Existence of Symmetric Positive Solutions for the Fourth-

Order Boundary Value Problem

Juxia Da ${ }^{1}$, Yanjie Zhao ${ }^{2 *}$ and Huan Zhang ${ }^{3}$
Department of Computer Science
Chang Qing College of Lan Zhou University of Finance and Economics
Lanzhou 730022, China
${ }^{1} \mathrm{e}-\mathrm{mail}: 1414320179 @ q q . c o m ;{ }^{3} \mathrm{e}-\mathrm{mail}$: zhanghuan12300526@163.com
${ }^{2 *}$ Corresponding author. Email: luckiest zyj@163.com
Received 8 October 2020; accepted 16 November 2020

Abstract. In this paper, we study the existence of positive solutions for a class of fourthorder two-point boundary value problems:

$$
\begin{gathered}
u^{(4)}(t)=f(u(t)), \quad t \in[0,1], \\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0 .
\end{gathered}
$$

where $f: R \rightarrow[0, \infty)$ is continuous. When the nonlinear f satisfies appropriate growth conditions, the problem is transformed into the existence of fixed points of a fully continuous operator on a special cone by using the properties of Green's function. By using the generalized Leggett-Williams fixed point theorem, we obtain that there are at least three symmetric solutions to the problem.

Keywords: Boundary value problem, greens function, multiple solution, fixed point theorem.

AMS Mathematics Subject Classification (2010): 30E25

1. Introduction

In the past 20 years, there has been attention focused on the existence of positive solutions to boundary value problems for ordinary differential equations, see [1-8]. In 2012, Sun and Zhao [9] proved the existence of three positive solutions for a third-order three-point BVP with sign-changing Green's function by apply the Leggett-Williams fixed point theorem

$$
u^{\prime \prime \prime}(t)=f(t, u(t)), t \in[0,1], u^{\prime}(0)=u^{\prime \prime}(\eta)=u(1)=0,
$$

where $f \in C([0,1] \times[0,+\infty)), \eta \in[2-\sqrt{2}, 1)$.
In 2015, Zhou and Zhang [10] by using Leggett-Williams fixed point theorem and Holder inequality, the existence of three positive solutions for the fourth-order impulsive differential equations with integral boundary conditions

$$
u^{(4)}(t)=w(t) f(t, x(t)), 0<t<1, t \neq t_{k}
$$

$$
\begin{gathered}
\left.\Delta x\right|_{t=t_{k}}=I_{k}\left(t_{k}, x\left(t_{k}\right)\right),\left.\Delta x^{\prime}\right|_{t=t_{k}}=0, k=1,2, \cdots, m, \quad x(0)=\int_{0}^{1} g(s) x(s) d s, x^{\prime}(1)=0 \\
x^{\prime \prime}(0)=\int_{0}^{1} h(s) x^{\prime \prime}(s) d s, x^{\prime \prime \prime}(1)=0
\end{gathered}
$$

Here $w \in L^{p}[0,1]$ for some $1 \leq p \leq+\infty, \quad t_{k}(k=1,2, \cdots, m)$ (where m is fixed positive integer) are fixed points with $0=t_{0}<t_{1}<t_{2}<\cdots<t_{k}<t_{k+1}=1,\left.\Delta x\right|_{t=t_{k}}$ denotes the jump of $x(t)$ at $t=t_{k}$.

However, it is worth noticing there are few results about the generalization of the Leggett-Williams fixed point theorem, even higher-order problem. In 2015, Abdulkadir Dogan [11] using the generalization of the Leggett-Williams fixed point theorem studied the following boundary value problem:

$$
\begin{gathered}
u^{\prime \prime}(t)+f(t, u(t))=0, t \in[0,1] \\
u^{\prime}(0)=0, u(1)=0
\end{gathered}
$$

where $f: R \rightarrow[0, \infty)$ is continuous. A solution $u \in C^{2}[0,1]$ is both nonnegative and concave on [0,1]. More relevant results, see [12-15].

So in this paper, we discuss the existence of at least three positive solutions to the following boundary value problem:

$$
\begin{gather*}
u^{(4)}(t)=f(u(t)), t \in[0,1] \tag{1.1}\\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0 \tag{1.2}
\end{gather*}
$$

where $f: R \rightarrow[0, \infty)$ is continuous. A solution u of (1.1)-(1.2) is both nonnegative and

Existence of Symmetric Positive Solutions for the Fourth-Order Boundary Value Problem concave on $[0,1]$. We impose growth conditions on f which allows us to apply the generalization of the Leggett-Williams fixed point theorem in finding three symmetric positive solutions of (1.1)-(1.2).

