Annals of Pure and Applied Mathematics

Vol. 1, No. 2, 2012, 176-185

ISSN: 2279-087X (P), 2279-0888(online)

Published on 16 November 2012 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Some Properties of Semi-Prime Ideals in Lattices

M.Ayub Ali¹, R.M.Hafizur Rahman² and A.S.A.Noor³

¹Department of Mathematics Jagannath University, Dhaka, Bangladesh Email: ayub ju@yahoo.com

²Department of Mathematics Begum Rokeya University, Rangpur, Bangladesh Email: salim030659@yahoo.com

³Department of ECE East West University, Dhaka, Bangladesh Email: noor@ewubd.edu

Abstract. Recently Yehuda Rav has given the concept of Semi-prime ideals in a general lattice by generalizing the notion of 0-distributive lattices. In this paper we have included several characterizations of Semi-prime ideals. Here we give a simpler proof of a prime Separation theorem in a general lattice by using semi-prime ideals. We also studied different properties of minimal prime ideals containing a semi prime ideal in proving some interesting results. By defining a p-algebra L relative to a principal semi prime ideal J, we have proved that when L is 1-distributive, then L is a relative S-algebra if and only if every prime ideal containing J contains a unique minimal prime ideal containing J, which is also equivalent to the condition that for any $x, y \in L$, $x \land y \in J$ implies $x^+ \lor y^+ = 1$. Finally, we have proved that every relative S-algebra is a relative D- algebra if L is 1-distributive and modular with respect to J.

Keywords. Semi-prime ideal, 0-distributive lattice, Annihilator ideal, Maximal filter, Minimal prime ideal.

AMS Mathematics Subject Classifications (2010): 06A12, 06A99, 06B10

1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet [7] introduced the notion of 0-distributive lattices. [1] has given several

Y. Rav [5] has generalized this concept and gave the definition of semi prime ideals in a lattice. For a non-empty subset I of L, I is called a down set if for $a \in I$ and $x \le a$ imply $x \in I$. Moreover I is an ideal if $a \lor b \in I$ for all $a,b \in I$. Similarly, F is called a filter of L if for $a,b \in F$, $a \land b \in F$ and for $a \in F$ and $x \ge a$ imply $x \in F$. F is called a maximal filter if for any filter $M \supseteq F$ implies either M = F or M = L. A proper ideal (down set) I is called a prime ideal (down set) if for $a,b \in L$, $a \land b \in I$ imply either $a \in I$ or $b \in I$. A prime ideal P is called a minimal prime ideal if it does not contain any other prime ideal. Similarly, a proper filter Q is called a prime filter if $a \lor b \in Q$ $(a,b \in L)$ implies either $a \in Q$ or $b \in Q$. It is very easy to check that F is a filter of L if and only if L - F is a prime down set. Moreover, F is a prime filter if and only if L - F is a prime ideal.

An ideal I of a lattice L is called a *semi prime ideal* if for all $x, y, z \in L$, $x \wedge y \in I$ and $x \wedge z \in I$ imply $x \wedge (y \vee z) \in I$. Thus, for a lattice L with 0, L is called *0-distributive* if and only if (0] is a semi prime ideal. In a distributive lattice L, every ideal is a semi prime ideal. Moreover, every prime ideal is semi prime. In a pentagonal lattice $\{0, a, b, c, 1; a < b\}$, (0] is semi prime but not prime. Here (b] and (c] are prime, but (a] is not even semi prime. Again in $M_3 = \{0, a, b, c, 1; a \wedge b = b \wedge c = a \wedge c = 0; a \vee b = a \vee c = b \vee c = 1\}$ (0], (a], (b], (c] are not semi prime.

Following lemmas are due to [2].

Lemma 1. Every filter disjoint from an ideal I is contained in a maximal filter disjoint from I.

Lemma 2. Let I be an ideal of a lattice L. A filter M disjoint from I is a maximal filter disjoint from I if and only if for all $a \notin M$, there exists $b \in M$ such that $a \wedge b \in I$

Let L be a lattice with 0. For $A \subseteq L$, We define

 $A^{\perp} = \{x \in L : x \land a = 0 \text{ for all } a \in A \}.$ A^{\perp} is always a down set of L, but not necessarily an ideal.

Following result is an improvement of [2, Theorem 6].

Theorem 3. Let L be a 0-distributive lattice. Then for $A \subseteq L$, A^{\perp} is a semi-prime ideal.

Proof: We have already mentioned that A^{\perp} is a down set of L. Let $x, y \in A^{\perp}$. Then $x \wedge a = 0 = y \wedge a$ for all $a \in L$. Hence $a \wedge (x \vee y) = 0$ for all $a \in A$. This implies $x \vee y \in A^{\perp}$ and so A^{\perp} is an ideal.

