Annals of Pure and Applied Mathematics Vol. 22, No. 2, 2020, 143-150 ISSN: 2279-087X (P), 2279-0888(Online) Published on 12 December 2020 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v22n2a10803

On Semi Prime n-Ideals in Nearlattices

Shiuly Akhter

Department of Mathematics, University of Rajshahi, Bangladesh Email: <u>shiuly.mim@gmail.com</u>

Received 2 November 2020; accepted 11 December 2020

Abstract. For a central element *n* of a nearlattice *S*, we have discussed *n*-distributive nearlattices and included several properties of semi prime *n*-ideals in nearlattices. In this paper, we have given a characterization of minimal prime *n*-ideals containing $\{a\}^{\perp^{n_{K}}}$ for all $a \in S$. Finally, we have included a prime Separation Theorem with the help of annihilator *n*-ideal.

Keywords: Central element, Semi prime *n*-ideal, Minimal prime *n*-ideal, annihilator *n*-ideal, prime *n*-ideal, *n*-distributive nearlattice.

AMS Mathematics Subject Classification (2010): 16G30

1. Introduction

In generalizing the notion of pseudo complemented lattice, Varlet [11] introduced the notion of 0-distributive lattices. Then [7] have given several characterizations of these lattices. Also [9] have studied them in meet semi lattices. A lattice *L* with 0 is called 0-distributive if for all $a, b, c \in L$, $a \land b = 0 = a \land c$ imply $a \land (b \lor c) = 0$. Of course, every distributive lattices with 0 is 0-distributive. Rav [10] has given the concept of semi prime ideals in lattices by generalizing the notion of 0-distributive lattices. For a neutral element $n \in L$, Ali et.al.[5] and [6] have introduced the concept of *n*-distributive lattices and given the notion of semi prime *n*-ideals in lattices. In this paper, we generalize the concept of 0-distributive lattice where *n* is a central element of this nearlattice. Here we give several characterizations of semi prime *n*-ideals of nearlattices.

A nearlattice *S* is a meet semilattice with the property that, any two elements possessing a common upper bound, have a supremum. Nearlattice *S* is distributive if for all $x, y, z \in$ *S*, $x \land (y \lor z) = (x \land y) \lor (x \lor z)$ provided $y \lor z$ exists. For detailed literature on nearlattices, we refer the reader to consult [2,3,4] and [8]. An element *n* of a nearlattice *S* is called medial if $m(x, n, y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists in *S* for all $x, y \in S$. A nearlattice *S* is called a medial nearlattice if m(x, y, z) exists for all $x, y, z \in S$.

An element *s* of a nearlattice *S* is called standard if for all $t, x, y \in S$, $t \wedge [(x \wedge y) \lor (x \wedge s)] = (t \wedge x \wedge y) \lor (t \wedge x \wedge s)$. The element *s* is called neutral if (i) *s* is standard and

(ii) for all $x, y, z \in S$, $s \land [(x \land y) \lor (x \land z)] = (s \land x \land y) \lor (s \land x \land z)$.

In a distributive nearlattice, every element is neutral and hence standard. An element n

in a nearlattice S is called sesquimedial if for all $x, y, z \in S$,

 $([(x \land n) \lor (y \land n)] \land [(y \land n) \lor (z \land n)]) \lor (x \land y) \lor (y \land z)$ exists in S.

An element *n* of a nearlattice *S* is called a upper element if $x \lor n$ exists for all $x \in S$. Every upper element is of course a sesquimedial element. An element n is called a central element of S if it is neutral, upper and complemented in each interval containing it.

Let S be a nearlattice and $n \in S$. Any convex subnearlattice of S containing n is called an *n*-ideal of S. For two *n*-ideals I and J of a nearlattice S, [4] has given a description of $I \lor J$ while the set theoretic intersection is the infimum. Hence, the set of all *n*-ideals of a nearlattice S is a lattice which is denoted by $I_n(S)$. $\{n\}$ and S are the smallest and largest elements of $I_n(S)$.

An *n*-ideal generated by a finite number of elements a_1, a_2, \dots, a_m is called a finitely generated *n*-ideal and it is denoted by $\langle a_1, a_2, \cdots, a_m \rangle_n$. The set of all finitely generated *n*-ideals is denoted by $F_n(S)$. Clearly, $\langle a_1, a_2, \dots, a_m \rangle_n = \langle a_1 \rangle_n \vee \langle a_2 \rangle_n \vee \dots \vee \langle a_m \rangle_n$. An *n*-ideal generated by a single element *a* is called a principal *n*-ideal denoted by $\langle a \rangle_n$. The set of principal n-ideals is denoted by $P_n(S)$.