2. Preliminaries

In this section, we give some background material concerning cone theory in a Banach space, and we give the generalization of the Leggett-Williams fixed-point theorem.

Definition 2.1. Let E be a real Banach space. A nonempty closed convex set P is called a cone of E if it satisfies the following conditions
(1) $x \in P, \lambda \geq 0$ imply $\lambda x \in P$;
(2) $x \in P,-x \in P$ imply $x=0$.

Every cone $P \subset E$ induces an ordering in E given by $x \leq y$ if and only if $y-x \in P$.

Definition 2.2. A map α is said to be a nonnegative continuous concave functional on a cone P in a real Banach space E if $\alpha: P \rightarrow[0, \infty)$ is continuous, and

$$
\alpha(t x+(1-t) y) \geq t \alpha(x)+(1-t) \alpha(y)
$$

for all $x, y \in P$ and $0 \leq t \leq 1$. Similarly, we say the map β is a nonnegative continuous convex functional on a cone P in a real Banach space E if $\beta: P \rightarrow[0, \infty)$ is continuous, and

$$
\beta(t x+(1-t) y) \leq t \beta(x)+(1-t) \beta(y)
$$

for all $x, y \in P$ and $0 \leq t \leq 1$.

Let γ, β, θ be nonnegative continuous convex functional on P, and α, ψ be nonnegative continuous concave functional on P. Then for nonnegative real numbers h, a, b, d and c, we define the following convex sets:

Juxia Da, Yanjie Zhao and Huan Zhang

$$
\begin{gathered}
P(\gamma, c)=\{u \in P: \gamma(u)<c\}, \\
P(\gamma, \alpha, a, c)=\{u \in P: a \leq \alpha(u), \gamma(u) \leq c\}, \\
Q(\gamma, \beta, d, c)=\{u \in P: \beta(u) \leq d, \gamma(u) \leq c\}, \\
P(\gamma, \theta, \alpha, a, b, c)=\{u \in P: a \leq \alpha(u), \theta(u) \leq b, \gamma(u) \leq c\}, \\
Q(\gamma, \beta, \psi, h, d, c)=\{u \in P: h \leq \psi(u), \beta(u) \leq d, \gamma(u) \leq c\} .
\end{gathered}
$$

We consider the boundary value problem

$$
\begin{gather*}
u^{(4)}(t)=h(t), t \in[0,1], \tag{2.1}\\
u(0)=u(1)=u^{\prime}(0)=u^{\prime}(1)=0, \tag{2.2}
\end{gather*}
$$

Lemma 2.3. The boundary value problem (2.1)-(2.2) has a unique solution

$$
u(t)=\int_{0}^{1} G(t, s) h(s) d s
$$

and let its Green's function $G(t, s)$ is
$G(t, s)=\frac{1}{6}\left\{\begin{array}{l}t^{2}(1-s)^{2}[(s-t)+2(1-t) s], 0 \leq t \leq s \leq 1, \\ s^{2}(1-t)^{2}[(t-s)+2(1-s) t], 0 \leq s \leq t \leq 1 .\end{array}\right.$
The following is a generalization of the Leggett-Williams fixed-point theorem which will play an important role in the proof of our main results.

Theorem 2.4. ([12]) Let P be a cone in a real Banach space E. Suppose there exist positive numbers c and M, nonnegative continuous concave functional α and ψ on P, and nonnegative continuous convex functional γ, β and θ on P with $\alpha(u) \leq \beta(u),\|u\| \leq M \gamma(u)$, for all $u \in \overline{P(\gamma, c)}$. Suppose that $F: \overline{P(\gamma, c)} \rightarrow \overline{P(\gamma, c)}$ is a completely continuous operator and that there exist nonnegative numbers h, d, a, b with $0<d<a$, such that
(B1) $\{u \in P(\gamma, \theta, \alpha, a, b, c): \alpha(u)>a\} \neq \phi$ and $\alpha(F u)>a$

