Annals of Pure and Applied Mathematics Vol. 22, No. 2, 2020, 119-123 ISSN: 2279-087X (P), 2279-0888(Online) Published on 1 December 2020 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v22n2a07799

Annals of **Pure and Applied** Mathematics

The Diophantine Equations $2^{x} + 11^{y} = z^{2}$ and $19^{x} + 29^{y} = z^{2}$ are Insolvable in Positive Integers *x*, *y*, *z*

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 4 November 2020; accepted 25 November 2020

Abstract. In this article, the author has investigated the equations $2^x + 11^y = z^2$ and $19^x + 29^y = z^2$ with positive integers x, y, z. It was established that both equations have no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds. Among them are for example [2, 4, 6, 8].

In this article, we consider the two equations $2^x + 11^y = z^2$ and $19^x + 29^y = z^2$ in which x, y, z are positive integers. It will be shown that both equations have no solutions. This is done in Sections 2 and 3. Although similarities exist, nevertheless, the theorems and all the cases within are self-contained. The results achieved are mainly and in particular based on our new method which utilizes the last digits of the powers involved.

2. The equation $2^{x} + 11^{y} = z^{2}$

Theorem 2.1. Let x, y, z be positive integers. Then the equation $2^x + 11^y = z^2$ has no solutions.

Proof: Let $m \ge 0$ be an integer. For all values $x \ge 1$, four possibilities exist:

(a)	x = 4m + 1,	$y \ge 1$,	$m \ge 0.$
(b)	x = 4m + 2,	$y \ge 1$,	$m \ge 0.$
(c)	x=4m+3,	$y \ge 1$,	$m \ge 0.$
(d)	x = 4m,	$y \ge 1$,	$m \ge 1$.

Nechemia Burshtein

(a) Suppose that x = 4m + 1, $y \ge 1$.

For all values $m \ge 0$, the power 2^{4m+1} ends in the digit 2. For all values $y \ge 1$, the power 11^y ends in the digit 1. Hence $2^{4m+1} + 11^y$ ends in the digit 3. If for some value z, $2^{4m+1} + 11^y = z^2$, then z^2 is odd and ends in the digit 3. But, an odd square does not have a last digit which is equal to 3. Therefore it follows that $2^{4m+1} + 11^y \neq z^2$. Case (a) is complete.

(b) Suppose that x = 4m + 2, $y \ge 1$.

We shall assume that $2^{4m+2} + 11^y = z^2$ has a solution, and reach a contradiction. By our assumption, we have $2^{4m+2} + 11^y = z^2$ implying that $11^y = z^2 - 2^{4m+2} = z^2 - 2^{2(2m+1)}$ or

$$11^{y} = (z - 2^{2m+1})(z + 2^{2m+1})$$

Denote

 $z - 2^{2m+1} = 11^A$, $z + 2^{2m+1} = 11^B$, A < B, A + B = y, where A, B are non-negative integers. Then $11^B - 11^A$ yields $2 \cdot 2^{2m+1} = 11^A (11^{B-A} - 1)$

$$2 \cdot 2^{2m+1} = 11^{A} (11^{B-A} - 1).$$
 (1)
If $A > 0$, then $11^{A} \nmid 2 \cdot 2^{2m+1}$ in (1). Therefore $A \neq 0$, and $A = 0$. When $A = 0$, then $B = y$, and (1) results in

$$2^{2m+2} = 11^y - 1. (2)$$

Since for all values y, the power 11^y ends in the digit 1, therefore in (2) the value $11^y - 1$ ends in the digit 0. This implies that $11^y - 1$ is a product of 5. But $5 \nmid 2^{2m+2}$, and hence (2) is impossible. This contradicts our assumption that when x = 4m + 2 the equation has a solution, and hence $2^{4m+2} + 11^y \neq z^2$. This concludes case (**b**).

(c) Suppose that x = 4m + 3, $y \ge 1$.

We shall assume that $2^{4m+3} + 11^y = z^2$ has a solution, and reach a contradiction.

