Annals of Pure and Applied Mathematics Vol. 1, No. 1, 2012, 91-96 ISSN: 2279-087X (P), 2279-0888(online) Published on 20 September 2012 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Annulets in a Distributive Nearlattice

M. Ayub Ali¹, A. S. A. Noor² and A. K. M. S. Islam³

¹Department of Mathematics Jagannath University, Dhaka Bangladesh E-mail: <u>ayub_ju@yahoo.com</u>

²Department of ECE East West University, Dhaka Bangladesh E-mail: <u>noor@ewubd.edu</u>

³Department of Mathematics Edward college, Pabna Bangladesh

Received 1 September 2012; accepted 15 September 2012

Abstract. Here the authors show that in a distributive near lattice S with 0, set of all ideals of the form $(x]^*$, denoted by $A_0(S)$ is a join semi lattice with lower bound property. It is a sub semi lattice of lattice of ideals if and only if S is normal. We show that $A_0(S)$ is relatively complemented if and only if S is sectionally quasi-complemented. Moreover, $A_0(S)$ is Boolean when S is quasi-complemented.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

Keyword: Relatively complemented, Sectionally Quasi-complimented, Annihilator ideal.

1. Introduction

In a distributive lattice L with 0, set of all ideals of the form $(x]^*$ can be made into a lattice $A_0(L)$, which is by [1] called the lattice of annulates of L. In this paper we have studied annulates of nearlattices and generalized several results of [1].

M. Ayub Ali, A. S. A. Noor and A. K. M. S. Islam

By a *near lattice*, we mean a meet semilattice with the property that any two elements possessing a common upper bound have a supremum. By [2], this property is known as the "**upper** bound property". For detailed literature on nearlattices see [2], [3] and [7].

A nearlattice S is called a *distributive nearlattice* if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$, provided $y \lor z$ exists. A nonempty subset I of a nearlattice S is called an *ideal* if

- i) For $x, y \in I$, $x \lor y \in I$, provided $x \lor y$ exists, and
- ii) For $x \in I$, $t \le x$ ($t \in S$) implies $t \in I$.

A non empty subset of *S* is called a filter if i) for all $x, y \in F$, $x \land y \in F$, and ii) $t \in S$, $t \ge x$ and $x \in F$ imply $t \in F$.

For a distributive nearlattice S with 0, I(S) denotes the set of all ideals, which is a distributive lattice.

A distributive nearlattices S with 0 is called normal if every prime ideal of S contains a unique minimal prime ideal. A distributive near lattice S with 0 is called generalized Stone if for each $x \in S$, $(x]^* \vee (x]^{**} = S$.

In this paper by a "dual nearlattice" we will mean a join semilattice with the lower bound property. That is, its notion is dual to a nearlattice.

2. Annulets

For a distributive nearlattice S with 0, I(S) the lattice of ideals of S is pseudo complemented. An ideal J of S is called an annihilator ideal if $J = J^{**}$. The pseudo complement of an ideal J is the annihilator ideal $J^* = \{x \in S : x \land j = 0 \}$ for all $j \in J\}$. It is well known by [4, Theorem 4, p-58] that the set of annihilator ideals A(S) is a Boolean algebra, where the supremum of J and K in A(S) is given by $J \lor K = (J^* \cap K^*)^*$. Thus for two annulets $(x]^*$ and $(y]^*$. $(x]^* \lor (y]^* = ((x]^{**} \cap (y]^{**})^* = ((x \land y]^{**})^* = (x \land y]^*$. Hence, the set of all annulets $A_0(S)$ of S is a join sub semilattice of A(S). Of course, $A_0(S)$ is not necessarily a meet semilattice. But for any $x, y \in S$ if $x \lor y$ exists then $(x]^* \cap (y]^* = (x \lor y]^*$.

Annulets in a Distributive Nearlattice

Proposition 2.1. Let S be a distributive nearlattice with 0. Then $A_0(S)$ is a dual nearlattice and it is a dual subnearlattice of A(S). Moreover, $A_0(S)$ has the same largest element $S = (0]^*$ as A(S).

Proof: We have already shown that $A_0(S)$ is a join subsemilattice of A(S). Now suppose $(x]^* \supseteq (t]^*$ and $(y]^* \supseteq (t]^*$ for some $x, y, t \in S$. Then $(x]^* \cap (y]^* = ((x]^* \cap (y]^*) \supseteq (t]^* = ((x]^* \supseteq (t]^*) \cap ((y]^* \supseteq (t]^*) = (x \land t]^* \cap (y \land t]^* = ((x \land t) \lor (y \land t)])^*$ as $(x \land t) \lor (y \land t)$ exists by the upper bound property of S. This shows that $A_0(S)$ has the lower bound property. Hence $A_0(S)$ is a dual nearlattice and so a dual subnearlattice of A(S).