Existence of Symmetric Positive Solutions for the Fourth-Order Boundary Value Problem

$$
\text { for } u \in P(\gamma, \theta, \alpha, a, b, c)
$$

(B2) $\{u \in Q(\gamma, \beta, \psi, h, d, c): \beta(u)<d\} \neq \phi$ and $\beta(F u)<d$

$$
\text { for } u \in Q(\gamma, \beta, \psi, h, d, c) \text {; }
$$

(B3) $\alpha(F u)>a$ for $u \in P(\gamma, \alpha, a, c)$ with $\theta(F u)>b$;
(B4) $\beta(F u)<d$ for $u \in Q(\gamma, \beta, d, c)$ with $\psi(F u)<h$.

Then F has at least three fixed points $u_{1}, u_{2}, u_{3} \in \overline{P(\gamma, c)}$ such that $\beta\left(u_{1}\right)<d, a<\alpha\left(u_{2}\right)$ and $d<\beta\left(u_{3}\right)$, with $\alpha\left(u_{3}\right)<a$.

3. Main results

In this section, we give the growth conditions on f which allow us to apply the generalization of the Leggett-William fixed-point theorem in establishing the existence of at least three positive solutions of (1.1)-(1.2). We will make use of various properties of Green's function $G(t, s)$ which include

$$
\begin{gathered}
\int_{0}^{1} G(t, s) d s=\frac{t^{2}(t-1)^{2}\left(1-6 t^{3}\right)}{24}, 0 \leq t \leq 1, \\
\int_{0}^{\frac{1}{r}} G\left(\frac{1}{2}, s\right) d s=\int_{1-\frac{1}{r}}^{1} G\left(\frac{1}{2}, s\right) d s=\frac{r-1}{48 r^{4}}, r>2, \\
\int_{\frac{1}{r}}^{\frac{1}{2}} G\left(\frac{1}{2}, s\right) d s=\int_{\frac{1}{2}}^{1-\frac{1}{r}} G\left(\frac{1}{2}, s\right) d s=\frac{r^{4}-16 r+16}{48 \cdot 16 r^{4}}, r>2, \\
\int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) d s+\int_{1-t_{2}}^{1-t_{1}} G\left(t_{1}, s\right) d s=\frac{1}{6} t_{1}^{2}\left[\frac{1}{2}\left(t_{2}^{2}-t_{1}^{2}\right)+t_{2}\left(t_{2}-t_{1}\right)+\left(t_{1}^{3}-t_{2}^{3}\right)\right], 0<t_{1}<t_{2} \leq \frac{1}{2} . \\
\min _{r \in[0,1]} \frac{G\left(t_{1}, r\right)}{G\left(t_{2}, r\right)}=\frac{1}{8 t(1-t)^{2}}, \max _{r \in[0,1]} \frac{G\left(\frac{1}{2}, r\right)}{G(t, r)}=\frac{t_{1}^{3}}{t_{2}^{3}}, 0<t \leq \frac{1}{2} . \text { Let } E=C[0,1] \quad \text { be endowed }
\end{gathered}
$$

with the maximum norm, $\|u\|=\max _{t \in[0,1]}|u(t)|$. Then for $0<t_{3} \leq \frac{1}{2}$, we define the cone $P \subset E$ by

$$
P=\left\{\begin{array}{l}
u \in E: u \text { is concave, symmetric, } \\
\text { nonnegative, valued on }[0,1], \\
\min _{t \in\left[t_{3}, 1 t_{3}\right], u(t) \geq 2 t_{3}}\|u\|
\end{array}\right\} .
$$

We define the nonnegative, continuous concave functional α, ψ and nonnegative continuous convex functional β, θ, γ on the cone P by

$$
\begin{gathered}
\alpha(u)=\min _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u(t)=u\left(t_{1}\right), \\
\beta(u)=\min _{t \in\left[\frac{1}{r}, \frac{1-1}{r}\right]} u(t)=u\left(\frac{1}{2}\right), \\
\gamma(u)=\min _{t \in\left[0, t_{3}\right] \cup\left[1-t_{3}, 1\right]} u(t)=u\left(t_{3}\right), \\
\theta(u)=\min _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u(t)=u\left(t_{2}\right), \\
\psi(u)=\min _{t \in\left[\frac{1}{r}, \frac{-1}{r}\right]} u(t)=u\left(\frac{1}{r}\right),
\end{gathered}
$$

