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Abstract. Raman imaging, a live cell imaging technique, is expected to provide a new 
means to diagnose the diseases, where the images contain both the spatial and spectral 
information of molecular vibrations of components of biosystems. Biomedical Raman 
images are the big data having rich molecular information. Useful data analysis is needed 
to analyze the complex Raman spectra to make the Raman imaging an efficient 
diagnostic tool. This study involves the application of unsupervised random decision 
forest (URF) and rate-distortion theory (RDT) based clustering, to analyze the Raman 
hyperspectral data in order to gain insights into the underlying spectral distributions and 
discrimination between spectra of various samples. The data are the Raman images of 
non-alcoholic fatty liver disease (NAFLD) of liver tissues of three different types of rats 
that were fed with three different diets. URF  provides the proximity matrix (representing 
the similarity among the super pixel spectra (obtained by the extended simple linear 
iterative clustering (SLIC)), which is then transformed into Euclidean space, and taken as 
the input of  the RDT clustering to extract the meaningful groups having the spectra with 
similar characteristics.  Hierarchical clustering path plot is produced to show how the set 
of spectra hierarchically makes a group in full spectral dimension as a function of the 
number of clusters. We expect our proposed approach could be a nice tool for the 
quantitative analysis of biomedical Raman image data which could be effective to 
analyze various diseases. 
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1. Introduction 
Conventional method to diagnose different disease mainly relies on histopathology, but it 
often suffers from inter observer variability [1,2,3,4], and it does not provide the detailed 
chemical information about the samples. Raman microscopic imaging [5,6,7], a live cell 
imaging technique, is expected to be a prominent alternative to disease diagnosis. It 
provides the molecular information at the micrometer scale which allows us to study the 
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cells and tissues at cellular and sub cellular level to facilitate the histological diagnosis of 
the diseases [7,8]. Raman images contain both the spatial and spectral information of 
molecular vibrations of constituents of the bio-systems. The different disease states of 
cells or tissues can lead to Raman spectral differences which can be compared to 
differentiate the characteristics of those cells and tissues.  But the differences from one 
sample to another in different pathological conditions are very small and difficult to 
observe in raw Raman spectra [9]. Moreover, the signals in the raw spectra are very weak 
and are contaminated with noise, auto-fluorescence signals etc. [9]. Therefore, the 
systematic analysis of Raman images is crucial important to make the complex Raman 
spectra more interpretable aiding disease diagnosis, with which the true and useful 
information can be revealed. In this connection, this work deals with the analysis of 
biomedical Raman images using unsupervised random forest (URF) [10,11,12] based 
proximity measure combined with information theoretical rate-distortion theory (RDT) 
[13,14] based clustering to explore the underlying structure of the data.  

URF is the unsupervised setting of Random decision forest (RF), a classification and 
regression ensemble machine learning algorithm, in which results of multiple 
uncorrelated and weak learner decision trees are aggregated into one final results by 
simple majority voting [11,12]. URF produces similarity measure by classifying two-
class classification problem using supervised RF [11,12], where a synthetic data set, 
randomly generated from the original data is labeled as class 1 while the original data set 
is labeled as class 2 [10,11,15] . This proximity measure can be transformed to Euclidean 
space, which can be used to apply in unsupervised methods, such as principal coordinates 
analysis (PCoA) [16] and clustering [17,18], to reveal the hidden structure in a data set. 
In many biological studies, URF was used as an unsupervised learning to extract the 
meaningful groups in the data [10]. For instance, in [19] URF was used for tumor class 
discovery, and it was employed on his tone markers of prostate cancer in [20]. To reveal 
the meaningful groups (clusters) within the tissue images based on their spectral 
differences due to different phenotypic changes in pathological states, we employed 
information theory based unsupervised clustering using rate-distortion theory (RDT) 
[13,14]. RDT takes the dissimilarity matrix as an input and clusters a set of spectra into a 
smaller number of groups having similar characteristics. 

The data used in this work are the Raman hyperspectral images of liver tissues of 
non-alcoholic fatty liver disease (NAFLD) [21] from three different types of rats which 
were fed with three different diets. The data is used with the prior permission from the 
experimentalists and the corresponding authors of [22]. NAFLD is the common liver 
disorder that affects men, women and children [21].  There are two types of NAFLD: one 
is simply ‘non-alcoholic fatty liver (NAFL)’ and the other is ‘non-alcoholic 
steatohepatitis (NASH)’ [23,24]. This NASH may lead to liver cirrhosis and/or liver 
carcinoma [23] which may be irreversible.  
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In this study, at the beginning, the Raman images of rat liver tissues of NAFLD are 
segmented using extended simple linear iterative clustering (SLIC) [22,25] to generate set 
of superpixel spectra (the perceptual grouping of pixels having similar characteristics 
[25]). Here, we choose approximately 100 pixels inside a superpixel and segment the 
Raman hyperspectral images to obtain superpixel spectra.  URF is employed to the set of 
superpixel spectra to obtain a proximity matrix which is then transformed into a 
dissimilarity matrix to use it as an input of PCoA [16] for visualization, and an input of 
RDT clustering algorithm for detecting underlying patterns of the NAFLD data.  Based 
on three dietary states of NAFLD, we use RDT clustering with 3 classes. Confusion 
matrix obtained from the clustering outputs suggests how the diet states are classified in 
terms of Raman characteristics.  To know the diversity of the dietary states, we generate 
hierarchical clustering path plot as a function of the number of clusters, which shows how 
the data makes a group in terms of number of clusters.  

