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all a € S. Finally, we have included a prime Separation Taeo with the help of
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1. Introduction
In generalizing the notion of pseudo complementgtice, Varlet [11] introduced the
notion of O-distributive lattices. Then [7] hagiven several characterizations of these
lattices. Also [9] have studied them in meet seattides. A latticd. with O is called O-
distributive if for alla,b,c€e L,aAb=0=aAc implyaA (bVc)=0.0f course,
every distributive lattice with 0 is O-distribuéivRav [10] has given the concept of semi
prime ideals in lattices by generalizing the notadrO-distributive lattices. For a neutral
elementr € L, Ali et.al.[5] and [6] have introduced the conceptn-distributive lattices
and given the notion of semi primeideals in lattices. In this paper, we genesgatize
concept of O-distributive lattice andn-distributive lattice and give the notion of
distributive nearlatticewheren is a central element of this nearlattice. Here gige
several characterizations of semi primileals of nearlattices.

A nearlatticeS is a meet semilattice with the property that, amy elements possessing
a common upper bound, have a supremum. Nearl&tikelistributive if for allx,y,z €
S, xAlyVvz)=(xAy)Vv(xVz) providedy V z exists. For detailed literature on
nearlattices, we refer the reader to consult [2@x [8]. An element of a nearlattice
is called medial ifn(x,n,y) = (x Ay)vV(x An)V (y An) exists inS for allx,y € S. A
nearlatticeS is called a medial nearlatticernif(x, y, z) exists for all, y, z € S.

An elements of a nearlattice is called standard if for at| x,y € S,
tA[(xAY)IV(XAS)=({AxAYy)V (tAxAs). The element is called mutral if
() sisstandard and
(iforall x,y,z€ S, sA[XAY)V(EAZ)] =(AXAY)V(SAXAZ).

In a distributive nearlattice, every element istredland hence standard. An element
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in a nearlattice is called sesquimedial if for all y,z € S,
([(GANVAD]A[yAn)V(zAN)]V (EXAY)V (yAz) existsinS.

An element: of a nearlattices is called a upper elementxifv n exists for allk € S.
Every upper element is of course a sesquimediaiexie An element is called a central
element ofS if it is neutral, upper and complemented in eadérival containing it.

LetS be a nearlattice ande S. Any convex subnearlattice Sfcontainingn is called
an n-ideal ofS. For twon-idealsI and/ of a nearlattice, [4] has given a description of
I v ] while the set theoretic intersection is the infimuHence, the set of altideals of a
nearlatticeS is a lattice which is denoted y(S). {n} and S are the smallest and largest
elements of ,(S).

An n-ideal generated by a finite number of elemenis,, -, a,, is called a finitely
generatedi-ideal and it is denoted by a4, a,, -+, a,, >,. The set of all finitely generated
n-ideals is denoted b§, (S). Clearly,< a;,a,,, ay, >p=< a; >,V<a, >,V V<
a, >n. Ann-ideal generated by a single elemer$ called a principat-ideal denoted
by < a >,,. The set of principal n-ideals is denotedmys).

Let S be a nearlattice ande S. For anya € S,

<a>;,={yeSiann<y=WAa)vV(yAn)}
={yeS:y=@Aa)vV(yAn)V (aAn)} whenevern is
standard element i1

If n is an upper element in a nearlatticg¢hen< a >,= [a An,a vV n].

We know that when is standard and medial, the set of all princip&dealsP,(S) is a
meet semilattice and< a >,N< b >,=<m(a,n,b) >, for alla,b € S. Also, whemn
is neutral and sesquimedial, the(S) is a nearlattice. By [4] if is medial nearlattice and
n is a neutral element 6f thenP, (S) is also a medial nearlattice.

For a distributive nearlattic§ with an upper element, B,(S) is a distributive
nearlattice with the smallest elemént.

