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Abstract. Raman imaging, a live cell imaging technique, ipexted to provide a new
means to diagnose the diseases, where the imag&sincboth the spatial and spectral
information of molecular vibrations of componentfshiosystems. Biomedical Raman
images are the big data having rich molecular médion. Useful data analysis is needed
to analyze the complex Raman spectra to make thmaRaimaging an efficient
diagnostic tool. This study involves the applicatiof unsupervised random decision
forest (URF) and rate-distortion theory (RDT) basbdstering, to analyze the Raman
hyperspectral data in order to gain insights iht® underlying spectral distributions and
discrimination between spectra of various samplé® data are the Raman images of
non-alcoholic fatty liver disease (NAFLD) of livéissues of three different types of rats
that were fed with three different diets. URF pdes the proximity matrix (representing
the similarity among the super pixel spectra (otgdi by the extended simple linear
iterative clustering (SLIC)), which is then transfed into Euclidean space, and taken as
the input of the RDT clustering to extract the miegful groups having the spectra with
similar characteristics. Hierarchical clusteriragtpplot is produced to show how the set
of spectra hierarchically makes a group in fullct@ dimension as a function of the
number of clusters. We expect our proposed appraacid be a nice tool for the
guantitative analysis of biomedical Raman imageadahich could be effective to
analyze various diseases.

Keywords: Raman images, unsupervised random forest, clusaysis, rate-distortion
theory
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1. Introduction

Conventional method to diagnose different diseaamiynrelies on histopathology, but it
often suffers from inter observer variability [1321], and it does not provide the detailed
chemical information about the samples. Raman rmeo@pic imaging [5,6,7], a live cell
imaging technique, is expected to be a prominetatrrative to disease diagnosis. It
provides the molecular information at the micromeizale which allows us to study the

27



Khalifa Mohammad Helal

cells and tissues at cellular and sub cellularllevéacilitate the histological diagnosis of
the diseases [7,8]. Raman images contain both ghtiat and spectral information of
molecular vibrations of constituents of the bioteyss. The different disease states of
cells or tissues can lead to Raman spectral diftem® which can be compared to
differentiate the characteristics of those celld tissues. But the differences from one
sample to another in different pathological comdis are very small and difficult to
observe in raw Raman spectra [9]. Moreover, theagin the raw spectra are very weak
and are contaminated with noise, auto-fluorescesigaals etc. [9]. Therefore, the
systematic analysis of Raman images is crucial itapb to make the complex Raman
spectra more interpretable aiding disease diagnesdth which the true and useful
information can be revealed. In this connections thork deals with the analysis of
biomedical Raman images using unsupervised randwoestf (URF) [10,11,12] based
proximity measure combined with information themt rate-distortion theory (RDT)
[13,14] based clustering to explore the underhgtrgcture of the data.

URF is the unsupervised setting of Random decisicest (RF), a classification and
regression ensemble machine learning algorithm, winich results of multiple
uncorrelated and weak learner decision trees ageegated into one final results by
simple majority voting [11,12]. URF produces simia measure by classifying two-
class classification problem using supervised RE13], where a synthetic data set,
randomly generated from the original data is lathe@le class 1 while the original data set
is labeled as class 2 [10,11,15] . This proximigasure can be transformed to Euclidean
space, which can be used to apply in unsupervisd#tads, such as principal coordinates
analysis (PCoA) [16] and clustering [17,18], toeakthe hidden structure in a data set.
In many biological studies, URF was used as an parsised learning to extract the
meaningful groups in the data [10]. For instanog1®] URF was used for tumor class
discovery, and it was employed on his tone marképrostate cancer in [20]. To reveal
the meaningful groups (clusters) within the tissoeages based on their spectral
differences due to different phenotypic changegathological states, we employed
information theory based unsupervised clusterinmpgusate-distortion theory (RDT)
[13,14]. RDT takes the dissimilarity matrix as aput and clusters a set of spectra into a
smaller number of groups having similar charactiess

