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Abstract. In Chemical Graph Theory, a forgotten topological index or F-index has 
significant importance to collect information about properties of chemical compounds. In 
this study, we introduce the modified minus F-index, minus connectivity F-index, 
reciprocal minus connectivity F-index, general minus F-index and their polynomials of a 
molecular graph. Furthermore, we present exact expressions for these minus F-indices and 
their polynomials of titania nanotubes. 
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1. Introduction 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The 
degree dG(u) of a vertex u is the number of vertices adjacent to u. For definitions and 
notations, we refer the book [1]. 
 Chemical Graph Theory is a branch of Mathematical Chemistry, which has an 
important effect on the development of Chemical Sciences. In Chemistry, topological 
indices have been found to be useful in discrimination, chemical documentation, structure 
property relationships, structure activity relationships and pharmaceutical drug design. 
There has been considerable interest in the general problem of determining topological 
indices, see [2, 3, 4].  
 The first F-index [5] and second F-index [6] of a graph G are defined respectively 
as 
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 Recently some novel variants of F-indices were introduced and studied such as 
multiplicative F-indices [7], connectivity F-indices [8], multiplicative first F-index [9, 10]. 
 The irregularity index (called as minus index [11]) was introduced by Albertson in 
[12], defined as 
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 The minus F-index or nano Zagreb index was introduced and studied 
independently by Kulli in [13] and Jahanbani et al. in [14] and defined it as 

( ) ( ) ( )2 2
.= − G GMF G d u d v  

Recently, the multiplicative minus indices were studied in [15]. 
 In [16], Gutman et al. introduced the sigma index of a graph G and defined it as 

( ) ( ) ( ) 2
.σ  = −  G GG d u d v  

 Similarly, in [13], Kulli introduced the square F-index (or sigma F-index) of a 
graph G, defined as 
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 We now introduce the following minus F-indices: 
 The modified minus F-index of a graph G is defined as 
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 The reciprocal minus connectivity F-index of a graph G is defined as 
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 The general minus connectivity F-index of a graph G is defined as 
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where a is real number. 
 The minus F-polynomial and sigma F-polynomial (or square F-polynomial) of a 
graph were introduced by Kulli in [11], and they are defined as 
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 We now introduce the minus F-polynomials of a graph G as follows: 
 The modified minus F-polynomial of a graph G is defined as 
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 The minus connectivity F-polynomial of a graph G is defined as 
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 The reciprocal minus connectivity F-polynomial of a graph G is defined as 
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 The general minus F-polynomial of a graph G is defined as 
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where a is real number. 
 Recently some graph polynomials were studied in [17, 18, 19, 20, 21,22, 23]. 
 In this paper, some minus F-indices and their corresponding polynomial versions 
of titania nanotubes are determined.  
 
2. Results for titania nanotubes 
Titania nanotube is studied in material science. The titania nanotubes denoted by TiO2[m, 
n] for any m, n ∈ N, in which m is the number of octagons C8 in a row and n is the number 
of octagons C8 in a column. The molecular graph of TiO2[m, n] is presented in Figure 1. 

 
 

Figure 1: Molecular graph of TiO2[m, n] 
 

Let G be the graph of titania nanotube TiO2[m, n]. The graph G has 6n(m+1) 
vertices and 10mn+8n edges. By calculation, we obtain that G has four types of edges based 
on the degree of end vertices of each edge as given in Table 1. 

 
( ), ( ) \ ( )G Gd u d v uv E G∈  (2,4) (2, 5) (3, 4) (3, 5) 

Number of edges 6n 4mn+2n 2n 6mn – 2n 
Table 1: Edge partition of TiO2[m, n] 

 
 In the following theorem, we compute the general minus F-index of TiO2[m, n]. 
 
Theorem 1. The general minus F-index of TiO2[m, n] titania nanotubes is 

( ) ( ) ( )
2 4 21 6 16 6 12 2 21 2 7 2 16 .a a a a a a aMF TiO mn n= × + × + × + × + × − ×               (3) 

Proof: Let G be the graph of TiO2[m, n] titania nanotube. By using equation (1) and Table 
1, we deduce 
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                   ( ) ( )4 21 6 16 6 12 2 21 2 7 2 16 .a a a a a amn n= × + × + × + × + × − ×  

 
We establish the following results by using Theorem 1. 

 
Corollary 1.1. The minus F-index of TiO2[m, n] is 

MF(TiO2) = 180mn + 96n. 
 
Corollary 1.2. The square F-index of TiO2[m, n] is 

QF(TiO2) = 3300mn + 1332n. 
 
Corollary 1.3. The modified minus F-index of TiO2[m, n] is 

( )2

95 889
.

168 1176
= +m MF TiO mn n  

 
Corollary 1.4. The minus connectivity F-index of TiO2[m, n] is 

 ( )2

4 3 3 2 2 1
.

2 221 3 21 7

   = + + + + −   
   

CMF TiO mn n  

 
Corollary 1.5. The reciprocal minus connectivity F-index of TiO2[m, n] is 

 ( ) ( ) ( )
2 4 21 24 12 3 2 21 2 7 8 .= + + + + −CRMF TiO mn n  

Proof: Put a = 1, 2, – 1, –½, ½ in equation (3), we get the desired results. 
 
     In the following Theorem, we compute the general minus F-polynomial of TiO2[m, n]. 
 
Theorem 2. The general minus F-polynomial of TiO2[m, n] titania nanotubes is 
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2, 6 4 2 2 6 2 .= + + + + −

a a a aaMF TiO x nx mn n x nx mn n x   (4) 

Proof: Let G be the graph of TiO2[m, n]. By using equation (2) and Table 1, we derive 
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The following results are obtained by using Theorem 2. 

 
Corollary 2.1. The minus F-polynomial of TiO2[m, n] is 

MF(TiO2, x) = (4mn + 2n)x21 + (6mn – 2n)x16 + 6nx12 + 2nx7. 
 
Corollary 2.2. The square F-polynomial of TiO2[m, n] is 

QF(TiO2, x) = (4mn + 2n)x441 + (6mn – 2n)x256 + 6nx144 + 2nx49. 
 
Corollary 2.3. The modified minus F-polynomial of TiO2[m, n] is 
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Corollary 2.4. The minus connectivity F-polynomial of TiO2[m, n] is 

 ( ) ( ) ( )
11 11
721 124

2, 4 2 6 2 6 2 .= + + − + +CMF TiO x mn n x mn n x nx nx  

 
Corollary 2.5. The reciprocal minus connectivity F-index of TiO2[m, n] is 

 ( ) ( ) ( )21 4 12 7
2, 4 2 6 2 6 2 .= + + − + +CRMF TiO x mn n x mn n x nx nx  

Proof: Put a = 1, 2, – 1, –½, ½ in equation (4), we obtain the desired results. 
 
3. Conclusion 
In this study, we have proposed the modified minus F-index, minus connectivity F-index, 
reciprocal minus connectivity F-index, general minus F-index and their corresponding 
polynomials of a molecular graph. We have computed these minus F-indices and their 
corresponding polynomial versions of titania nanotubes. 
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