Let *S* be a nearlattice and $n \in S$. For any $a \in S$,

$$\langle a \rangle_n = \{ y \in S : a \land n \le y = (y \land a) \lor (y \land n) \}$$

= { $y \in S$: $y = (y \land a) \lor (y \land n) \lor (a \land n)$ } whenever *n* is standard element in S.

If *n* is an upper element in a nearlattice *S*, then $\langle a \rangle_n = [a \land n, a \lor n]$.

We know that when n is standard and medial, the set of all principal n-ideals $P_n(S)$ is a meet semilattice and $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a, n, b) \rangle_n$ for all $a, b \in S$. Also, when nis neutral and sesquimedial, then $P_n(S)$ is a nearlattice. By [4] if S is medial nearlattice and *n* is a neutral element of *S*, then $P_n(S)$ is also a medial nearlattice.

For a distributive nearlattice S with an upper element n, $P_n(S)$ is a distributive nearlattice with the smallest element $\{n\}$.

A proper convex subnearlattice M of a nearlattice S is called a maximal convex subnearlattice if for any convex subnearlattice Q with $Q \supseteq M$ implies either Q =M or Q = S. A proper convex subnearlattice M of a medial nearlattice S is called a prime convex subnearlattice if for any $t \in M$, $m(a, t, b) \in M$ implies either $a \in M$ or $b \in M$. For a medial element n, an n-ideal P of a nearlattice S is a prime n-ideal if $P \neq S$ and $m(x, n, y) \in P$ $(x, y \in S)$ implies either $x \in P$ or $y \in P$. Equivalently, P is prime if and only if $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P$ implies either

$< a >_n \subseteq P$ or $< b >_n \subseteq P$.

Let n be a central element of a nearlattice S. For $a \in S$, we define $\{a\}^{\perp_n} =$ $\{x \in S: m(x, n, a) = n\}$, known as an *n*-annihilator of $\{a\}$. Also for $A \subseteq S$, we define $A^{\perp_n} = \{x \in S: m(x, n, a) = n \text{ for all } a \in A\}$. A^{\perp_n} is always a convex subnearlattice containing n. If S is a distributive nearlattice, then it is easy to check $\{a\}^{\perp_n}$ and A^{\perp_n} are *n*-ideals. Moreover, $A^{\perp_n} = \bigcap_{a \in A} \{\{a\}^{\perp_n}\}$. If A is an *n*-ideal, then A^{\perp_n} is called an annihilator *n*-ideal which is obviously the pseudocomplement of A in $I_n(S)$. Therefore, for a distributive nearlattice S with central element n, $I_n(S)$ is pseudocomplemented.

A nearlattice S with central element n, is called an n-distributive nearlattice if for all $a, b, c \in S, < a >_n \cap < b >_n = \{n\}$ and $< a >_n \cap < c >_n = \{n\}$ imply

 $< a >_n \cap [< b >_n \lor < c >_n] = \{n\}.$

On Semi Prime n-Ideals in Nearlattices

Equivalently, *S* is called *n*-distributive nearlattice if $a \land b \le n \le a \lor b$ and $a \land c \le n \le a \lor c$ imply $a \land (b \lor c) \le n \le a \lor (b \land c)$. In a directed above meet semilattice *S*, an ideal *J* is called a semi prime ideal if for all $x, y, z \in S, x \land y \in J$ and $x \land z \in J$ imply $x \land d \in J$ for some $d \ge y, z$. Let *n* be a central element of a nearlattice *S*. An *n*-ideal *K* of *S* is called a semi prime *n*-ideal if for all $a, b, c \in S, < a >_n \cap < b >_n \subseteq K$ and $< a >_n \cap < c >_n \subseteq K$ imply $< a >_n \cap (< b >_n \lor < c >_n) \subseteq K$. In a distributive nearlattice every *n*-ideal is semi prime. Moreover, every prime *n*-ideal is semi prime. A prime *n*-ideal *P* of a nearlattice *S* is a minimal prime *n*-ideal if there exists no prime *n*-ideal *Q* such that $Q \neq P$ and $Q \subseteq P$.

2. Main results

To obtain the main results of this paper we need to prove the following lemmas.

Lemma 1. Let *S* be a nearlattice with a central element *n* and let *I* be an *n*-ideal of *S*. Every convex subnearlattice disjoint from an *n*-ideal *I* is contained in a maximal convex subnearlattice disjoint from *I*.