The data used in this work are the Raman hypensgpentages of liver tissues of
non-alcoholic fatty liver disease (NAFLD) [21] frothree different types of rats which
were fed with three different diets. The data isdusith the prior permission from the
experimentalists and the corresponding author22f. NAFLD is the common liver
disorder that affects men, women and children [Zljere are two types of NAFLD: one
is simply ‘non-alcoholic fatty liver (NAFL)’ and #h other is ‘non-alcoholic
steatohepatitis (NASH)' [23,24]. This NASH may letd liver cirrhosis and/or liver
carcinoma [23] which may be irreversible.
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In this study, at the beginning, the Raman imagdeatdiver tissues of NAFLD are
segmented using extended simple linear iterativsteting (SLIC) [22,25] to generate set
of superpixel spectra (the perceptual grouping igélp having similar characteristics
[25]). Here, we choose approximately 100 pixelddiesa superpixel and segment the
Raman hyperspectral images to obtain superpixetspe URF is employed to the set of
superpixel spectra to obtain a proximity matrix ebhiis then transformed into a
dissimilarity matrix to use it as an input of PC{¥6] for visualization, and an input of
RDT clustering algorithm for detecting underlyingtterns of the NAFLD data. Based
on three dietary states of NAFLD, we use RDT cluste with 3 classes. Confusion
matrix obtained from the clustering outputs suggésiw the diet states are classified in
terms of Raman characteristics. To know the dityeds the dietary states, we generate
hierarchical clustering path plot as a functionhef number of clusters, which shows how
the data makes a group in terms of number of aleiste

2. Methods

The experiments were performed by the groups ofamebers at the Department of
Pathology and Cell Regulation, Kyoto PrefecturaiMdrsity of Medicine, Kyoto, Japan
and the Department of Gastroenterology and Hepgatokyoto Prefectural University of
Medicine, Kyoto, Japan. The details of the expenitalesystem, Raman measurement,
and evaluations of liver tissues can be found £].[Zhe data is used in this study with
the prior permission from the corresponding autled{22].

The dataset

The data are the Raman hyperspectral images tifeattissues. A total of 48 rat liver
tissues were collected after 2,4, 8, and 16 weéksenling period. 16(=>4) rats were
fed with each diet (standard diet (SD), high-faetd{HFD), and a high-fat high-
cholesterol diet (HFHC)) for Raman analyses.

Data preprocessing

Since pure spectral features are hidden undermedse and contamination [9], the raw
Raman data must be preprocessed before quantitatalgsis to reduce the influence of
those contaminations in the analysis and to exthectrue spectral information as much
as possible relevant to the NAFLD states. Followsgbsection will give a brief
discussion of the preprocessing schemes of the Ransge data.

Bias correction

The first step is to correct the Raman hyperspedatnages from the bias which is
assumed to be noiseless but quite large consthrd iraintensity. For each hyperspectral
image, bias is calculated as the minimum intensitthe entire image, and is subtracted
from each spectrum of the corresponding Raman image
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Baseline removal

In our data, auto-fluorescence contributions (bemlgd spectra/baseline) were
estimated using modified multi-polynomial fitting ethod, which is a recursive
polynomial fitting algorithm [26]. It recursivelyséimates the unwanted contribution
(anomaly) from the background. Each single pixecsums is first fit to a polynomial
p, and then a modified spectrum is constructed asntmimum intensities of original
spectrum and the fitted polynomial. We compujeas the number of spectral pointsSof
below the fitted polynomialp , and continue the procedure until a terminatisrgeigon
holds. To make the terminative criterion consisfentall the spectra in our application,
we iterate polynomial fitting untih, < 0.01n,,, wheren,, is the total number of
wavenumbers. "®Border polynomial was chosen for fitting the speatrith the above-
mentioned stopping criterion. Finally, the baseltwrected spectrum is obtained by
subtracting the baseline from the original spectrihe baseline correction procedure for
a single spectrum is illustrated in Fig. 1.
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Figure 1. Sample spectrum with baselines at different nunatbéerations by recursive
polynomial fitting.

Segmentation aver aging and removal of silent region

After bias and baseline correction, we segmenRiw@man tissue images into superpixels
using extended SLIC [22,25]. The size of each mipel is chosen so that each

superpixel contains approximately 100 pixels. Oneraged spectrum is computed from
one superpixel, and in this way, we collect a $etuperpixel spectra across all the 48
Raman images of liver tissues. All the superpixelcsra are then cropped by removing
the silent region (1801-1799n~1), where there are no Raman signals in the tig@7és
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Normalization
Taking into account the signal intensity variatiamong the spectra due to the
concentration difference of the tissue samples ammalization is used for making the
spectra comparable. The area normalized spectfi{in of thei-th superpixel spectrum
s,, (i) is derived as

sw(@)

sw=5w o

3. Analysis of the Raman image data

For the quantitative analysis of Raman image da&aperformed unsupervised random
forest (URF) to derive the dissimilarity matrix angothe spectra and rate-distortion
theory (RDT) based clustering to detect the uniteglgtructures of the data.