2. Methods  
The experiments were performed by the groups of researchers at the Department of 
Pathology and Cell Regulation, Kyoto Prefectural University of Medicine, Kyoto, Japan 
and the Department of Gastroenterology and Hepatology, Kyoto Prefectural University of 
Medicine, Kyoto, Japan. The details of the experimental system, Raman measurement, 
and evaluations of liver tissues can be found in [22]. The data is used in this study with 
the prior permission from the corresponding authors of [22]. 

The dataset 
The data are the Raman hyperspectral images of rat liver tissues. A total of 48 rat liver 
tissues were collected after 2,4, 8, and 16 weeks of feeding period. 16(= 4×4) rats were 
fed with each diet (standard diet (SD), high-fat diet (HFD), and a high-fat high-
cholesterol diet (HFHC)) for Raman analyses. 

Data preprocessing 
Since pure spectral features are hidden underneath noise and contamination [9], the raw 
Raman data must be preprocessed before quantitative analysis to reduce the influence of 
those contaminations in the analysis and to extract the true spectral information as much 
as possible relevant to the NAFLD states. Following subsection will give a brief 
discussion of the preprocessing schemes of the Raman image data.  

Bias correction 
The first step is to correct the Raman hyperspectral images from the bias which is 
assumed to be noiseless but quite large constant value in intensity. For each hyperspectral 
image, bias is calculated as the minimum intensity of the entire image, and is subtracted 
from each spectrum of the corresponding Raman image. 
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Baseline removal 
In our data, auto-fluorescence contributions (background spectra/baseline) were 
estimated using modified multi-polynomial fitting method, which is a recursive 
polynomial fitting algorithm [26]. It recursively estimates the unwanted contribution 
(anomaly) from the background. Each single pixel spectrum � is first fit to a polynomial �, and then a modified spectrum is constructed as the minimum intensities of original 
spectrum and the fitted polynomial. We compute �� as the number of spectral points of � 
below the fitted polynomial  � , and continue the procedure until a terminative criterion 
holds. To make the terminative criterion consistent for all the spectra in our application, 
we iterate polynomial fitting until �� ≤ 0.01	�� , where ��  is the total number of 
wavenumbers. 8th order polynomial was chosen for fitting the spectra with the above-
mentioned stopping criterion. Finally, the baseline corrected spectrum is obtained by 
subtracting the baseline from the original spectrum. The baseline correction procedure for 
a single spectrum is illustrated in Fig. 1. 
 

 

Figure 1: Sample spectrum with baselines at different number of iterations by recursive 
polynomial fitting. 
 

Segmentation averaging and removal of silent region 

After bias and baseline correction, we segment the Raman tissue images into superpixels 
using extended SLIC [22,25].  The size of each superpixel is chosen so that each 
superpixel contains approximately 100 pixels. One averaged spectrum is computed from 
one superpixel, and in this way, we collect a set of superpixel spectra across all the 48 
Raman images of liver tissues. All the superpixel spectra are then cropped by removing 
the silent region (1801-1799 cm��), where there are no Raman signals in the tissues [27]. 
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Normalization  
Taking into account the signal intensity variation among the spectra due to the 
concentration difference of the tissue samples, area normalization is used for making the 
spectra comparable. The area normalized spectrum ��� ��� of the �-th superpixel spectrum ����� is derived as  

��� ��� = �����∑ ��������� . 
3. Analysis of the Raman image data 
For the quantitative analysis of Raman image data, we performed unsupervised random 
forest (URF) to derive the dissimilarity matrix among the spectra and rate-distortion 
theory (RDT) based clustering to detect the underlying structures of the data.  

Unsupervised random forest (URF) 
URF [10,11,12] is expected to be a promising approach for extracting underlying patterns 
in the data. URF algorithm is the extension of supervised RF which is developed on the 
assumption that any structured data should be distinguishable from its randomly 
generated version [10,11,15]. Appending an original data set with its randomly generated 
version, synthetic data set, URF forms an artificial two-class classification problem 
which is then modeled using supervised RF, where a synthetic data set is labeled as class 
1 while the original data set is labeled as class 2 [10,15] . 
 