The sum $2^{4m+3} + 11^y$ is odd, hence by our assumption z^2 is odd. An odd number z is of the form 4N + 1 or 4N + 3. Thus, in any case z^2 has the form 4T + 1 where T is an integer. We shall now consider two cases, namely y is odd and y is even.

Suppose y is odd and y = 2n + 1 where $n \ge 0$ is an integer. Since 11 = 4N + 3 (N = 2), then for all values n, 11^{2n+1} is of the form 4U + 3 where U is an integer. The power 2^{4m+3} is of the form 4V where V is an integer. Thus, the sum $2^{4m+3} + 11^{2n+1}$ has the form $4(V + U) + 3 \ne 4T + 1 = z^2$. Hence $y \ne 2n + 1$.

Suppose y is even and y = 2k where $k \ge 1$ is an integer. We have $2^{4m+3} + 11^{2k} = z^2$ or $2^{4m+3} = z^2 - 11^{2k} = z^2 - (11^k)^2$ and

$$2^{4m+3} = (z-11^k)(z+11^k).$$
(3)

Denote in (3)

below in (3) $z - 11^k = 2^C$, $z + 11^k = 2^D$, C < D, C + D = 4m + 3, where C, D are non- negative integers. Then $2^D - 2^C$ yields $2 \cdot 11^k = 2^C (2^{D-C} - 1)$. (4)

It follows from (4) that C > 0, and C = 1 is the only such possibility. When C = 1 then D = 4m + 2, and (4) after simplification results in

$$11^k = 2^{4m+1} - 1. (5)$$

The Diophantine Equations $2^{x} + 11^{y} = z^{2}$ and $19^{x} + 29^{y} = z^{2}$ are Insolvable in Positive Integers *x*, *y*, *z*

When k = 2a + 1 where *a* is an integer, one could verify that for all $a \ge 0$ the sum $11^{2a+1} + 1$ is a multiple of 3. Hence, if k = 2a + 1 in (5), then $11^{2a+1} \ne 2^{4m+1} - 1$, implying that $k \ne 2a + 1$. When k = 2a, then $11^{2a} + 1 = 2b$ where for all values *a*, the value *b* is an odd integer. Thus, $11^{2a} + 1 = 2b \ne 2^{4m+1}$ and $k \ne 2a$. It now follows that there does not exist a value *y* which satisfies the equation $2^{4m+3} + 11^y = z^2$. This is a contradiction, and our assumption is therefore false. This completes case (c).

(d) Suppose that $x = 4m, y \ge 1$.

For all values $m \ge 1$, the power 2^{4m} ends in the digit 6. For all $y \ge 1$, the power 11^y ends in the digit 1. Therefore $2^{4m} + 11^y$ ends in the digit 7. If for some value z, the sum $2^{4m} + 11^y$ equals z^2 , then z^2 is odd and ends in the digit 7. An odd square does not have a last digit which is equal to 7. It therefore follows that $2^{4m} + 11^y \neq z^2$. This concludes case (**d**). The equation $2^x + 11^y = z^2$ has no solutions.

The proof of Theorem 2.1 is complete.

П

Remark 2.1. The equivalent equation for (2) is $1 = 11^{y} - 2^{2m+2}$, whereas for (5) the equivalent equation is $1 = 2^{4m+1} - 11^{k}$. In each of the equivalent equations, the conditions of Catalan's Conjecture are satisfied. As a consequence of Catalan's Conjecture, it follows that each equivalent equation has no solutions. In another manner, this reaffirms what we have shown earlier in a different way that equations (2) and (5) have no solutions. We have not used Catalan's Conjecture earlier, since we have a preference for the elementary way.

3. The equation $19^{x} + 29^{y} = z^{2}$

Theorem 3.1. Let x, y, z be positive integers. Then the equation $19^x + 29^y = z^2$ has no solutions.