Unsupervised random forest (URF)

URF [10,11,12] is expected to be a promising apgrdar extracting underlying patterns
in the data. URF algorithm is the extension of suped RF which is developed on the
assumption that any structured data should bendisshable from its randomly
generated version [10,11,15]. Appending an origitah set with its randomly generated
version, synthetic data set, URF forms an artifiti@o-class classification problem
which is then modeled using supervised RF, whesgnthetic data set is labeled as class
1 while the original data set is labeled as clag0215] .

URF algorithm is composed of the following step8, 1b]:

Step 1. A synthetic dataset (same size as origlath set) is created by randomly
sampling equal number of observations from the matglistributions of the
original variables.

Step 2. Concatenate the synthetic dataset beloarifji@al data, and labeled the original
and synthetic data set as “class 1" and “classe®pectively, to form a two-class
classification problem.

Step 3. Apply supervised RF to this artificial telass classification problem.

Step 4. Derive the proximity matrix using the olvagions only from the original dataset.

Proximity matrix provides the similarity betweenetfiRaman spectra. In RF,
proximity between two spectra is defined as the lmemof times that these two spectra
share the same terminal nodes of a RF tree, diMigetthe total number of trees in RF
[10,11,15]. The proximities between spectra comstra proximity matrixPM =
[P;,jlnxn, n is the number of spectra, which is symmetric, fpasidefinite [10]. RF
dissimilarity between two spectra is defined loy [P;;]. Dissimilarity matrixDM is
constructed by the all the pairwise dissimilaritiegween the spectra, which is used as an
input of RDT clustering and principal coordinatewmlgsis (PCoA) [16] to detect the
structure of the NAFLD data.

Clustering using rate-distortion theory (RDT)

Clustering [17,18] is unsupervised algorithm whaoups the elements (spectra) of a
data set into subgroups (clusters) having the elesnéspectra) with similar Raman
information.
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We use information theory based clustering by usittg distortion theory (RDT) to
Raman hyperspectral image data of NAFLD. RDT [4B,inainly addresses the
phenomenon “compressing the data keeping an attepével of distortion”. That is, it
finds the number of clusters needed to describedtta within a minimal expected
distortion. RDT [13,14] clusters a set of spectyadturning the conditional probabilities
of assigning a given spectrum into a given cluster.

Supposes = {sq,s,,**, Sy} be the set aV spectra an@ = {C;, C,,-,Cy} is the set
of N.clusters. RDT clusters the sets of speStiato set of cluster€by minimizing the
ratel(C; S) constrained by the mean distortienD(C, S) > through the minimization
[28,29,30] of the functional [13,14,31,32],

Fp(Cels®)] = 1(C;$) + B < D(C,$), 1)
wherep(Cy|s(D)) is the conditional probability of assigning a givepectruns (i) into a
given clusteiCy,
I1(C; S) is the degree of compression of the spectra intstars which is defined as

p(Cils(@))
I1(C;S) = ;Z (Ck|s(l))p(s(l))l og————— > (2)

and < D(C,S) > is the mean distortion among the spectra defineth@gnean of the
pair wise distance between all pairs of spectraiwithe set of cluste€s averaged over
all clusters which is defined as

<D(C,$) >= Z p(Co) Z PGWICIPGRICId;| 3)
i,j=1
Here,p(C;) is the marglnal probablllty of the clustgy, S is the Lagrange multiplier
(control parameter) which controls the softnesthefclustering.
The parameters of RDT algorithm is the number o$telrsV, andg. We choose
N, = 3to cluster the data based on three different diestates, an@ is chosen large
enough to make RDT as a hard clustering algorithm.

4, Results and discussions

URF is employed to the set of all superpixel sgedtained from all the 48 Raman
images of liver tissues from SD, HFD, and HFHC gsyuvhere RF comprised of 5000
fully grown trees was run to obtain the proximityatnix. The proximity matrix is then
converted into dissimilarity matrix to employ itinPCoA and RDT clustering.

First, we apply PCoA to the dissimilarity matrixgF2 represents the visualization
results of PCoA as a usual scatter plot of spdotra-D embedded space, where the
spectra are colored according to three differeetsdiWe see that the spectra are clearly
separable into three groups. We observe that thgr&8@p of spectra are located far-away
from those of the HFHC group, while HFD spectra laaated closed to both SD and
HFHC spectra, and are largely variated. Hencs, riévealed that Raman spectral features
is significantly larger in HFD group than thoseS&2 and HFHC groups, from which we
would biologically expect that HFD group has lagdiversity of microchemical
environment than SD and HFHC group.

This larger dispersion of HFD is harmonized witle ttesults illustrated in Fig. 3
which shows that the mean of the dissimilaritiethefspectra from each of SD, HFD and
HFHC group are 0.4207, 0.4723 and 0.3770 with tireesponding standard deviations
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Figure 2: PCoA score plot of the specin 2-D embedded spacobtainedusing the URF
dissimilarity matrix.