URF algorithm is composed of the following steps [10,15]: 
Step 1. A synthetic dataset (same size as original data set) is created by randomly 

sampling equal number of observations from the marginal distributions of the 
original variables. 

Step 2. Concatenate the synthetic dataset below the original data, and labeled the original 
and synthetic data set as “class 1” and “class 2”, respectively, to form a two-class 
classification problem.  

Step 3. Apply supervised RF to this artificial two-class classification problem. 
Step 4. Derive the proximity matrix using the observations only from the original dataset. 

Proximity matrix provides the similarity between the Raman spectra. In RF, 
proximity between two spectra is defined as the number of times that these two spectra 
share the same terminal nodes of a RF tree, divided by the total number of trees in RF 
[10,11,15]. The proximities between spectra construct a proximity matrix �� =[��,�] × , � is the number of spectra, which is symmetric, positive definite [10]. RF 
dissimilarity between two spectra is defined by 1 − [��,�]. Dissimilarity matrix "�	is 
constructed by the all the pairwise dissimilarities between the spectra, which is used as an 
input of RDT clustering and principal coordinates analysis (PCoA) [16] to detect the 
structure of the NAFLD data.   

Clustering using rate-distortion theory (RDT) 
Clustering [17,18] is unsupervised algorithm which groups the elements (spectra) of a 
data set into subgroups (clusters) having the elements (spectra) with similar Raman 
information.  
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We use information theory based clustering by using rate distortion theory (RDT) to 
Raman hyperspectral image data of NAFLD.  RDT [13,14] mainly addresses the 
phenomenon “compressing the data keeping an acceptable level of distortion". That is, it 
finds the number of clusters needed to describe the data within a minimal expected 
distortion. RDT [13,14] clusters a set of spectra by returning the conditional probabilities 
of assigning a given spectrum into a given cluster. 

Suppose # = $��, �%,⋅⋅⋅, �'( be the set of ) spectra and * = $+�, +%,⋅⋅⋅, +'(  is the set 
of ),clusters. RDT clusters the sets of spectra #	into set of clusters *by minimizing the 
rate -�*; #� constrained by the mean distortion < "�*, #� > through the minimization 
[28,29,30] of the functional [13,14,31,32], ℱ2�3+45����67 = -�*; #� + 9 < "�*, #�,																																											�1� 
where �3+45����6 is the conditional probability of assigning a given spectrum ���� into a 
given cluster +4,  -�*; #� is the degree of compression of the spectra into clusters which is defined as  

-�*; #� = ::�3+45����6�3����6log ��+4|�������+4�
'
���

'?
4�� ,																									�2� 

and  < "�*, #� > is the mean distortion among the spectra defined as the mean of the 
pair wise distance between all pairs of spectra within the set of clusters*, averaged over 
all clusters which is defined as  

< "�*, #� >= :��+4� A: ������|+4�����B�|+4�CD,E'
�,��� F'?

4�� ,																								�3� 
Here, ��+4� is the marginal probability of the cluster +4 , 9 is the Lagrange multiplier 
(control parameter) which controls the softness of the clustering.  

The parameters of RDT algorithm is the number of clusters ), and 9. We choose ), = 3to cluster the data based on three different dietary states, and 9 is chosen large 
enough to make RDT as a hard clustering algorithm.   

4. Results and discussions 
URF is employed to the set of all superpixel spectra obtained from all the 48 Raman 
images of liver tissues from SD, HFD, and HFHC groups, where RF comprised of 5000 
fully grown trees was run to obtain the proximity matrix. The proximity matrix is then 
converted into dissimilarity matrix to employ it into PCoA and RDT clustering.  

First, we apply PCoA to the dissimilarity matrix. Fig. 2 represents the visualization 
results of PCoA as a usual scatter plot of spectra in 2-D embedded space, where the 
spectra are colored according to three different diets. We see that the spectra are clearly 
separable into three groups. We observe that the SD group of spectra are located far-away 
from those of the HFHC group, while HFD spectra are located closed to both SD and 
HFHC spectra, and are largely variated. Hence, it is revealed that Raman spectral features 
is significantly larger in HFD group than those at SD and HFHC groups, from which we 
would biologically expect that HFD group has lager diversity of microchemical 
environment than SD and HFHC group.  

This larger dispersion of HFD is harmonized with the results illustrated in Fig. 3 
which shows that the mean of the dissimilarities of the spectra from each of SD, HFD and 
HFHC group are 0.4207, 0.4723 and 0.3770 with the corresponding standard deviations 
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0.0870, 0.1348 and 0.1079, respectively. Here, the variation of the dissimilarities of the 
HFD spectra is larger than that of SD and HFHC.  