where t_{1}, t_{2} and r are nonnegative numbers such that

$$
0<t_{1} \leq t_{2} \leq \frac{1}{2} \text { and } \frac{1}{r} \leq t_{2} .
$$

We see that, for all $u \in P$,

$$
\begin{gather*}
\alpha(u)=u\left(t_{1}\right) \leq u\left(\frac{1}{2}\right)=\beta(u), \tag{3.1}\\
\|u\|=u\left(\frac{1}{2}\right) \leq \frac{1}{2 t_{3}} u\left(t_{3}\right)=\frac{1}{2 t_{3}} \gamma(u), \tag{3.2}
\end{gather*}
$$

and also that $u \in P$ is d solution of (1.1)-(1.2) if and only if

$$
u(t)=\int_{0}^{1} G(t, s) f(u(s)) d s, t \in[0,1] .
$$

Existence of Symmetric Positive Solutions for the Fourth-Order Boundary Value Problem We now present our result of the paper:

Theorem 3.1. Assume that there exist nonnegative numbers a, b, c such that $0<a<b<\frac{c t_{1}^{3}}{t_{2}^{3}}$, and suppose that f satisfies the following growth conditions:
(C1) $f(w)<\frac{384 r^{4}}{5 r^{4}-24 r^{2}+16}\left(a-\frac{(r-1) c}{t_{3}{ }^{2}\left(t_{3}-1\right)^{2}\left(1-6 t_{3}{ }^{3}\right)}\right)$, for $\frac{8 a}{r^{2}\left(1-r^{2}\right)} \leq w \leq a$;
(C2) $f(w) \geq \frac{6 b}{t_{1}{ }^{2}\left[\frac{1}{2}\left(t_{2}{ }^{2}-t_{1}{ }^{2}\right)+t_{2}\left(t_{2}-t_{1}\right)+\left(t_{1}{ }^{3}-t_{2}{ }^{3}\right)\right.}$, for $b \leq w \leq \frac{t_{2}{ }^{3} b}{t_{1}{ }^{3}}$;
(C3) $f(w) \leq \frac{24 c}{t^{2}(t-1)^{2}\left(1-6 t^{3}\right)}$, for $0 \leq w \leq \frac{c}{2 t_{3}}$.
Then the boundary value problem (1.1)-(1.2) has three symmetric positive solutions u_{1}, u_{2}, u_{3} satisfying

$$
\begin{gathered}
\max _{t \in\left[0, t_{3}\right] \cup\left[1-t_{3}, 1\right]} u_{i}(t) \leq c, \text { for } i=1,2,3, \\
\min _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u_{1}(t)>b, \max _{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} u_{2}(t)<a, \\
\min _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} u_{3}(t)<b, \max _{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} u_{3}(t)>a .
\end{gathered}
$$

Proof: Let us define the completely continuous operator F by

$$
(F u)(t)=\int_{0}^{1} G(t, s) f(u(s)) d s
$$

We will seek fixed points of F in the cone. We note that, if $u \in P$, then from properties of $G(t, s), \quad F u(t) \geq 0$ and $F u(t)=F u(t-1), 0 \leq t \leq \frac{1}{2}$, and

$$
(F u)^{\prime \prime}(t) \leq 0,0 \leq t \leq 1, F u\left(t_{3}\right) \geq 2 t_{3} F u\left(\frac{1}{2}\right)
$$

This implies that $F u \in P$, and so $F: P \rightarrow P$. Now, for all $u \in P$, from (5), we get
$\alpha(u) \leq \beta(u)$ and from (6), $\|u\| \leq \frac{1}{2 t_{3}} \gamma(u)$.