Proof: Let *F* be a convex subnearlattice in *S* disjoint from *I*. Let *F* be the set of all convex sub nearlattices containing *F* and disjoint from *I*. Then *F* is non-empty as $F \in \mathcal{F}$. Let *C* be a chain in \mathcal{F} and $M = \bigcup (X | X \in C)$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since *C* is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$, so $x, y \in Y$. Then $x \land y, x \lor y \in Y$ and so $x \land y, x \lor y \in M$. Thus *M* is a subnearlattice of a nearlattice containing *F*. Also it is convex as each $X \in C$ is convex. Moreove $F \subseteq M$. Hence *M* is a maximal element of *C*. Therefore, by Zorn's Lemma, \mathcal{F} has a maximal element, say *Q* with $F \subseteq Q$.

Lemma 2. For a central element *n* of a nearlattice, every maximal convex subnearlattice disjoint from an *n*-ideal *I* is either a maximal ideal or a maximal filter **Proof:** Let *F* be a maximal convex subnearlattice disjoint from an *n*-ideal *I*. Since $F = (F] \cap [F)$, so either $(F] \cap I = \phi$ or $[F) \cap I = \phi$. If not, let $x \in (F] \cap I$ and $y \in [F) \cap I$. Then $x \in I$ and $x \leq f_1$ for some $f_1 \in F$ and $y \in I$ and $y \geq f_2$ for some $f_2 \in F$. Now $f_2 \leq x \lor f_2 \leq f_1 \lor f_2$ implies by convexity that $x \lor f_2 \in F$ Also $x \leq x \lor f_2 \leq x \lor y$ implies by convexity that $x \lor f_2 \in F \cap I$, which is a contradiction. Thus either $(F] \cap I = \phi$ or $[F) \cap I = \phi$. Since *F* is maximal so F = (F] or F = [F). That is, *F* must be either a maximal ideal or a maximal filter.

Lemma 3. Let *S* be a nearlattice with a central element *n* and let *I* be an *n*-ideal of *S*. A convex subnearlattice *M* disjoint from *I* is a maximal convex subnearlattice disjoint from *I* if and only if for all $a \notin M$, there exists $b \in M$ such that $m(a, n, b) \in I$.

Proof: Suppose *M* is a maximal convex subnearlattice and disjoint from *I*. Also let $a \notin M$. Suppose for all $b \in M$, $m(a, n, b) \notin I$. Set $M_1 = \{y \in S : y \land n \le (a \lor b) \land n \le (a \land b) \lor n \le y \lor n; b \in M\}$. Obviously, M_1 is a convex subnearlattice as *n* is central. Also $M_1 \cap I = \phi$. If not, let $x \in M_1 \cap I$. Then $x \land n \le (a \lor b) \land n \le (a \land b) \lor n \le x \lor n$ for some $b \in M$ and $x \in I$. Thus $x \land n \le (a \lor b) \land n \le (a \land b) \lor (a \land n) \lor (b \land n) \le (a \land b) \lor n \le x \lor n$ implies $m(a, n, b) \in I$ which gives a contradiction to the assumption. For $b \in M$, $b \land n \le (a \lor b) \land n \le (a \land b) \lor n \le x \lor n$ implies $b \in M_1$ and so $M \subseteq M_1$. Also, $a \land n \le (a \lor b) \land n \le a \lor n$ implies $a \in M_1$ but $a \notin M$ so $M \subseteq M_1$.

Therefore, we have a contradiction to the maximality of M and so there exists some $b \in M$ such that $m(a, n, b) \in I$.

Conversely, if *M* is not maximal and disjoint from *I* then by Lemma 1, *M* properly contained in a maximal convex subnearlattice *N* and *N* disjoint with *I*. Then for any element $a \in N - M$ there exists an element $b \in M$ such that $m(a, n, b) \in I$. Now $a, b \in N$ implies $a \wedge b, a \vee b \in N$. Thus by Lemma 2, *N* is either an ideal or a filter. Hence $(a \wedge b) \vee n \in N$ or $(a \vee b) \wedge n \in N$ but not both. For otherwise, $n \in N$ would give a contradiction to $I \cap N = \phi$. Now any of the above causes will imply $m(a, n, b) \in N$ and so $m(a, n, b) \in I \cap N$ which is again a contradiction. Hence *M* must be a maximal convex subnearlattice disjoint from *I*.

Theorem 4. For a central element n of a nearlattice S, K is a semi prime n-ideal of S if and only if (K] is a semi prime ideal and [K) is a semi prime filter.