A proper convex subnearlattidé of a nearlatticeS is called a maximal convex
subnearlattice if for any convex subnearlattigewith Q 2 M implies eitherQ =
M or Q = S. A proper convex subnearlattite of a medial nearlatticg is called a prime
convex subnearlattice if for artye M, m(a,t,b) € M implies eithera € Morb € M.
For a medial element, ann-ideal P of a nearlattice is a primen-ideal if P = S and
m(x,n,y) € P (x,y €S) implies eithexx € P ory € P. Equivalently,P is prime if and
onlyif <a>,Nn<b >,< P implies either

<a>,CPor<b>,CP.

Let n be a central element of a nearlatti€e For a € S, we define{a}'» =
{x € S:m(x,n,a) = n}, known as am-annihilator of{a}. Also forA c S, we define
Atn = {x € S:m(x,n,a) =nforalla € A} . A*» is always a convex subnearlattice
containingn. If S is a distributive nearlattice, then it is easych@ck{a}*n andA‘» are
n-ideals. Moreover, A*n =n ¢, { {a}t"}. If A is ann-ideal, thend'» is called an
annihilatorn-ideal which is obviously the pseudocomplememt @f I,,(S). Therefore, for
a distributive nearlatticg with central elememnt, I,,(S) is pseudocomplemented.

A nearlatticeS with central element, is called am-distributive nearlattice if for all
a,b,c €S, <a>,Nn< b >,={n}and< a >,N< ¢ >,= {n} imply

<a>,N[<b>v<c>,] ={n}
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Equivalently,S is calledn-distributive nearlatticeit Ab <n<avbandaAc<n<

avcimplyan(bvc)<n<aV(bAc). Inadirected above meet semilatti;an ideal
J is called a semi prime ideal if forally,z€ S, x Ay eJandx Az e]implyxAd €]

for somed > y, z. Letn be a central element of a nearlaticén n-ideal K of S is called
a semi prime n-ideal if for alla,b,c € S, <a >,N< b >,C K and< a >,N< ¢ >, <

K imply < a >,n (< b >,v<c >,) € K. In a distributive nearlattice evernyideal is
semi prime. Moreover, every primeideal is semi prime. A prime-ideal P of a
nearlatticeS is a minimal primex-ideal if there exists no primeideal Q such that) = P

andQ € P.

2. Main results
To obtain the main results of this paper we rtequaove the following lemmas.

Lemma 1. LetS be a nearlattice with a central elemerand letl be am-ideal ofS.
Every convex subnearlattice disjoint fromraideall is contained in a maximal convex
subnearlattice disjoint frorh

Proof: Let F be a convex subnearlatticedrdisjoint fromI. Let F be the set of all convex
sub nearlattices containidgand disjoint fromi. Then F is non-empty ag € F. LetC
be a chain iF andM =U (X|X € C). Letx,y € M. Thenx € X andy € Y for some
X,Y € C. SinceC is a chain, so eithéf C Y orY € X. Suppose&X € Y, sox,y €Y.
Thenx Ay, xvVy €Y andsocAy,xVy € M. ThusM is a subnearlattice of a nearlattice
containingF. Also it is convex as eache C is convex. Moreové& € M. HenceM is a
maximal element of . Therefore, by Zorn’s Lemm&, has a maximal element, s@ywith

F cQ.

Lemma 2. For a central elementof a nearlattice, every maximal convex subneétatt
disjoint from ann -ideal I is either a maximal ideal or a maximal filter
Proof: LetF be a maximal convex subnearlattice disjoint fraimadeall. SinceF =
(FINn[F), soeithe(FInI=¢or[F)nl=¢.Ifnot, letx e (FInTandy € [F)n]1.
Thenx € I andx < f; for somef; € F and y € I andy = f, for some f, € F. Now
fa<xVvf,<fiVf, implies by convexity thattvf, € F Also x <xVf,<xVy
implies by convexity thatcv f, € I. It follows thatxVv f, € FnI, which is a
contradiction. Thus eithe€F] NI = ¢ or[F) n I = ¢. SinceF is maximal s& = (F] or

F = [F). That is,F must be either a maximal ideal or a maximal filter

Lemma 3. LetS be a nearlattice with a central elemerand letl be am-ideal ofS. A
convex subnearlattic¥ disjoint from/I is a maximal convex subnearlattice disjoint from
I if and only if for alla ¢ M, there exist® € M such that m(a,n, b) € 1.