Now let $x \wedge y \in A^{\perp}$ and $x \wedge z \in A^{\perp}$. Then $x \wedge y \wedge a = 0 = x \wedge z \wedge a$ for all $a \in A$. This implies $x \wedge a \wedge (y \vee z) = 0$ for all $a \in L$ as L is 0-distributive. Hence $x \wedge (y \vee z) \in A^{\perp}$ and so A^{\perp} is a semi prime ideal. \bullet

Let $A \subseteq L$ and J be an ideal of L. We define

 $A^{\perp_J}=\{x\in L:x\wedge a\in J\ \ for\ \ all\ \ a\in A\}$. This is clearly a down set containing J . In presence of distributivity, this is an ideal. A^{\perp_J} is called an annihilator of A relative to J.

Following Theorem due to [2] gives some nice characterizations of semi prime ideals.

Theorem 4. Let L be a lattice and J be an ideal of L. The following conditions are equivalent.

- (i) J is semi prime.
- (ii) $\{a\}^{\perp_J} = \{x \in L : x \land a \in J\}$ is a semi prime ideal containing J.
- (iii) $A^{\perp_J} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$ is a semi prime ideal containing J.
- (iv) Every maximal filter disjoint from J is prime. \bullet

Following prime Separation Theorem due to [5] was proved by using Glevinko congruence. But we have a simpler proof.

Theorem 5. Let J be an ideal of a lattice L. Then the following conditions are equivalent:

(i) J is semi prime

(ii) For any proper filter F disjoint to J there is a prime filter Q containing F such that $Q \cap J = \phi$.

Proof. (i)=>(ii). Since $F \cap J = \phi$, so by Lemma 1, there exists a maximal filter $Q \supseteq F$ such that $Q \cap J = \phi$. Then by Theorem 4, Q is prime.

(ii)=>(i). Let F be a maximal filter disjoint to J. Then by (ii) there exists a prime filter $Q \supseteq F$ such that $Q \cap J = \phi$. Since F is maximal, so Q = F. This implies F is prime and so by theorem 4, J must be semi prime. \bullet

Now we give another characterization of semi-prime ideals with the help of Prime Separation Theorem using annihilator ideals. This is also an improvement of the result

[4, Theorem 8].

Theorem 6. Let J be an ideal in a lattice L. J is semi-prime if and only if for all filter F disjoint to A^{\perp_J} ($A \subseteq L$), there is a prime filter containing F disjoint to A^{\perp_J} .

Proof. Suppose J is semi prime and F is a filter with $F \cap A^{\perp_J} = \emptyset$. Then by Theorem 4, A^{\perp_J} is a semi prime ideal. Now by Lemma 1, we can find a maximal filter Q containing F and disjoint to A^{\perp_J} . Then by Theorem 4 (iv), Q is prime.

Conversely, let $x \wedge y \in J$, $x \wedge z \in J$. If $x \wedge (y \vee z) \notin J$, then $y \vee z \notin \{x\}^{\perp_J}$. Thus $[y \vee z) \cap \{x\}^{\perp_J} = \varphi$. So there exists a prime filter Q containing $[y \vee z)$ and disjoint from $\{x\}^{\perp_J}$. As $y,z \in \{x\}^{\perp_J}$, so $y,z \notin Q$. Thus $y \vee z \notin Q$, as Q is prime. This implies, $[y \vee z)$ Q a contradiction. Hence $x \wedge (y \vee z) \in J$, and so J is semi-prime. \bullet

Let J be any ideal of a lattice L and P be a prime ideal containing J. We define $J(P) = \{x \in L : x \land y \in J \text{ for some } y \in L - P\}$. Since P is a prime ideal, so L - P is a prime filter. Clearly J(P) is a down set containing J and $J(P) \subseteq P$.

Lemma 7. If P is a prime ideal of a lattice L containing any semi prime ideal J, then J(P) is a semi prime ideal.

Proof. Let $a, b \in J(P)$. Then $a \land v \in J$ and $b \land s \in J$ for some $v, s \in L - P$. Thus $a \land v \land s \in J$ and $b \land v \land s \in J$. Since J is semiprime, so

 $v \wedge s \wedge (a \vee b) \in J$ and $v \wedge s \in L - P$ as it is a filter. Hence $a \vee b \in J(P)$ and so J(P) is an ideal as it is a down set.

Now suppose $x \wedge y, x \wedge z \in J(P)$.