Proof: Let $x \lor y \in [K)$ and $x \lor z \in [K)$. Then $x \lor y \ge k_1$ and $x \lor z \ge k_2$ for some $k_1, k_2 \in K$. Thus $k_1 \land n \le (x \lor y) \land n \le n$ implies $(x \lor y) \land n \in K$ by convexity. So $m(x, n, y \land n) = (x \lor y) \land n \in K$ implies $\langle x \rangle_n \cap \langle y \land n \rangle_n \subseteq K$ Similarly, $\langle x \rangle_n \cap \langle z \land n \rangle_n \subseteq K$. Since *K* is semi prime, so $\langle x \rangle_n \cap (\langle y \land n \rangle_n \lor \langle z \land n \rangle_n) = [x \land n, x \lor n] \cap [y \land z \land n, n] = [(x \lor (y \land z)) \land n, n] \subseteq K$ implies $(x \lor (y \land z)) \land n \in K$, and so $x \lor (y \land z) \in [K)$ Therefore [*K*) is a semi prime filter. Similarly, we can prove that (K] is a semi prime ideal.

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n \subseteq K$ and $\langle x \rangle_n \cap \langle z \rangle_n \subseteq K$. That is $[(x \lor y) \land n, (x \land y) \lor n] \subseteq K$ and $[(x \lor z) \land n, (x \land z) \lor n] \subseteq K$. It follows that $(x \land y) \lor n \in K$ and $(x \land z) \lor n \in K$. Hence $(x \lor n) \land (y \lor n) \in K$ and $(x \lor n) \land (z \lor n) \in K$ as n is central. Then $x \land (y \lor n) \in (K]$ and $x \land (z \lor n) \in (K]$. So $x \land (y \lor z \lor n) \in (K]$ as (K] is a semi prime ideal. This implies $(x \land (y \lor z)) \lor (x \land n) \in (K]$ and so $(x \land (y \lor z)) \lor (x \land n) \leq k_1 \lor n$ implies $(x \land (y \lor z)) \lor n \leq k_1 \lor n$ implies $(x \land (y \lor z)) \lor n \in K$. Similarly, we can prove that $(x \lor (y \land z)) \land n \in K$ as [K] is a semi prime filter. Therefore $\langle x \rangle_n \cap (\langle y \rangle_n \lor \langle z \rangle_n) \subseteq K$ and so K is semi prime.

Theorem 5. For a medial element n, any prime ideal P containing n of a nearlattice S is a prime n-ideal.

Proof: Since every ideal *P* is a convex subnearlattice, so any ideal *P* containing *n* is an *n*-ideal. To show the primeness, let $m(a, n, b) \in P$. Then $a \wedge b \leq m(a, n, b)$ implies $a \wedge b \in P$. Since *P* is prime ideal so either $a \in P$ or $b \in P$. Hence *P* is a prime *n*-ideal.

Theorem 6. Let S be a nearlattice with a central element n . If the intersection of all prime (semi prime) n-ideals of S is equal to K, then K is a semi prime n-ideal.

Proof: Let $\langle a \rangle_n \cap \langle b \rangle_n \subseteq K$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq K$. Let *P* be any prime *n*-ideal. If $a \in P$, then $\langle a \rangle_n \subseteq P$ and so $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. If $a \notin P$, then $\langle b \rangle_n$, $\langle c \rangle_n \subseteq P$ as *P* is prime *n*-ideal. Hence $\langle b \rangle_n \vee \langle c \rangle_n \subseteq P$. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$. That is, in either case, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq P$ for all prime *n*-ideals *P* containing *K*. Therefore, $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] \subseteq \cap P = K$. Thus *K* is semi-prime.

On Semi Prime n-Ideals in Nearlattices

Lemma 7. Let *S* be a nearlattice with a central element *n*. Then $p \in \{x\}^{\perp_n}$ if and only if $p \land x \le n \le p \lor x$.

Proof: $p \in \{x\}^{\perp_n}$ if and only if m(p, n, x) = n if and only if $(p \land x) \lor (p \land n) \lor (x \land n) = (p \lor x) \land (p \lor n) \land (x \lor n) = n$, as *n* is central. This implies that $p \land x \le n \le p \lor x$.

Lemma 8. Let *S* be a nearlattice with a central element *n*. Then $p \in \{x\}^{\perp_n}$ if and only if $p \lor n \in \{x \lor n\}^{\perp_n}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n].