 

 

 

Figure 3: The mean and standard deviation of the distances among the spectra in 
different diet groups. 

 

 
Figure 2: PCoA score plot of the spectra in 2-D embedded space obtained using the URF 
dissimilarity matrix. 
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Visual comparison of Fig. 2 and Fig.4 suggests that RDT well classifies the SD and 
HFHC groups (correspond to green and red clusters), but the classification is not well 
performed in case of the HFD group, suggesting that the HFD group is largely diverse in 
terms of Raman information. 

To quantify how well RDT classifies the dietary states, we use performance matrix. 
Assuming three dietary states as true classes (truth labels), we compare those to the RDT 
clustering outputs (the predicted classes).  We find the best-matching pairs between the 
truth labels and RDT clustering labels such that the number of true positive (TP) is 
maximized.  

Table 1: Confusion matrix for RDT clustering 
 Predicted 

A
ct

u
al

 

 SD HFD HFHC Total 

SD 211 13 0 224 

HFD 17 130 77 224 

HFHC 0 0 224 224 

Total 228 143 301 672 

 

The confusion matrix of RDT clustering to classify SD, HFD and HFHC groups is shown 
in Table 1.It shows that, RDT classifies the SD, HFD and HFHC groups with the 
accuracy of ≈ 94%, ≈ 58%, and ≈ 100%, respectively. We see that the prediction of HFD 

We perform RDT classification with 3 classes on the dissimilarity matrix. We have 3 
different clusters corresponding to the different parts/regions across all the liver tissue 
having identical biochemical environment. The distributions of the spectra within the 
clusters are shown in the projected 2-D PCoA space [Fig.4] (each color corresponds to 
individual cluster).  

 
Figure 4: Distributions of the spectra within three clusters in the 2-D PCoA space. 
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is less accurate, which indicates that HFD is a heterogeneous group having diverse 
microchemical environment. This result also harmonizes with the results shown in Figs. 2 
and 3.  

Prespecified three clusters may not be enough to sufficiently quantify the diverse 
chemical environments of the dietary states. Increasing the number of clusters may 
provide better insights into the heterogeneity of the chemical environment of different 
diet states. We calculate the hierarchical clustering path plot of the dietary states as a 
function of the number of clusters, which displays how the subset of spectra will belong 
to each cluster in full dimension. Fig. 5 to Fig. 8 display the hierarchical clustering path 
plots of all the spectra, and the subset of spectra from SD, HFD and HFHC groups. Here, 
each marker point represents the mean index of a cluster corresponding to the number of 
clusters. Each line represents the path of the spectra, i.e., how they distributed if we 
increase the number of clusters. The thickness of the line indicates the probability of 
“path of those spectra” belonging to clusters. 

 

 

Figure 5: Hierarchical clustering path plot for all the spectra from SD, HFD and HFHC 
groups 
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Figure 6: Hierarchical clustering path plot for all the spectra from SD group. 

 
 

 
Figure 7: Hierarchical clustering path plot for all the spectra from HFD group 
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Figure 8: Hierarchical clustering path plot for all the spectra from HFHC group. 
 
Fig. 5 shows how the set of superpixel spectra from all the three states 

hierarchically makes a group in full dimension. In Fig. 6, we see that SD spectra rarely 
change microchemical environment. The high probable path represents that most of the 
spectra in SD group belongs to single cluster indicating a good classification. Fig. 7 
shows that HFD spectra are largely diffused indicating a larger diversity of 
microchemical environment which results the less accuracy of the RDT clustering. 
Finally, Fig. 8 illustrates that HFHC diet state quickly changes microchemical 
environment, and most of the spectra are localized in a single cluster indicating a good 
prediction. 

 
5. Conclusions 
This work dealt with the quantitative analysis of biomedical Raman images of non-
alcoholic fatty liver disease (NAFLD) using unsupervised random forest (URF)-derived 
proximity measure combined with rate-distortion theory (RDT) based clustering, to 
explore the underlying information of the data. URF derived the dissimilarity matrix from 
the spectra, which was used as the input of unsupervised learning algorithms, namely, 
principle coordinate analysis (PCoA) and RDT based clustering. RDT revealed the 
hidden patterns in the data where Raman spectra are visible into separable groups. RDT 
clustering distinguished SD and HFHC into separate groups with high accuracy, but in 
case of HFD the accuracy was not high. It was found that HFD spectra were largely 
diffused compared to SD and HFHC spectra, indicating a larger diversity of 
microchemical environment in this HFD group. Hierarchical clustering path plot shed 
light upon how a set of spectra hierarchically makes a group in full spectral dimension. 
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