0.0870, 0.1348 and 0.1079, respectively. Hereyémmtion of the dissimilarities of the
HFD spectra is larger than that of SD and HFHC.
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Figure 3: The mean and standard deviation of the distancasn@ the spectra in
different diet groups.
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We perform RDT classification with 3 classes on tesimilarity matrix.We have &
different clusters corresponding to the differeattg/regions across all the liver tissue
having identical biochemical environment. The disttions of the spectra within the

clusters are shown in the projected 2-D PCoA sjpitp4] (each color corresponds to
individual cluster).
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Figure 4: Distributions of the spectra within three clusterthe -D PCoA spact

Visual comparison of Fig. 2 and Fig.4 suggests RBT well classifies the SD and
HFHC groups (correspond to green and red clustbrg)the classification is not well
performed in case of the HFD group, suggestingtttetHFD group is largely diverse in
terms of Raman information.

To quantify how well RDT classifies the dietarytetg we use performance matrix.
Assuming three dietary states as true classe# (abels), we compare those to the RDT
clustering outputs (the predicted classes). We five best-matching pairs between the

truth labels and RDT clustering labels such that tlumber of true positive (TP) is
maximized.

Table 1; Confusion matrix for RDT clusteril

Predicted
SD HFD HFHC Total
SD 211 13 0 224
%S HFD 17 130 77 224
< HFHC 0 0 224 224
Total 228 143 301 672

The confusion matrix of RDT clustering to class#flp, HFD and HFHC groups is shown
in Table 1.It shows that, RDT classifies the SD,DH&Bnd HFHC groups with the
accuracy of 94%,~ 58%, and~ 100%, respectively. We see that the predictioH D
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is less accurate, which indicates that HFD is arogeneous group having diverse
microchemical environment. This result also harmesiwith the results shown in Figs. 2
and 3.

Prespecified three clusters may not be enough ffiwisutly quantify the diverse
chemical environments of the dietary states. Irgingathe number of clusters may
provide better insights into the heterogeneity e themical environment of different
diet states. We calculate the hierarchical clustepath plot of the dietary states as a
function of the number of clusters, which displéigsv the subset of spectra will belong
to each cluster in full dimension. Fig. 5 to Figdi8play the hierarchical clustering path
plots of all the spectra, and the subset of spdéicima SD, HFD and HFHC groups. Here,
each marker point represents the mean index afstetl corresponding to the number of
clusters. Each line represents the path of thetspeice., how they distributed if we
increase the number of clusters. The thicknesefline indicates the probability of
“path of those spectra” belonging to clusters.

HFHC

HFD

Mean cluster index

SD

1 | L 1 | | L | | | |

1 2 3 4 5 6 7 8 9 10 11 12
Number of clusters

Figure 5: Hierarchical clustering path plot for all the spadrom SD, HFD and HFHC
groups
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Figure 6: Hierarchicalclusteringpath plot for all the spectra from SD gr«.
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Figure 8. Hierarchical clustering path plot for all the spadrom HFHC group.

Fig. 5 shows how the set of superpixel spectra fralinthe three states
hierarchically makes a group in full dimension.Fig. 6, we see that SD spectra rarely
change microchemical environment. The high probahblth represents that most of the
spectra in SD group belongs to single cluster mtitig a good classification. Fig. 7
shows that HFD spectra are largely diffused indicata larger diversity of
microchemical environment which results the lessueacy of the RDT clustering.
Finally, Fig. 8 illustrates that HFHC diet state idgdy changes microchemical
environment, and most of the spectra are localinedl single cluster indicating a good
prediction.

5. Conclusions

This work dealt with the quantitative analysis dabrbedical Raman images of non-
alcohalic fatty liver disease (NAFLD) using unsupsed random forest (URF)-derived
proximity measure combined with rate-distortion ahe (RDT) based clustering, to
explore the underlying information of the data. UtRffived the dissimilarity matrix from

the spectra, which was used as the input of unsigeer learning algorithms, namely,
principle coordinate analysis (PCoA) and RDT basgstering. RDT revealed the
hidden patterns in the data where Raman spectreisibée into separable groups. RDT
clustering distinguished SD and HFHC into sepagateips with high accuracy, but in
case of HFD the accuracy was not high. It was fotred HFD spectra were largely
diffused compared to SD and HFHC spectra, indigatm larger diversity of

microchemical environment in this HFD group. Hietdcal clustering path plot shed
light upon how a set of spectra hierarchically nsa&eyroup in full spectral dimension.
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