Proof: Let $p \in \{x\}^{\perp_n}$. Then $p \land x \le n \le p \lor x$ and so $(p \lor n) \land (x \lor n) = (p \land x) \lor n = n$ and $(p \land n) \lor (x \land n) = (p \lor x) \land n = n$ as n is central element. Thus $p \lor n \in \{x \lor n\}^{\perp}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n]. Conversely, let $p \lor n \in \{x \lor n\}^{\perp}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n]. Conversely, let $p \lor n \in \{x \lor n\}^{\perp}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n]. Then since n is central element, so $(p \lor n) \land (x \lor n) = n$ and $(p \land x) \lor n = n$. This implies $p \land x \le n$. Also, $(p \land n) \lor (x \land n) = n$ implies $(p \lor x) \land n = n$ and so $n \le p \lor x$. Hence $p \land x \le n \le p \lor x$. Therefore, by Lemma 7, $p \in \{x\}^{\perp n}$.

Let S be a nearlattice with a central element n. For $A \subseteq S$, we define $A^{\perp_n} = \{x \in S: m(x, n, a) = n \text{ for all } a \in A\}$. A^{\perp_n} is always a convex subnearlattice containing n.

Theorem 9. Let S be an *n*-distributive nearlattice. Then for $A \subseteq S$, $A^{\perp_n} = \{x \in S: m(x, n, a) = n \text{ for all } a \in A\}$. is a semi-prime *n*-ideal.

Proof: By [1,Theorem 2.10] we already know that $A^{\perp n}$ is an *n*-ideal. This is also equivalent to the condition $I_n(S)$ is pseudocomplemented. Let $\langle x \rangle_n \cap \langle y \rangle_n \subseteq A^{\perp n}$ and $\langle x \rangle_n \cap \langle z \rangle_n \subseteq A^{\perp n}$. As for any *n*-ideal $A \in I_n(S)$, $A^{\perp n}$ is the pseudocomplement of A in $I_n(S)$. Then for all $a \in A$, this implies $\langle x \rangle_n \cap \langle y \rangle_n \cap \langle a \rangle_n = \{n\} = \langle x \rangle_n \cap \langle z \rangle_n \cap \langle a \rangle_n$ and $\langle y \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*$, $\langle z \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*$, and so $\langle y \rangle_n \vee \langle z \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*$ and this implies $\langle x \rangle_n \cap \langle a \rangle_n \cap \langle a \rangle_n \cap \langle a \rangle_n \cap \langle x \rangle_n \cap \langle a \rangle_n) \subseteq A^{\perp n}$ and so $A^{\perp n}$ is a semi prime *n*-ideal.

Let *S* be a nearlattice with a central element *n*. Let $A \subseteq S$ and *K* be an *n*-ideal of *S*. We define $A^{\perp^{n_{K}}} = \{x \in S: m(x, n, a) \in K \text{ for all } a \in A\}$. This is clearly a convex subset containing *K*. In presence of distributivity, this is an *n*-ideal. $A^{\perp^{n_{K}}}$ is called an *n*-annihilator of *A* relative to *K*. We denote $I_{K}(S)$, the set of all *n*-ideals containing *K*. Of course $I_{K}(S)$ is a bounded lattice with *K* and *S* as the smallest and the largest elements. If $A \in I_{K}(S)$, and $A^{\perp^{n_{K}}}$ is an *n*-ideal, then $A^{\perp^{n_{K}}}$ is called an annihilator *n*-ideal and it is the pseudocomplement of *A* in $I_{K}(S)$.

Theorem 10. Let S be a nearlattice with a central element n and K be an n-ideal of S. Then the following conditions are equivalent:

(*i*) *K* is semi prime (*ii*) $\{a\}^{\perp^{n_{K}}} = \{x \in S: m(x, n, a) \in K\}$ is a semi prime *n*-ideal containing *K*. (*iii*) $\{A\}^{\perp^{n_{K}}} = \{x \in S: m(x, n, a) \in K \text{ for all } a \in A\}$ is a semi prime *n*-ideal containing *K*.

 $(iv) I_K(S)$ is pseudocomplemented $(v) I_K(S)$ is 0-distributive. (vi) Every maximal convex subnearlattice disjoint from K is prime.