Proof: Supposé is a maximal convex subnearlattice and disjoioirff. Also leta & M.
Suppose foralb € M, m(a,n,b) ¢ I.SetM; ={yeS:yAn<(avb)An<(aAb)V
n < yVvn; b € M}. Obviously,M, is a convex subnearlattice rags central. AlsaV; N
I=¢. Ifnot, letxe M; NnI. Then xAn<(avb)An <(aAb)Vvn<xVnfor some
beMandx €l. Thus xAn<(avb)An<(aAnb)v(arn)v(bAn)<(aAb)V
n < x Vnimplies m(a,n, b) € I which gives a contradiction to the assumption. #ear
M, bAn<(avb)An<(aAnb)vn<bVnimplies b € M; and soM < M;. Also,
aAn<(avb)An<(aAb)vn<aVvn impliesae M, buta¢M soMc M, .
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Therefore, we have a contradiction to the maximalit and so there exists sorhe M
such thain(a,n, b) € I.

Conversely, ifM is not maximal and disjoint froththen by Lemma 1M properly
contained in a maximal convex subnearlatiiceandN disjoint withI. Then for any
elemeniu € N — M there exists an elememte M such thain(a,n,b) € I. Nowa,b € N
impliesaAb,avb€eN. Thus by Lemma 2V is either an ideal or a filter. Hence
(anb)vneNor(avb)AneN but not both. For otherwisea,e N would give a
contradictiontd N N = ¢. Now any of the above causes will impiya,n, b) € N and
som(a,n,b) € I N N which is again a contradiction. Hendemust be a maximal convex
subnearlattice disjoint frorh

Theorem 4. For a central elementof a nearlattices, K is a semi prima-ideal of S if
and only if (K] is a semi prime ideal apk) is a semi prime filter.
Proof: Letxvye€e[K) andxVvz€E[K). Thenxvy >k, andxVz =k, for some
ki,k, €K. Thusk; An< (xVvVy)An <n implies (x Vy) An € K by convexity. So
m(x,n,y An) =(xVy)An € K implies< x >,N<yAn>,< K Similarly, < x >,n
<zAn>,S K. SinceK is semi prime, s& x >, N (K yAn>,V<zAn>,;) =[x A
nxvn]lN[yAzAnn]= [(xv(y/\z))/\n,n] C K implies (xv(y/\z)) An€EK ,
and sax V (y A z) € [K) ThereforgK) is a semi prime filter. Similarly, we can provath
(K] is a semi prime ideal.

Conversely, lek x >,Nn<y >, € K and<x >,Nn<z>,C K. That is[(xV
VAN (xAy)vn] €K and[(xVz)An,(x Az)vn] € K. Itfollows that(x Ay)vn €
Kand(xAz)vneK. Hence(xVn)A(yvn) EK and (xVn)A(zVvn) EK asn is
central. Therx A (yvn) € (K] andx A(zVvn) € (K]. Sox A(yVzvn) € (K] as(K]
is a semi prime ideal. This implieg A (y V2)) vV (x An) € (K] and so(x A (y V z)) v
(x An) <k, for somek; e K. Thenn < (xA(yvz))vn<k;vn implies (xA
(yVvz))vneK. Similarly, we can prove thdt v (y Az)) An € K as[K) is a semi
prime filter. Therefore< x >,n (< y >,v< z >,) € K and s is semi prime.

Theorem 5. For a medial element, any prime ideaP containingn of a nearlattice is
a primen-ideal.

Proof: Since every ided? is a convex subnearlattice, so any ideabntainingn is ann-
ideal. To show the primeness, te{a,n,b) € P. Thena A b < m(a,n, b) impliesa A
b € P. SinceP is prime ideal so either € P orb € P. HenceP is a primen-ideal.

Theorem 6. LetS be a nearlattice with a central elementfrthe intersection of all prime
(semi primeh-ideals ofS is equal taK, thenK is a semi prima-ideal.