Proof: For all values $x \ge 1$, the power 19^x ends in the digits 9 and 1. For all values $y \ge 1$, the power 29^y ends in the digits 9 and 1. Let *m*, *n* be non-negative integers. We shall consider the four existing possibilities as follows:

x = 2m + 1,	y = 2n + 1,	$m \ge 0$,	$n \ge 0.$
x = 2m + 1,	y=2n,	$m \ge 0$,	$n \ge 1$.
x = 2m,	y = 2n + 1,	$m \ge 1$,	$n \ge 0.$
x=2m,	y=2n,	$m \ge 1$,	$n \ge 1$.
	x = 2m + 1, x = 2m + 1, x = 2m, x = 2m,	$ \begin{array}{ll} x = 2m + 1, & y = 2n + 1, \\ x = 2m + 1, & y = 2n, \\ x = 2m, & y = 2n + 1, \\ x = 2m, & y = 2n, \end{array} $	$ \begin{array}{ll} x = 2m+1, & y = 2n+1, & m \ge 0, \\ x = 2m+1, & y = 2n, & m \ge 0, \\ x = 2m, & y = 2n+1, & m \ge 1, \\ x = 2m, & y = 2n, & m \ge 1, \end{array} $

(a) Suppose that x = 2m + 1, y = 2n + 1.

For all values $m \ge 0$, $n \ge 0$, each of the powers 19^{2m+1} and 29^{2n+1} has a last digit equal to 9. If for some value z, $19^{2m+1} + 29^{2n+1} = z^2$, then z^2 is even and ends in the digit 8. An even square does not have a last digit equal to 8, therefore $19^{2m+1} + 29^{2n+1} \neq z^2$.

Case (a) is complete.

Nechemia Burshtein

(b) Suppose that x = 2m + 1, y = 2n.

We shall assume that $19^{2m+1} + 29^{2n} = z^2$ has a solution, and reach a contradiction.

For all values $m \ge 0$, the power 19^{2m+1} has a last digit equal to 9. For all values $n \ge 1$, the power 29^{2n} has a last digit equal to 1. By our assumption, we have $19^{2m+1} + 29^{2n} = z^2$ implying that $19^{2m+1} = z^2 - 29^{2n} = z^2 - (29^n)^2$ or

$$19^{2m+1} = (z - 29^n)(z + 29^n)(z$$

Denote

$$z - 29^n = 19^A$$
, $z + 29^n = 19^B$, $A < B$, $A + B = 2m + 1$,
where A, B are non-negative integers. Then $19^B - 19^A$ results in
 $2 \cdot 29^n = 19^A (19^{B-A} - 1)$.

If A > 0, the power 19^A does not divide the left side of (6), and therefore A = 0. When A = 0, then B = 2m + 1, and (6) implies

$$2 \cdot 29^n = 19^{2m+1} - 1. \tag{7}$$

(6)

(9)

The right side of (7) is equal to $19^{2m+1} - 1^{2m+1}$, which yields the identity $19^{2m+1} - 1^{2m+1} = (19-1)(19^{2m} + 19^{2m-1} \cdot 1^1 + 19^{2m-2} \cdot 1^2 + \dots + 1^{2m}).$

 $19^{2m+1} - 1^{2m+1} = (19-1)(19^{2m} + 19^{2m-1} \cdot 1^1 + 19^{2m-2} \cdot 1^2 + \dots + 1^{2m}).$ (8) In (8), the factor $(19-1) = 18 = 2 \cdot 3^2$. Since in (7) $3 \nmid 2 \cdot 29^n$, it follows that (7) is impossible. This contradiction therefore implies that our assumption is false, and $19^{2m+1} + 29^{2n} \neq z^2$.

This concludes case (b).

(c) Suppose that x = 2m, y = 2n + 1.

We shall assume that $19^{2m} + 29^{2n+1} = z^2$ has a solution, and reach a contradiction.