Then $x \wedge y \wedge v, x \wedge z \wedge s \in J$ for some $v, s \in L - P$. Then by the semi primeness of J, $[(x \wedge y) \vee (x \wedge z)] \wedge v \wedge s \in J$ where $v \wedge s \in L - P$.

This implies $(x \wedge y) \vee (x \wedge z) \in J(P)$, we have J(P) is semi prime. \bullet

Lemma 8. Let J be a semi prime ideal of a lattice L and P be a prime ideal containing J. If Q is a minimal prime ideal containing J(P) with $Q \subseteq P$, then for any $y \in Q - P$, there exists $z \notin Q$ such that $y \land z \in J(P)$.

Proof. If this is not true, then suppose for all $z \notin Q$, $y \land z \notin J(P)$.

Set $D = (L - Q) \vee [y]$. We claim that $J(P) \cap D = \emptyset$. If not, let $t \in J(P) \cap D$.

Then $t \in J(P)$ and $t \ge a \land y$ for some $a \in L - Q$.

Now $a \wedge y \leq t$ implies $a \wedge y \in J(P)$, which is a contradiction to the assumption . Thus, $J(P) \cap D = \phi$.

Then by Lemma 1, there exists a maximal filter $R \supseteq D$ such that, $R \cap J(P) = \emptyset$. Since J(P) is semiprime, so by Theorem 4, R is a prime filter. Therefore L-R is a mminimal prime ideal containing J(P). Moreover $L-R \subseteq Q$ and $L-R \ne Q$ as $y \in Q$ but $y \not\in L-R$. This contradicts the minimality of Q. Therefore there must exist $z \not\in Q$ such that $y \land z \in J(P)$.

Lemma 9. Let P be a prime ideal containing a semi prime ideal J. Then each minimal prime ideal containing J(P) is contained in P.

Proof. Let Q be a minimal prime ideal containing J(P). If Q P, then choose $y \in Q - P$. Then by lemma 8, $y \land z \in O(P)$ for some $z \notin Q$. Then $y \land z \land x \in J$ for some $x \notin P$. As P is prime, $y \land x \notin P$. This implies $z \in J(P) \subseteq Q$, which is a contradiction. Hence $Q \subseteq P$.

Proposition 10. If in a lattice L, P is a prime ideal containing a semi prime ideal J, then the ideal J(P) is the intersection of all the minimal prime ideals containing J but contained in P.

Proof. Let Q be a prime ideal containing J such that $Q \subseteq P$. Suppose $x \in J(P)$

Then $x \wedge y \in J$ for some $y \in L - P$. Since $y \notin P$, so $y \notin Q$. Then $x \wedge y \in J \subseteq Q$ implies $x \in Q$.

Thus $J(P) \subseteq Q$. Hence J(P) is contained in the intersection of all minimal prime ideals containing J but contained in P. Thus $J(P) \subseteq \bigcap \{Q$, the prime ideals containing J but contained in $P\} \subseteq \bigcap \{Q$, the minimal prime ideals containing J but contained in $P\} = X$ (say).

Now, $J(P) \subseteq X$. If $J(P) \neq X$, then there exists $x \in X$ such that $x \notin J(P)$. Then $[x) \cap J(P) = \emptyset$. So by Zorn's lemma as in lemma 1 there exists a maximal filter $F \supseteq [x)$ and disjoint to J(P). Hence by Theorem 4, F is a prime filter as J(P) is semiprime. Therefore L - F is a minimal prime ideal containing J(P). But $x \notin L - F$ implies $x \notin X$ gives a contradiction. Hence $J(P) = X = \bigcap \{Q, \text{ the minimal prime ideals containing } J \text{ but contained in } P \}. \bullet$

An algebra $L = \langle L, \wedge, \vee, *, 0, 1 \rangle$ of type $\langle 2, 2, 1, 0, 0 \rangle$ is called a p-algebra if

- (i) $\langle L; \wedge, \vee, *, 0, 1 \rangle$ is a bounded lattice, and
- (ii) for all $a \in L$, there exists an a^* such that $x \le a^*$ if and only if $x \land a = 0$. The element a^* is called the *pseudo complement* of a.

Let J be an ideal of a lattice L with 1. For an element $a \in L$, a^+ is called the *pseudo complement of a relative to* J if $a \wedge a^+ \in J$ and for any $b \in L$, $a \wedge b \in J$ implies $b \leq a^+$. L is called a *pseudo complemented lattice relative to* J if its every element has a pseudo complement relative to J.

Theorem 11. For an ideal J of a lattice L with l, if L is pseudo complemented relative to J, then J must be a principal semi prime ideal.