Proof: Let <a>,Nn<b>,€K and<a >,N<c >, K. LetP be any prime n-
ideal. Ifa € P, then< a >, P and soc< a >,N[< b >,v<c >,] S P. Ifa & P, then
<b>, <c>,€P asPis primen-ideal. Hence< b >,V< ¢ >, € P. Therefore <
a>,N[<b>,v<c>,] €P.Thatis, in either casex a >,N[< b >,V<c>,]S P
for all primen-idealsP containingK. Therefore< a >,n[<b >,V<c>,] SNP =
K. ThuskK is semi prime.
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Lemma?7. LetS be a nearlattice with a central elemenThenp € {x}' if and only if
pAX=Sn<pVx.

Proof: p € {x}' if and only ifm(p,n,x) =nifand onlyif p Ax) Vv (p An) V (x A
n)=((@Vx)A(Vn)A(xVn)=n,asniscentral. This implies that pAx <
n<pvx.

Lemma 8. LetS be a nearlattice with a central elementThenp € {x}'» if and only if
pvne xvnininm)andpAn e {x An}"in (n].
Proof: Let p € {x}'» . ThenpAx <n<pvxand so(pvn)A(xvn)=(pPAx)V
n=nandpAn)vV(xAn)=(pVx)An=n asn is central element. Thysvn €
{xvn}tin [n) andp An € {x An}** in (n]. Conversely, lepvn € {xVvn}tin [n)
andpAne€ {xA n}ld in (n]. Then sincen is central element, Y Vvn)A(xvn) =n
and(p Ax) Vvn =n. This impliesp Ax < n. Also,(p An)V (x An) =n implies(p v
x)An=nand son <pVx. HencepAx <n <pVx. Therefore, by Lemma % €
{x}tn.

Let S be a nearlattice with a central elemant ForA €S, we define A'n =
{x € S:m(x,n,a) =nforalla € A} . A is always a convex subnearlattice containing
n.

Theorem 9. Let S be ann -distributive nearlattice . Then falc S, Aln=

{x € S:m(x,n,a) =nforalla € A} . is a semi prima-ideal.

Proof: By [1,Theorem 2.10] we already know that'z is ann-ideal. This is also
equivalent to the conditior,, (S) is pseudocomplemented. Letx >, N<y >, S Aln
and< x >,N< z >, < Aln . Asfor anyn-idealA € I,,(S), A'n is the pseudocomplement
of Ain I,,(S). Then for alla € A4, this implies< x >,N<y >, N<a>,={n}= <
x>N<z>N<a>, and <y >, C(<x>,nN<a>,), <z>,C((<Kx>,n<
a>,)" and so<y>,v<z>,C (<x>,nN<a>,)" and this implies< x >,N<
a>,N(<Ky>v<z>,)={n} for alaeS. Hence<x >,Nn(<y>,v<z>,) <
Atn and sodtn is a semi prima-ideal.

Let S be a nearlattice with a central elementetA € S andK be am-ideal ofS. We
define A1"¥ = {x € S:m(x,n,a) € K foralla € A}. This is clearly a convex subset
containingK . In presence of distributivity, this is arrideal. A1"¥ is called am-
annihilator of4 relative toK. We denotdy (S), the set of alh-ideals containind. Of
courselg (S) is a bounded lattice witki andS as the smallest and the largest elements. If
A € Ix(S), and AL"¥ is ann-ideal , thend+"X is called an annihilatot-ideal and it is the
pseudocomplement df in I (S).

Theorem 10. LetS be a nearlattice with a central elemer@ndK be an n-ideal ofS.
Then the following conditions are equivalent:

(i) K is semi prime

(i) {a}"¥ = {x € S:m(x,n,a) € K} is a semi prima-ideal containing .

(iii) {AF"K = {x € S:m(x,n,a) € K forall a € A} is a semi prima-ideal containing
K.
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(iv) Ix(S) is pseudocomplemente@) I, (S) is 0 -distributive.(vi) Every maximal
convex subnearlattice disjoint frokhis prime.