For all values $m \ge 1$, the power 19^{2m} has a last digit equal to 1. For all values $n \ge 0$, the power 29^{2n+1} has a last digit equal to 9. By our assumption, we have $19^{2m} + 29^{2n+1} = z^2$ implying that $29^{2n+1} = z^2 - 19^{2m} = z^2 - (19^m)^2$ or

Denote

$$29^{2n+1} = (z - 19^m)(z + 19^m).$$

 $z - 19^{m} = 29^{C}$, $z + 19^{m} = 29^{D}$, C < D, C + D = 2n + 1, where *C*, *D* are non-negative integers. Then $29^{D} - 29^{C}$ yields $2 \cdot 19^{m} = 29^{C}(29^{D-C} - 1)$.

If C > 0, the power 29^C does not divide the left side of (9), and therefore C = 0. When C = 0, then D = 2n + 1, and (9) implies

$$2 \cdot 19^m = 29^{2n+1} - 1. \tag{10}$$

The right side of (10) is equal $29^{2n+1} - 1^{2n+1}$, which yields the identity $29^{2n+1} - 1^{2n+1} = (29-1)(29^{2n} + 29^{2n-1} \cdot 1^1 + 29^{2n-2} \cdot 1^2 + \dots + 1^{2n}).$ (11)

In (11), the factor $(29 - 1) = 28 = 2^2 \cdot 7$. Since in (10) $2^2 \nmid 2 \cdot 19^m$, it follows that (10) is impossible. This contradiction therefore implies that our assumption is false, and $19^{2m} + 29^{2n+1} \neq z^2$.

Case (c) is complete.

(d) Suppose that x = 2m, y = 2n.

For all values $m \ge 1$, $n \ge 1$, each of the powers 19^{2m} and 29^{2n} has a last digit equal to 1. If for some value z, $19^{2m} + 29^{2n} = z^2$, then z^2 is even and has a last digit equal to 2. An even square does not have a last digit equal to 2, therefore $19^{2m} + 29^{2n} \neq z^2$.

Case (d) is complete. The equation $19^x + 29^y = z^2$ has no solutions.

This concludes the proof of Theorem 3.1. \Box

The Diophantine Equations $2^{x} + 11^{y} = z^{2}$ and $19^{x} + 29^{y} = z^{2}$ are Insolvable in Positive Integers *x*, *y*, *z*

Final remark. We have established that both equations $2^x + 11^y = z^2$ and $19^x + 29^y = z^2$ have no solutions when x, y, z are positive integers. Our new method of using the last digits of the powers involved has been a key factor in determining the solutions. We are quite confident that this method can also be used in finding solutions to other equations.

REFERENCES

- 1. N. Burshtein, On the diophantine equations $2^x + 5^y = z^2$ and $7^x + 11^y = z^2$, Annals of *Pure and Applied Mathematics*, 21 (1) (2020) 63-68.
- 2. N. Burshtein, Solutions of the diophantine equation $2^{x} + p^{y} = z^{2}$ when *p* is prime, Annals of Pure and Applied Mathematics, 16 (2) (2018) 471-477.
- 3. N. Burshtein, A note on the diophantine equation $2^a + 7^b = c^2 a$, b are odd integers, Annals of Pure and Applied Mathematics, 16 (2) (2018) 305-306.
- 4. N. Burshtein, On the diophantine equation $2^{2x+1} + 7^y = z^2$, Annals of Pure and Applied Mathematics, 16 (1) (2018) 177-179.
- 5. N. Burshtein, On the infinitude of solutions to the diophantine equation $p^x + q^y = z^2$ when p = 2 and p = 3, Annals of Pure and Applied Mathematics, 13 (2) (2017) 207-210.
- 6. Md. A.-A. Khan, A. Rashid and Md. S. Uddin, Non-negative integer solutions of two diophantine equations $2^x + 9^y = z^2$ and $5^x + 9^y = z^2$, *Journal of Applied Mathematics and Physics*, 4 (2016) 762-765.
- 7. S. Kumar, S. Gupta and H. Kishan, On the non-linear diophantine equation $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 91-94.
- 8. B. Sroysang, More on the diophantine equation $4^x + 10^y = z^2$, *International Journal of Pure and Applied Mathematics*, 91 (1) (2014) 135-138.
- 9. B. Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, *Int. J. Pure Appl Math.*, 81 (4) (2012) 601-604.