Proof. Let L be pseudo complemented relative to J. Now for all $a \in L$, $1 \wedge a = a$. So the relative pseudo complement of 1 must be the largest element of J. Hence J must be principal. Now suppose $a,b,c \in L$ with $a \wedge b,a \wedge c \in J$.

Then $b,c \le a^+$, and so $b \lor c \le a^+$. Thus $a \land (b \lor c) \in J$, and hence J is semi prime. \bullet

An algebra $L=\left\langle L,\wedge,\vee,+,J,1\right\rangle$ is called a p-algebra relative to J if

- (i) $\langle L; \land, \lor, J, 1 \rangle$ is a lattice with 1 and a principal semi prime ideal J, and
- (ii) for all $a \in L$, there exists a pseudo complement a^+ relative to J.

Suppose J = (t]. An element $a \in L$ is called a *dense element relative to* J if $a^+ = t$.

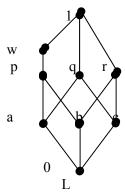
We denote the set of all dense elements relative to J by $D_J(L)$. It is easy to check that $D_J(L)$ is a filter of L.

Lemma 12. Let $L = (L; \land, \lor, +, J, 1)$ be a p-algebra relative to J and P be a prime ideal of the lattice L containing J. Then the following conditions are equivalent.

- (i) P is a minimal prime ideal containing J.
- (ii) $x \in P \text{ implies } x^+ \notin P$.
- (iii) $x \in P \text{ implies } x^{++} \in P.$
- (iv) $P \cap D_J(L) = \emptyset$.

Proof. (i) implies (ii). Let P be minimal and let (ii) fail, that is, $a^+ \in P$ for some $a \in P$. Let $D = (L - P) \vee [a)$. We claim that $J \cap D = \emptyset$. Indeed, if $j \in J \cap D$, then $j \geq q \wedge a$ for some $q \in L - P$, which implies that $q \wedge a \in J$, and so $q \leq a^+$. Thus $q \in P$ gives a contradiction. Then $a^+ \notin D$, for otherwise $a \wedge a^+ \in J \cap D$. Hence $D \cap (a]^+ = D \cap \{a\}^{\perp_J} = \emptyset$. Then by Theorem 5, there exists a prime filter $F \supseteq D$ and disjoint to (aJ^+) . Hence Q = L - F is a prime ideal disjoint to D. Then $Q \subseteq P$, since $Q \cap (L - P) = \emptyset$ and $Q \neq P$, as $a \notin Q$, cotradicting the minimality of P.

- (ii) implies (iii). Indeed $x^+ \wedge x^{++} \in J \subseteq P$ for any $x \in L$; thus if $x \in P$, then by (ii), $x^+ \notin P$, implying that $x^{++} \in P$.
- (iii) implies (iv). If $a \in P \cap D_J(L)$ for some $a \in L$, then $a^{++} = 1 \notin P$, a contradiction to (iii). Thus $P \cap D_J(L) = \phi$.
- (iv) implies (i). If P is not minimal prime ideal containing J, then $Q \subset P$ for some prime ideal Q of L containing J. let $x \in P Q$. Then $x \wedge x^+ \in J \subseteq Q$ and $x \notin Q$; therefore $x^+ \in Q \subset P$, which implies that $x \vee x^+ \in P$. But $x \vee x^+ \in D_J(L)$; thus we obtain $x \vee x^+ \in P \cap D_J(L)$, contradictiong (iv). \bullet A relative p-algebra $L = \langle L; \wedge, \vee, +, J, 1 \rangle$ is called a *relative S-algebra* if $a^+ \vee a^{++} = 1$. L is said to be a relative D-algebra if for all $a, b \in L$, $(a \wedge b)^+ = a^+ \vee b^+$. Of course every relative D-algebra is a relative S-algebra, but the following example due to [3] shows that the converse need not be true.



Here, L is an S-algebra, but $(q \wedge r)^* = c^* = w \neq p = b \vee a = q^* \vee r^*$ shows that it is not a D-algebra.

Two prime ideals P and Q are called *co-maximal* if $P \vee Q = L$. Following result on 1-distributive lattices is due to [6].

Theorem 13. Let L be a lattice with 1. Then the following conditions are equivalent.

- (i) L is 1-distributive.
- (ii) Every maximal ideal is a prime ideal.
- (iii) Each $a \neq 1$ of L is contained in a prime ideal. •

Theorem 14. In a relative p-algebra $L = (L; \land, \lor, +, J, 1)$ where L is 1distributive the following conditions are equivalent

- L is a relative S -algebra.
- (ii) Any two distinct minimal prime ideals containing J are co-maximal.
- (iii) Every prime ideal containing J contains a unique minimal prime ideal containing J.
- (iv) For each prime ideal P containing J, J(P) is a prime ideal.
- (v) For any $x, y \in L$, $x \land y \in J$, implies $x^+ \lor y^+ = 1$.