Proof: (i)=(ii). {a}"¥ is clearly a convex subset containifigLet x,y € {a}"X. Then
<x>,N<a>,CSK and<y>,Nn<a>,€ K. SinceK is semi prime s& a >,A
(Kx>pv<y>)€EK. Now <xAy>,N<a>,CK and<xAy>,C<x >,Vv<
y>,=[xAyAnxvyvn].Also <xVy>,C<x>,V<y >, . Thus< x Ay >,N<
a>,C K and <xVy>,n<a>,C K. Thereforery,x vy € {a}*"¥ . This implies
{a}*"¥ is ann-ideal containing(. Again let< x >,n< y >,< {a}*'¥ and < x >,N
<z>,C {a}*"* . Then <x>,n<y>,N<a>,C K and< x >,N< z >,N<
a>,S K. Thus(<x >,Nn<a>,)N<y>,C K and(<x >,N<a>,)N< z>,<
K. Then(< x >,n<a>,)N(Ky>,v<z>,) € K, asK is semi prime. This implies
<x>,N(<y>,v<z>,) € {a}"¥ and sqa}!"¥ is semi prime.

(i) =(iii). This is trivial by Theorem6, agA}"% =n ({a}*"%;a € A).

(iii) =(iv). Since for anyd € S, {A}*"¥ is ann-ideal, hence it is the pseudocomplement
of A inIx(S) and sd(S) is pseudocomplemented.

(iv)=(v). This is trivial as every pseudocomplementeariadtice isO-distributive.

(V)= (vi). Let Ix(S) be0-distributive. Suppos€& is a maximal convex subnearlattice
disjoint fromK. Suppose,y € F. Then by Lemm3, there existt € F, b € F such that
m(x,n,a) €K, m(y,n,b) € K. Thus< x >,Nn<a>,CK,<y>,nNn<b>,€K and
so<x>,N<a>N<b>CcK, <y>N<b>,N<a>,CK. Hence< x >,N<
m(a,n,b) >, K and< y >,n<m(a,n, b) >,< K. Since Ix(S) isO0-distributive, so
<m(a,n,b) >,n(<x>,v<y>,)SK. By a routine calculation[(aVv bV (x A
y))/\n,(a/\b/\ (xVy))Vn] C K. This implies(avbv(x/\y)) An €K and (a/\
bA(xV y)) v n € K. Then by LemmaZ is either an ideal or a filter. Suppaés filter.
If xvy€eF,then (aAbA(xVy))vncFnK which is a contradiction. Henaev
y € F. Similarly by considering as an ideal and fAy € F, then(avb Vv (x Ay)) A
n € F n K which also gives a contradiction. Henca y ¢ F. Whenx,y & F thenx v
y & Fandx Ay &F soF mustbe prime.

(viy= (i). Leta,b,c €S with <a>,n<b>,CK and <a>,Nn<c>,SK. Then
[(avb)An,(aAb)vn] S K and [(aVvc)An,(anc)vn] S K. Hence [(aVb)A
n,(aAb)vn]eK and [(avc)An,(aAc)vn]eEK . Now <a>,n(<b>,n<
c>)=[laAn,avn]ln[bAcAnbVcVvn]= [(av(b/\c))/\n,(a/\(ch))v nj .
If <a>,n(<b>,n<c>,) &K, then eithefav(bAac))AneK or (an(bV
c))vn & K. Suppose(an(bvc))vngK. Let F=[(an(bVc))vn). ThenFn
K=¢. If not, lety e FnK, theny > (aA(bVvc))vn and soy € K. Hencen <
(an(bvc))vn <y this implies(a A (b V) Vvn €K which is a contradiction. Then
by Lemmad, there exists a maximal filtdf 2 [a A (b V ¢)) and disjoint fromK. But a
convex subneatrlattice containing a filter is itseffilter. Thus by (vi)M is a prime filter
andsoavn e M,bVcVvn € M. SinceM is a prime filter anck ¢ M, soa € M andb or
c € M. Hence eithean AbeEM oraAc€M. Thus(aAb)vneMnK or(aAc)V
n € M N K, this is also a contradiction. Therefeter >,,N (< b >,N< ¢ >,) € K and
SOK is a semi prime-ideal.
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Corollary 11. In a nearlatticeS with a central element, every convex subnearlattice
disjoint to a semi prima-ideal K is contained in a prime convex subnearlattice.
Proof: This immediately follows from Lemma 1 and Theorét