Proof: (i)=(ii). $\{a\}^{\perp^{n_{K}}}$ is clearly a convex subset containing K. Let $x, y \in \{a\}^{\perp^{n_{K}}}$. Then $\langle x \rangle_{n} \cap \langle a \rangle_{n} \subseteq K$ and $\langle y \rangle_{n} \cap \langle a \rangle_{n} \subseteq K$. Since K is semi prime so $\langle a \rangle_{n} \wedge \langle (\langle x \rangle_{n} \vee \langle y \rangle_{n}) \in K$. Now $\langle x \wedge y \rangle_{n} \cap \langle a \rangle_{n} \subseteq K$ and $\langle x \wedge y \rangle_{n} \subseteq \langle x \rangle_{n} \vee \langle y \rangle_{n} = [x \wedge y \wedge n, x \vee y \vee n]$. Also $\langle x \vee y \rangle_{n} \subseteq \langle x \rangle_{n} \vee \langle y \rangle_{n}$. Thus $\langle x \wedge y \rangle_{n} \cap \langle a \rangle_{n} \subseteq K$ and $\langle x \wedge y \rangle_{n} \cap \langle a \rangle_{n} \subseteq K$. Therefore $\wedge y, x \vee y \in \{a\}^{\perp^{n_{K}}}$. This implies $\{a\}^{\perp^{n_{K}}}$ is an n-ideal containing K. Again let $\langle x \rangle_{n} \cap \langle y \rangle_{n} \subseteq \{a\}^{\perp^{n_{K}}}$ and $\langle x \rangle_{n} \cap \langle z \rangle_{n} \cap \langle x \rangle_{n} \subseteq K$. Then $\langle \langle x \rangle_{n} \cap \langle a \rangle_{n} \cap \langle x \rangle$

(ii) \Rightarrow (iii). This is trivial by Theorem 6, as $\{A\}^{\perp^{n_{K}}} = \cap (\{a\}^{\perp^{n_{K}}}; a \in A)$.

(iii) \Rightarrow (iv). Since for any $A \subseteq S$, $\{A\}^{\perp^{n_{K}}}$ is an *n*-ideal, hence it is the pseudocomplement of A in $I_{K}(S)$ and so $I_{K}(S)$ is pseudocomplemented.

 $(iv) \Rightarrow (v)$. This is trivial as every pseudocomplemented nearlattice is 0-distributive.

(v) \Rightarrow (vi). Let $I_K(S)$ be 0-distributive. Suppose *F* is a maximal convex subnearlattice disjoint from *K*. Suppose $x, y \notin F$. Then by Lemma3, there exist $a \in F$, $b \in F$ such that $m(x,n,a) \in K$, $m(y,n,b) \in K$. Thus $\langle x \rangle_n \cap \langle a \rangle_n \subseteq K$, $\langle y \rangle_n \cap \langle b \rangle_n \subseteq K$ and so $\langle x \rangle_n \cap \langle a \rangle_n \subseteq K$, $d \rangle_n \subseteq K$, $d \rangle_n \subseteq K$. Hence $\langle x \rangle_n \cap \langle m(a,n,b) \rangle_n \subseteq K$ and $\langle y \rangle_n \cap \langle m(a,n,b) \rangle_n \subseteq K$. Since $I_K(S)$ is 0-distributive, so $\langle m(a,n,b) \rangle_n \cap (\langle x \rangle_n \vee \langle y \rangle_n) \subseteq K$. By a routine calculation, $[(a \lor b \lor (x \land y)) \land n, (a \land b \land (x \lor y)) \lor n] \subseteq K$. This implies $(a \lor b \lor (x \land y)) \land n \in K$ and $(a \land b \land (x \lor y)) \lor n] \subseteq K$. This either an ideal or a filter. Suppose *F* is filter. If $x \lor y \in F$, then $(a \land b \land (x \lor y)) \lor n \subseteq F \cap K$ which is a contradiction. Hence $x \lor y \notin F$. Similarly by considering *F* as an ideal and if $x \land y \notin F$. When $x, y \notin F$ then $x \lor y \notin F$ and $x \land y \notin F$ so *F* must be prime.