Proof. (i) implies (ii). Suppose L is a relative S-algebra. Let P and Q be two distinct minimal prime ideals containing J. Choose $x \in P - Q$. Then by Lemma 12, $x^+ \notin P$ but $x^{++} \in P$. Now $x \wedge x^+ \in J \subseteq Q$ implies $x^+ \in Q$, as Q is prime.

Therefore, $1 = x^{++} \lor x^{+} \in P \lor Q$. Hence $P \lor Q = L$. That is P, Q are comaximal.

(ii) implies (iii) is trivial.

- (iii) implies (iv). By Theorem 11, J is a semi ptrime ideal. So by Proposition 10, (iv) holds.
- (iv) implies (v). Suppose (iv) holds and yet (v) does not. Then there exists $x, y \in L$ with $x \wedge y \in J$ but $x^+ \vee y^+ \neq 1$. Since L is 1-distributive, so by Theorem 13(iii), there is prime ideal P containing $x^+ \vee y^+$. If $x \in J(P)$, then $x \wedge r \in J$ for some $r \in L P$. This implies $r \leq x^+ \in P$ gives a contradiction. Hence $x \notin J(P)$. Similarly $y \notin J(P)$. But by (iv), J(P) is prime, and so $x \wedge y \in J \subseteq J(P)$ is contradictory. Thus (iv) imples (v).
- (v) implies (i). Since $x \wedge x^+ \in J$, so by (v) $x^{++} \vee x^+ = 1$, and L is an S-algebra relative to J.

A lattice L with 0 is called 0-modular if for all $x,y,z\in L$ with $z\leq x$ and $x\wedge y=0$ imply $x\wedge (y\vee z)=z$. Now we generalize the concept. Let J be an ideal of a lattice L. We define L to be modular with respect to J if for all $x,y,z\in L$ with $z\leq x$ and $x\wedge y\in J$ imply $x\wedge (y\vee z)=z$.

We conclude the paper with the following result.

Theorem 15. Let $\langle L: \land, \lor, +, J, 1 \rangle$ be a relative P-algebra such that L is both modular with respect J and 1-distributive. If L is a relative S-algebra, then it is a relative D- algebra.

Proof. Suppose L is an S-algebra and $a,b\in L$. Now $a^+\vee a^{++}=1=b^+\vee b^{++}$. Thus $(a^+\vee b^+)\vee b^{++}=1=(a^+\vee b^+)\vee a^{++}$. Since L is 1-distributive, so $a^+\vee b^+\vee (a^{++}\wedge b^{++})=1$. Now $a\wedge b\wedge a^+\in J$ and $a\wedge b\wedge b^+\in J$ imply a^+ , $b^+\leq (a\wedge b)^+$, and so $a^+\vee b^+\leq (a\wedge b)^+$. Also, $(a\wedge b)^+\wedge (a^{++}\wedge b^{++})=(a\wedge b)^+\wedge (a\wedge b)^{++}\in J$. Thus by J-modularity of L, $(a\wedge b)^+=(a\wedge b)^+\wedge 1=(a\wedge b)^+\wedge [(a^{++}\wedge b^{++})\vee (a^+\vee b^+)]=a^+\vee b^+$, and so L is a relative D- algebra. \bullet

REFERENCES

- 1. P. Balasubramani and P. V. Venkatanarasimhan, Characterizations of the 0-distributive Lattices, Indian J. Pure Appl. Math. 32(3) 315-324, (2001).
- 2. R. M. Hafizur Rahaman, Md Ayub Ali, A. S. A. Noor, On Semi-prime ideals of a lattice, Accepted; Journal of Mechanics of Continua and Mathematical Sciences, Kolkata, India.

- 3. C. Nag, S. N. Begum and M. R. Talukder, Some characterizations of D- algebras and its p- ideals, Presented in the 17th Mathematics conference, Bangladesh Math. Soc.(2011).
- 4. Y. S. Powar and N. K. Thakare, 0-Distributive semilattices, Canad. Math. Bull. Vol. 21(4) (1978), 469-475.
- 5. Y. Rav, Semi prime ideals in general lattices, Journal of Pure and Applied Algebra, 56(1989) 105-118.
- 6. Razia Sultana M. Ayub Ali and A. S. A. Noor, Some properties of 0-distributive and 1-distributive lattices, working paper.
- 7. J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Sci. Liege, 37(1968), 149-158.