Theorem 12. LetS be a nearlattice with a central elementLetK be a semi prime-
ideal ofS andx € S. Then a prime ided containing{x}*"X is a minimal primei-ideal
containing{x}*"¥ if and only if forp € P there existg € S — P such thatn(p,n, q) €
{x}_L"K '

Proof: Let P be a prime ideal containir{g}in’{ such that the given condition holds. Let J
be a primer-ideal containindx}-"X such that & P Letp € P, then there ig € S — P
such thatn(p,n, q) € {x}*"¥. Thusm(p,n, q) € J. Since J is prime amdé¢ J sop € J.
Hence P € J and so & P. ThereforeP must be a minimal prime-ideal containing
{x}_L"K'

Conversely, |leP be a minimal primex-ideal containing{x}ln’(. Let peP.
Supposem(p,n,q) & {(x}*'K for al geS—P. Then[(pVg) An,(pAq)Vn] ¢
{(x}*"K Thus (pvg)An e {x}3'K or (pAq)vne {(x}X"K SupposdpVq)An ¢
{x}*"K. LetD = (S — P) V [p). We claim thafx}*"¥ n D = ¢. If not, lety € {x}*"¥ n
D. ThenpAaqg<ye{x}*"¥ for someqgeS—P. Hencen< (pAq)Vn<yvn
implies(p A q) vV n € {x}*"¥ which is a contradiction. Then by Theorghd], there exists
a maximal convex subnearlattige2 D and disjoint to{x}1"X. Now we prove that € Q.

If x ¢ Q then(Q v [x)) N {x}*"X = ¢. Suppose € (Q v [x)) n {x}*"¥. This implies
t = qi Ax andm(t,n,x) € K for someg; € Q. Henceg; Ax <tAxand(x At)vne
K. This implies(gy Ax)vn€K. Thusq; Vvn e Q asQ is a filter. Againm(q, Vv
n,n,x) = (g Ax) Vn € K impliesq, v n € {x}*"¥, which is again a contradiction. Thus
x €Q.Let M =S5 — Q. ThenM is a prime ideal, infag¥ is a primen-ideal. Sincex €
Q, sox&M. Let r € {(x}*"K. Thenm(r,nx) € K € M. This impliesr € M asM is
prime. Hencex}*"®¥ € M and soM n D = ¢. This impliesM n (S —P) = ¢ and so
M < P. Also M # P, becaus@ € D impliesp ¢ M butp € P. ThusM is a primen-ideal
containing{x}l"’{ which is properly contained iR. This gives a contradiction to the
minimal property of P. Hence the given condition holds.

We conclude this paper with the following Pri®eparation Theorem for semi prime
n-ideals in nearlattices

Theorem 13. LetS be a nearlattice with a central elemer@ndK be an n-ideal ofS.
Then the following conditions are equivalent: Ki)is semi prime. (ii) For any proper
convex subnearlattic@ disjoint toK there is a prime convex subnearlatticecontaining
F suchthatP n K = ¢.
Proof: (i)= (ii). SinceFNnK = ¢, so by Lemma, there exists a maximal convex
subnearlattic® 2 F such thaP n K = ¢. Hence by Theoret®, P is prime.

(i)=(i). Let F be a maximal convex subnearlattice disjoinktorhen by (ii), there
exists a prime convex subnearlattRe@ F such thaP N K = ¢. SinceF is maximal, so
P = F. ThusF is prime and so by Theorem 1K, must be semi prime.
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3. Conclusion

In this paper, we extend the concept of semi primigleals in nearlattices and include
several interesting results on semi primédeals in nearlattices. We also give a nice
characterization of minimal primeideals containing{a}*"X for alla € S.
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