If $u \in \overline{P(\gamma, c)}$, then $\|u\| \leq \frac{1}{2 t_{3}} \gamma(u) \leq \frac{c}{2 t_{3}}$ and from (C3) we get,

$$
\begin{aligned}
\gamma(F u) & =\max _{t \in\left[0, t_{3}\right] \cup\left[1-t_{3}, 1\right]} \int_{0}^{1} G(t, s) f(u(s)) d s=\int_{0}^{1} G\left(t_{3}, s\right) f(u(s)) d s \\
& \leq \frac{24 c}{t^{2}(t-1)^{2}\left(1-6 t^{3}\right)} \int_{0}^{1} G\left(t_{3}, s\right) d s=c
\end{aligned}
$$

Thus, $F: \overline{P(\gamma, c)} \rightarrow \overline{P(\gamma, c)}$. It is immediate that

$$
\begin{aligned}
& \left\{u \in P\left(\gamma, \theta, \alpha, b, \frac{b t_{2}^{3}}{t_{1}^{3}}, c\right): \alpha(u)>b\right\} \neq \phi \text { and } \\
& \left\{u \in Q\left(\gamma, \beta, \psi, \frac{8 a}{r^{2}(1-r)^{2}}, a, c\right): \beta(u)<a\right\} \neq \phi .
\end{aligned}
$$

We will show the remaining conditions of Theorem 2.4.:
(1) If $u \in Q(r, \beta, a, c)$ with $\psi(F u)<\frac{8 a}{r^{2}(1-r)^{2}}$, then $\beta(F u)<a$.

$$
\begin{aligned}
\beta(F u) & =\max _{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} \int_{0}^{1} G(t, s) f(u(s)) d s \\
& =\int_{0}^{1} G\left(\frac{1}{2}, s\right) f(u(s)) d s \\
& =\int_{0}^{1} \frac{G\left(\frac{1}{2}, s\right)}{G\left(\frac{1}{r}, s\right)} G\left(\frac{1}{r}, s\right) f(u(s)) d s \\
& \leq \frac{1}{8 r(1-r)^{2}} \int_{0}^{1} G\left(\frac{1}{r}, s\right) f(u(s)) d s \\
& \leq \frac{1}{8 r(1-r)^{2}} \psi(F u)<a .
\end{aligned}
$$

Existence of Symmetric Positive Solutions for the Fourth-Order Boundary Value Problem
(2) If $u \in Q\left(r, \beta, \psi, \frac{8 a}{r^{2}(1-r)^{2}}, a, c\right)$, then $\beta(F u)<a$.

$$
\begin{aligned}
\beta(F u)= & \max _{t \in\left[\frac{1}{r}, \frac{r-1}{r}\right]} \int_{0}^{1} G(t, s) f(u(s)) d s \\
& =\int_{0}^{1} G\left(\frac{1}{2}, s\right) f(u(s)) d s \\
& =2 \int_{0}^{\frac{1}{r}} G\left(\frac{1}{2}, s\right) f(u(s)) d s+2 \int_{\frac{1}{r}}^{\frac{1}{2}} G\left(\frac{1}{2}, s\right) f(u(s)) d s \\
& <\frac{(r-1) c}{t_{3}{ }^{2}\left(t_{3}-1\right)^{2}\left(1-6 t_{3}{ }^{3}\right)}
\end{aligned}
$$

$$
+\frac{r^{4}-16 r+16}{384 r^{4}} \cdot \frac{384 r^{4}}{5 r^{4}-24 r^{2}+16} \cdot\left(a-\frac{(r-1) c}{t_{3}^{2}\left(t_{3}-1\right)^{2}\left(1-6 t_{3}^{3}\right)}\right)=a
$$

(3) If $u \in Q\left(r, \beta, \psi, \frac{8 a}{r^{2}(1-r)^{2}}, a, c\right)$ with $\theta(F u)>\frac{t_{2}{ }^{3} b}{t_{1}{ }^{3}}$, then $\alpha(F u)>b$.

$$
\begin{aligned}
\alpha(F u) & =\max _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} \int_{0}^{1} G(t, s) f(u(s)) d s \\
& =\int_{0}^{1} G\left(t_{1}, s\right) f(u(s)) d s \\
& =\int_{0}^{1} \frac{G\left(t_{1}, s\right)}{G\left(t_{2}, s\right)} G\left(t_{2}, s\right) f(u(s)) d s \\
& \geq \frac{t_{1}^{3}}{t_{2}^{3}} \int_{0}^{1} G\left(t_{2}, s\right) d s=\theta(F u)>b .
\end{aligned}
$$

(4) If $u \in Q\left(r, \theta, \alpha, b, \frac{t_{2}{ }^{3} b}{t_{1}{ }^{3}}\right)$, then $\alpha(F u)>b$.

