p2 + 7p + 4) = t.  We will now show that  t = 1 is not 
achieved. 

Table  4. 
 

p = 4N + 3 2p2 + 7p + 4 min M min M3 min M3 – (2p2 + 7p + 4) = t   
3 43 4 64 21 
7 151 6 216 65 
11 323 8 512 189 
19 859 10 1000 141 
23 1223 12 1728 505 
31 2143 14 2744 601 
43 4003 16 4096 93 
47 4751 18 5832 1081 
59 7379 20 8000 621 
67 9451 22 10648 1197 

 
In Table  4,  the primes  p,  2p2 + 7p + 4,  min M  are increasing numbers.  The numbers  t  
decisively show that  t = 21  is the smallest possible number.  The number  21  has two 
digits.  The other numbers  t  consist of  2, 3  and 4 digits.  The  smallest  possible  number   
t = 1  with one digit is never attained.  Our assumption is therefore false. 
        The equation  (4N + 3) + (4N + 4)2 + (4N + 5)2  =  M3  has no solutions. 
 
(6)      The case  (4N + 3)2 + (4N + 4) + (4N + 5)2  =  M3. 
           The left side of the equation yields 

(16N2 + 24N + 9) + (4N + 4) + (16N2 + 40N + 25) = 2(16N2 + 34N + 19). 
The prime  2  has an odd exponent equal to  1,  and the factor  (16N2 + 34N + 19)  is odd 
for all values  N.  Hence  2(16N2 + 34N + 19) ≠ M3.  
       The equation  (4N + 3)2 + (4N + 4) + (4N + 5)2  =  M3  has no solutions. 
 
(7)      The case  (4N + 3)2 + (4N + 4)2 + (4N + 5) = M3. 
           The left side of the equation yields 

(16N2 + 24N + 9) + (16N2 + 32N + 16) + (4N + 5) = 2(16N2 + 30N + 15). 
The prime  2  has an odd exponent equal to  1,  and the factor  (16N2 + 30N + 15)  is odd 
for all values  N.  Thus  2(16N2 + 30N + 15) ≠ M3.  
       The equation  (4N + 3)2 + (4N + 4)2 + (4N + 5) = M3  has no solutions. 
 
(8)      The case  (4N + 3)2 + (4N + 4)2 + (4N + 5)2 = M3. 
           The left side of the equation yields       

(16N2 + 24N + 9) + (16N2 + 32N + 16) + (16N2 + 40N + 25) = 2(24N2 + 48N + 25). 
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The prime 2 has an odd exponent equal  to 1,  and  the  factor  (24N2 + 48N + 25)   is odd 
for all values  N.  Therefore  2(24N2 + 48N + 25) ≠ M3. 
       The equation  (4N + 3)2 + (4N + 4)2 + (4N + 5)2 = M3  has no solutions. 
        
       This concludes the proof of Theorem  4.1.                                      □ 
 
Final remark.   In this paper, we have considered the equations   px + (p + 1)y + (p + 2)z  = 
M3  in which  M  is a positive integer,  p  is prime and  p, (p + 1), (p + 2)  are three 
consecutive integers. For all primes  p ≥ 2  and  x, y, z  satisfying  1 ≤ x, y, z ≤ 2,  we have 
established all the solutions of the above equations. 
 
Acknowledgement. The author is thankful to the reviewers for their valuable comments. 
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