 $(vi) \Rightarrow (i)$. Let $a, b, c \in S$ with $\langle a \rangle_n \cap \langle b \rangle_n \subseteq K$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq K$. Then $[(a \lor b) \land n, (a \land b) \lor n] \subseteq K$ and $[(a \lor c) \land n, (a \land c) \lor n] \subseteq K$. Hence $[(a \lor b) \land n, (a \land b) \lor n] \in K$ and $[(a \lor c) \land n, (a \land c) \lor n] \in K$. Now $\langle a \rangle_n \cap (\langle b \rangle_n \cap \langle c \rangle_n) = [a \land n, a \lor n] \cap [b \land c \land n, b \lor c \lor n] = [(a \lor (b \land c)) \land n, (a \land (b \lor c)) \lor n]$. If $\langle a \rangle_n \cap (\langle b \rangle_n \cap \langle c \rangle_n) \notin K$, then either $(a \lor (b \land c)) \land n \notin K$ or $(a \land (b \lor c)) \lor n]$. If $\langle a \rangle_n \cap (\langle b \rangle_n \cap \langle c \rangle_n) \notin K$, then either $(a \lor (b \land c)) \land n \notin K$ or $(a \land (b \lor c)) \lor n \notin K$. Suppose $(a \land (b \lor c)) \lor n \notin K$. Let $F = [(a \land (b \lor c)) \lor n)$. Then $F \cap K = \phi$. If not, let $y \in F \cap K$, then $y \ge (a \land (b \lor c)) \lor n$ and so $y \in K$. Hence $n \le (a \land (b \lor c)) \lor n \in Y$ this implies $(a \land (b \lor c)) \lor n \in K$ which is a contradiction. Then by Lemma1, there exists a maximal filter $M \supseteq [a \land (b \lor c))$ and disjoint from K. But a convex subnearlattice containing a filter is itself a filter. Thus by (vi), M is a prime filter and so $a \lor n \in M$, $b \lor c \lor n \in M$. Since M is a prime filter and $n \notin M$, so $a \in M$ and b or $c \in M$. Hence either $a \land b \in M$ or $a \land c \in M$. Thus $(a \land b) \lor n \in K \cap (a \land c) \lor n \in M \cap K$ or $(a \land c) \lor n \in M \cap K$, this is also a contradiction. Therefore $\langle a \rangle_n \cap \langle c \rangle_n \cap \langle c$

On Semi Prime n-Ideals in Nearlattices

Corollary 11. In a nearlattice S with a central element n, every convex subnearlattice disjoint to a semi prime n-ideal K is contained in a prime convex subnearlattice. **Proof:** This immediately follows from Lemma 1 and Theorem 10.

Theorem 12. Let *S* be a nearlattice with a central element *n*. Let *K* be a semi prime *n*-ideal of *S* and $x \in S$. Then a prime ideal *P* containing $\{x\}^{\perp^{n_{K}}}$ is a minimal prime *n*-ideal containing $\{x\}^{\perp^{n_{K}}}$ if and only if for $p \in P$ there exists $q \in S - P$ such that $m(p, n, q) \in \{x\}^{\perp^{n_{K}}}$.

Proof: Let *P* be a prime ideal containing $\{x\}^{\perp^{n_{K}}}$ such that the given condition holds. Let J be a prime *n*-ideal containing $\{x\}^{\perp^{n_{K}}}$ such that $J \subseteq P$ Let $p \in P$, then there is $q \in S - P$ such that $m(p, n, q) \in \{x\}^{\perp^{n_{K}}}$. Thus $m(p, n, q) \in J$. Since J is prime and $q \notin J$ so $p \in J$. Hence $P \subseteq J$ and so J = P. Therefore P must be a minimal prime *n*-ideal containing $\{x\}^{\perp^{n_{K}}}$.

Conversely, let *P* be a minimal prime *n*-ideal containing $\{x\}^{\perp^{n_K}}$. Let $p \in P$. Suppose $m(p,n,q) \notin \{x\}^{\perp^{n_K}}$ for all $q \in S - P$. Then $[(p \lor q) \land n, (p \land q) \lor n] \notin \{x\}^{\perp^{n_K}}$. Thus $(p \lor q) \land n \notin \{x\}^{\perp^{n_K}}$ or $(p \land q) \lor n \notin \{x\}^{\perp^{n_K}}$. Suppose $(p \lor q) \land n \notin \{x\}^{\perp^{n_K}}$. Let $D = (S - P) \lor [p)$. We claim that $\{x\}^{\perp^{n_K}} \cap D = \phi$. If not, let $y \in \{x\}^{\perp^{n_K}} \cap D$. Then $p \land q \leq y \in \{x\}^{\perp^{n_K}}$ for some $q \in S - P$. Hence $n \leq (p \land q) \lor n \leq y \lor n$ implies $(p \land q) \lor n \in \{x\}^{\perp^{n_K}}$, which is a contradiction. Then by Theorem [10], there exists a maximal convex subnearlattice $Q \supseteq D$ and disjoint to $\{x\}^{\perp^{n_K}}$. Now we prove that $x \in Q$. If $x \notin Q$ then $(Q \lor [x]) \cap \{x\}^{\perp^{n_K}} \neq \phi$. Suppose $t \in (Q \lor [x]) \cap \{x\}^{\perp^{n_K}}$. This implies $t \ge q_1 \land x$ and $m(t, n, x) \in K$ for some $q_1 \in Q$. Hence $q_1 \land x \leq t \land x$ and $(x \land t) \lor n \in K$. This implies $(q_1 \land x) \lor n \in K$. Thus $q_1 \lor n \in Q$ as Q is a filter. Again $m(q_1 \lor n, n, x) = (q_1 \land x) \lor n \in K$ implies $q_1 \lor n \in \{x\}^{\perp^{n_K}}$, which is a prime *n*-ideal. Since $x \in Q$, so $x \notin M$. Let $r \in \{x\}^{\perp^{n_K}}$. Then $m(r, nx) \in K \subseteq M$. This implies $r \in M$ as M is prime. Hence $\{x\}^{\perp^{n_K}} \subseteq M$ and so $M \cap D = \phi$. This implies $M \cap (S - P) = \phi$ and so $M \subseteq P$. Also $M \neq P$, because $p \in D$ implies $p \notin M$ but $p \in P$. Thus M is a prime *n*-ideal containing $\{x\}^{\perp^{n_K}}$ which is properly contained in P. This gives a contradiction to the minimal property of P. Hence the given condition holds.

