www.researchmathsci.org
DOI: http://dx.doi.org/10.22457/apam.v22n2a01701

# Brief Note <br> Verification of a Conjecture Proposed by N. Burshtein on a Particular Diophantine Equation 

## Nechemia Burshtein

117 Arlozorov Street, Tel - Aviv 6209814, Israel<br>Email: anb17@ netvision.net.il

Received 3 September 2020; accepted 2 October 2020


#### Abstract

In [1] among other equations, the author considered the equation $p^{x}+(p+1)^{y}+$ $(p+2)^{z}=M^{2}$ when $p=4 N+3$ is prime, $x=1, y=z=2$ and $M$ is a positive integer. For all values $0 \leq N \leq 50$, he established that the equation has exactly one solution when $N=2$, namely when $p=11$. In [1-Conjecture 1] he stated that the equation has no solutions for all values $N>50$. In this note we verify that Conjecture 1 is indeed true for all values $N>50$.


Keywords: Diophantine equations

## AMS Mathematics Subject Classification (2010): 11D61

## 1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$
p^{x}+q^{y}=z^{2}
$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds.

In [1], we extended the above equation, and considered equations of the form $p^{x}+(p$ $+1)^{y}+(p+2)^{z}=M^{2}$ for all primes $p \geq 2$ and integers $x, y, z$ satisfying $1 \leq x, y, z \leq 2$. The value $M$ is a positive integer. All the possibilities for infinitely many solutions, no solution cases and unique solutions have been determined, except for the equation $p+(p$ $+1)^{2}+(p+2)^{2}=M^{2}$ when $p$ is of the form $4 N+3$. In this case, it was established that $p=11$ is the only solution when $3 \leq p \leq 199$. We have conjectured [ 1 - Conjecture 1] that for all primes $p>199$, the equation has no solutions. In this note, we provide a formal proof as to the validity of our conjecture in [1] implying now that the solution with $p=$ 11 is unique.
2. All the solutions of $p+(p+1)^{2}+(p+2)^{2}=M^{2}$ when $p=4 N+3$

In the following theorem we will show that the equation has a unique solution.

## Nechemia Burshtein

Theorem 2.1. Suppose that $p=4 N+3(N \geq 0)$ is prime. Then the equation $p+(p+1)^{2}+(p+2)^{2}=M^{2}$ has a unique solution when $p=11(N=2)$.

Proof: The left side of the equation yields

$$
\begin{equation*}
p+(p+1)^{2}+(p+2)^{2}=2 p^{2}+7 p+5=(p+1)(2 p+5)=(p+1)(2(p+1)+3) \tag{1}
\end{equation*}
$$

If $(p+1)(2(p+1)+3)=M^{2}$ has a solution for some value $p$, then the two factors $(p+$ $1),(2(p+1)+3)$ in (1) must satisfy simultaneously the two conditions in each of the following cases, namely:
(a) $\quad p+1=A^{2}, \quad 2(p+1)+3=B^{2}$.
(b) $\quad p+1 \neq A^{2}, \quad 2(p+1)+3 \neq B^{2}$.

Suppose (a): $\quad p+1=A^{2}, 2(p+1)+3=B^{2}$.
The equality $p+1=A^{2}$ implies that $p=A^{2}-1=A^{2}-1^{2}=(A-1)(A+1)$. When $A=2$, then $p=3$. But $2(3+1)+3=11 \neq B^{2}$. Thus $A \neq 2$. For all values $A>2$, the prime $p$ $=(A-1)(A+1)$ is a product of two distinct factors which is impossible. The two conditions in (a) are not satisfied simultaneously.

Hence case (a) does not exist.
Suppose (b): $\quad p+1 \neq A^{2}, 2(p+1)+3 \neq B^{2}$.
We have two cases, namely $\operatorname{gcd}(p+1,2(p+1)+3)=1, \operatorname{gcd}(p+1,2(p+1)+3)=3$.
If $\operatorname{gcd}(p+1,2(p+1)+3)=1$, and $(p+1)(2(p+1)+3)=M^{2}$, it then follows that $p+1=A^{2}$ and $2(p+1)+3=B^{2}$ must exist simultaneously. But this contradicts our supposition, and hence $\operatorname{gcd}(p+1,2(p+1)+3) \neq 1$.

If $\operatorname{gcd}(p+1,2(p+1)+3)=3$, denote $p+1=3 K$, and $2(p+1)+3=2 \cdot 3 K+3=$ $3(2 K+1)$ where $\operatorname{gcd}(K, 2 K+1)=1$. If $(p+1)(2(p+1)+3)=(3 K) \cdot 3(2 K+1)=3^{2} \cdot K(2 K$ $+1)=M^{2}$, it now follows that the two conditions $K=H^{2}$ and $2 K+1=2 H^{2}+1=L^{2}$ exist simultaneously. In order to achieve the smallest possible difference $L^{2}-2 H^{2}=1$, set $H$ as the largest possible value $H=L-1$. We then obtain

$$
\begin{equation*}
L^{2}-2 H^{2}=L^{2}-2(L-1)^{2}=-L^{2}+4 L-2=L(4-L)-2 \tag{2}
\end{equation*}
$$

Since for all values $L \geq 4$, it follows from (2) that $L(4-L)-2<0$, therefore $L$ may assume only the two values $L=2,3$. When $L=2$, then in (2) $L^{2}-2 H^{2}=2>1$. Thus $L \neq 2$. When $L=3$, then $L^{2}-2 H^{2}=L(4-L)-2=1$, and hence $H=2$. This in turn implies that $K=H^{2}=4, p+1=3 K=12$ and $p=11$ for which $M=18$. When $p=$ 11 , it follows that the two conditions in which $p+1=12 \neq A^{2}$, and $2(p+1)+3=27 \neq$ $B^{2}$ are indeed satisfied simultaneously.

The equation $p+(p+1)^{2}+(p+2)^{2}=M^{2}$ has a unique solution in which $p=11$ and $M=18$.

This concludes the proof of Theorem 2.1.
Final remark. In [1] we have shown that when $3 \leq p \leq 199$, the equation $p+(p+1)^{2}$ $+(p+2)^{2}=M^{2}$ has exactly one solution with $p=11$. Theorem 2.1 establishes that

# Verification of a Conjecture Proposed by N. Burshtein 

 on a Particular Diophantine EquationConjecture 1 in [1] which stated that for all $p>199$ the equation has no solutions is indeed true now, and the solution with $p=11$ is therefore unique.

## REFERENCES

1. N. Burshtein, Solutions of the diophantine Equations $p^{x}+(p+1)^{y}+(p+2)^{z}=M^{2}$ for Primes $p \geq 2$ when $1 \leq x, y, z \leq 2$, Annals of Pure and Applied Mathematics, 22 (1) (2020) 41-49.
2. N. Burshtein, On solutions of the diophantine equation $8^{x}+9^{y}=z^{2}$ when $x, y, z$ are positive integers, Annals of Pure and Applied Mathematics, 20 (2) (2019) 79-83.
3. N. Burshtein, A note on the diophantine equation $p^{x}+(p+1)^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 19 (1) (2019) 19-20.
4. N. Burshtein, A note on the diophantine equation $p+q+r=M^{2}$ and the Goldbach Conjectures, Annals of Pure and Applied Mathematics, 13 (2) (2017) 293-296.
5. B. Poonen, Some diophantine equations of the form $x^{n}+y^{n}=z^{m}$, Acta. Arith., 86 (1998) 193-205.
6. B. Sroysang, On the diophantine equation $5^{x}+7^{y}=z^{2}$, Int. J. Pure Appl. Math., 89 (2013) 115-118.