$$
\alpha(F u)=\max _{t \in\left[t_{1}, t_{2}\right] \cup\left[1-t_{2}, 1-t_{1}\right]} \int_{0}^{1} G(t, s) f(u(s)) d s
$$

$$
\begin{aligned}
& \quad=\int_{0}^{1} G\left(t_{1}, s\right) f(u(s)) d s \\
& > \\
& \quad \int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) f(u(s)) d s+\int_{1-t_{2}}^{1-t_{1}} G\left(t_{1}, s\right) f(u(s)) d s \\
& \geq \frac{6 b}{t_{1}^{2}\left[\frac{1}{2}\left(t_{2}^{2}-t_{1}^{2}\right)+t_{2}\left(t_{2}-t_{1}\right)+\left(t_{1}^{3}-t_{2}^{3}\right)\right]} \\
& \cdot\left[\int_{t_{1}}^{t_{2}} G\left(t_{1}, s\right) d s+\int_{1-t_{2}}^{1-t_{1}} G\left(t_{1}, s\right) d s\right]=b
\end{aligned}
$$

Since all the conditions of the generalized Leggett-Williams fixed point theorem are satisfied, (1.1)-(1.2) has three positive solutions $u_{1}, u_{2}, u_{3} \in \overline{P(\gamma, c)}$, such that $\beta\left(u_{1}\right)<d, \alpha<\alpha\left(u_{2}\right)$ and $d<\beta\left(u_{3}\right)$, with $\alpha\left(u_{3}\right)<a$.

4. Concluding remarks

In this paper, we have chosen to perform the analysis when f is autonomous. However, if $f=f(t, y)$ and in addition, for each fixed $y, f(t, y)$ is symmetric about $t=1 / 2$, then an analogous theorem would be valid with respect to the same cone P.

Acknowledgement. Authors are thankful to the reviewers for the comments for improvement of the paper.

REFERENCES

1. Y.X.Li, Positive solutions of fourth-order boundary value problem with two parameter, Journal of Mathematical Analysis and Applications, 281 (2003) 477-484.
2. D.R.Anderson, Green's function for a third-order generalized right focal problem, Journal of Mathematical Analysis and Applications, 288 (2003) 1-14.
3. Y.Liu. Multi-point boundary value problems for nonlinear fourth-order differential equations with all order derivatives, Communications in Mathematical Research, 29 (2013) 108-120.
4. Y.Sun and C.Zhu, Existence of positive solutions for singular fourth-order three-point boundary value problems, Advances in Difference Equations, 51 (2013) 1-13.
5. R.I.Avery, A generalization of the Leggett-Williams fixed point theorem, Mathematical Sciences Research Journal, Hot-Line 3 (1999) 9-14.
6. M.Naceri, R.P.Agarwal, E.Cetin and E.H.Amir, Existence of solutions to fourth-order differential equations with deviating arguments, Boundary Value Problems, 108 (2015) 1-3.
7. A.Elhaffaf and M.Naceri, The upper and lower solution method for nonlinear fourth-

Existence of Symmetric Positive Solutions for the Fourth-Order Boundary Value Problem order three-point boundary value problems, Applied Mathematics And Computation, 70 (2011) 596-610.
8. Y.R.Yang, Triple positive solutions of a class of fourth-order two-point boundary value problem, Applied Mathematics Letters, 23 (2010) 366-370.
9. J.Sun and J.Zhao, Multiple positive solutions for a third-order three-point BVP with sign-changing Green's function, Electronic Journal of Differential Equations, 218 (2012) 1-7.
10. Y.Zhou and X.Zhang, Existence positive solutions of fourth-order impulsive differential equations with integral boundary conditions, Nonlinear Analysis, 2 (2015) 1-14.
11. A. Dogan, On the existence of positive solutions for the second-order boundary value problem, Applied Mathematics Letters, 49 (2015) 107-112.
12. R.I.Avery, A generalization of the Leggett- Williams fixed point theorem, Mathematical Sciences Research Journal, Hot-Line 3 (1999) 9-14.
13. M.A.Hakim, On fourth order more critically damped nonlinear differential systems, Journal of physical Science, 15 (2011) 113-127.
14. W.S.Zhou, Some notes on a nonlinear degenerate parabolic equation, Nonlinear Analysis, 71 (2009) 107-111.
15. L.Nirenberg, A strong maximum principle for parabolic equations, Communications on Pure and Applied Mathematics, 6 (1953) 167-177.