We conclude this paper with the following Prime Separation Theorem for semi prime n-ideals in nearlattices

Theorem 13. Let *S* be a nearlattice with a central element *n* and *K* be an *n*-ideal of *S*. Then the following conditions are equivalent: (i) *K* is semi prime. (ii) For any proper convex subnearlattice *F* disjoint to *K* there is a prime convex subnearlattice *P* containing *F* such that $P \cap K = \phi$.

Proof: (i) \Rightarrow (ii). Since $F \cap K = \phi$, so by Lemma 1, there exists a maximal convex subnearlattice $P \supseteq F$ such that $P \cap K = \phi$. Hence by Theorem 10, *P* is prime.

(ii) \Rightarrow (i). Let *F* be a maximal convex subnearlattice disjoint to *K*. Then by (ii), there exists a prime convex subnearlattice $P \supseteq F$ such that $P \cap K = \phi$. Since *F* is maximal, so P = F. Thus *F* is prime and so by Theorem 10, *K* must be semi prime.

3. Conclusion

In this paper, we extend the concept of semi prime *n*-ideals in nearlattices and include several interesting results on semi prime *n*-ideals in nearlattices. We also give a nice characterization of minimal prime *n*-ideals containing $\{a\}^{\perp^{n_{K}}}$ for all $a \in S$.

Acknowledgements. I am grateful and thankful to the editor and referee for their valuable comments and suggestions for the improvement of this paper.

REFERENCES

- 1. S. Akhter and A. S. A. Noor, *n*-Distributive Nearlattices, *Journal of Mechanics of Continua and Mathematical Sciences*, 15(5)(2020), 82-89.
- 2. S. Akhter and A. S. A. Noor, Semi prime filters in join semilattices, *Annals of Pure and Applied Mathematics*, 18(1) (2018) 45-50.
- 3. S.Akhter and A.S.A.Noor, 1-modular dual nearlattices, *Annals of Pure and Applied Mathematics*, 17(2) (2018) 151-155.
- 4. S.Akhter, A Study of Principal *n*-Ideals of a Nearlattice, Ph.D. Thesis, Rajshahi University, Bangladesh (2003).
- 5. M.Ayub Ali, A.S.A.Noor and S.R.Poddar, Some characterization of semiprime nideals in lattices, *Annals of Pure and Applied Mathematics*, 2(1) (2012) 01-09.
- 6. M.Ayub Ali, A.S.A.Noor and S.R.Poddar, *n*-distributive lattice, *Journal of Physical Sciences*, 16 (2012) 23-30.
- 7. P.Balasubramani and P.V.Venkatanarasimhan, Characterizations of the 0-distributive Lattices, *Indian J. Pure Appl. Math.*, 32(3) (2001) 315-324.
- 8. W.H.Cornish and A.S.A.Noor, Standard elements in a nearlattice, *Bull. Austral. Math. Soc.*, 26(2) (1982) 185-213.
- 9. Y.S.Powar and N.K.Thakare, 0-distributive semilattices, *Journal of Pure and Applied Algebra*, 56 (1978) 469-475.
- 10. Y.Rav, Semi prime ideals in general lattices, *Journal of Pure and Applied Algebra*, 56 (1989) 105-118.
- 11. J.C.Varlet, A generalization of the notion of pseudocomplementedness, *Bull. Soc.Sci. Liege*, 37 (1968) 149-158.