Proposition 2.2. Let S be a distributive nearlattice with 0. $A_0(S)$ has a smallest element (then of course, it is a lattice) if and only if S possesses an element d such that $(d]^* = (0]$.

Proof. If there is an element $d \in S$ with $(d]^* = (0]$, then clearly (0] is the smallest element in $A_0(S)$.

Conversely, if $A_0(S)$ has a smallest element $(d]^*$, then for any $x \in S$, $(x]^* = (x]^* \lor (d]^* = (x \land d]^*$. Thus $x \land d = 0$ implies $(x]^* = (0]^* = S$, and hence $(d]^* = (0]$.

Following result gives a characterization of a normal nearlattice which is a generalization of [1, Proposition 2.2].

Theorem 2.3. A distributive nearlattice S with 0 is normal if and only if $A_0(S)$ is a join subsemilattice of I(S).

Proof. By Proposition 2.1, $A_0(S)$ is a join subsemilattice of A(S), and for any $x, y \in S, (x]^* \lor (y]^* = (x \land y]^*$. Now by [6, Theorem 1.9], S is normal if and only if $(x]^* \lor (y]^* = (x \land y]^*$ for all $x, y \in S$. Hence $(x]^* \lor (y]^* = (x]^* \lor (y]^*$ for all $x, y \in S$. This proves the theorem.

A distributive nearlattice *S* with 0 is called disjunctive if for $0 \le a < b$

M. Ayub Ali, A. S. A. Noor and A. K. M. S. Islam

 $(a, b \in S)$ there is an element $x \in S$ such that $a \wedge x = 0$ where $0 < x \le b$. It is easy to check that S is disjunctive if and only if $(a]^* = (b]^*$ implies a = b for any $a, b \in S$. Then we have the following result.

Theorem 2.4. A disjunctive normal nearlattice S is dual isomorphic to $A_0(S)$. Hence S has a largest element (in that case S is a lattice) if and only if there exists $d \in S$ such that $(d]^* = (0]$.

Proof. If S is normal, then by theorem 2.3, $A_0(S)$ is a join subsemilattice of I(S), and for any $x, y \in S$, $(x \wedge y]^* = (x]^* \vee (y]^*$. Also for any near lattice S, $(x]^* \cap (y]^*$

 $=(x \lor y]^*$ if $x \lor y$ exists in S. Hence the map $x \to (x]^*$ is a dual homomorphism from S onto $A_0(S)$. If S is disjunctive then obviously this map is one-one and so is a dual isomorphism. Second part is trivial.

By [5] a distributive near lattice S with 0 is called quasi-complemented if for each $x \in S$, there is an x' such that $x \wedge x' = 0$ and $(x]^* \cap (x')^* = (0)$. The following result generalizes [1, Proposition 2.4].

Theorem 2.5. A distributive nearlattice S with 0 is quasi-complemented if and only if $A_0(S)$ is a Boolean subalgebra of A(S).

Proof. Suppose S is quasi-complemented. Then by [5, Th. 2.1] S has an element d such that $(d]^* = (0]$. Then by Proposition 2.2, $A_0(S)$ has a smallest element and so it is a sublattice of A(S). Moreover for each $x \in S$ there exists $x' \in S$ such that $x \wedge x' = 0$ and $(x]^* \cap (x']^* = (0]$. Then $(x]^* \vee (x']^* = (x \wedge x']^* = (0]^* = S$. Therefore $A_0(S)$ is a Boolean subalgebra of A(S).

Conversely, if $A_0(S)$ is a Boolean subalgebra of A(S), then for any $x \in S$ there exists $y \in S$ such that $(x]^* \cap (y]^* = (0]$ and $(x]^* \vee (y]^* = S$. But $(x]^* \vee (y]^* = (x \wedge y]^*$, and so $x \wedge y = 0$. Therefore S is a quasi-complemented.

Now we generalize [1, Proposition 2.5]. To prove this we need the following lemma. The proof of lemma is trivial.

Lemma 2.6. Let I = [0, x], 0 < x be an interval in a distributive nearlattice S with 0. For $a \in I$, $(a]^+ = \{y \in I : y \land a = 0\}$ is the annihilator of (a] with respect to I. Then

(i) If $a, b \in I$ and $(a]^+ \subseteq (b]^+$ then $(a]^* \subseteq (b]^*$ (ii) If $w \in S$, $(w]^* \cap I = (w \land x]^+ \blacksquare$

Theorem 2.7. For a distributive nearlattice S with 0, $A_0(S)$ is relatively complemented if and only if S is sectionally quasi -complemented.

Proof. Suppose $A_0(S)$ is relatively complemented. Consider the interval I = [0, x] and let $a \in I$, then $(x]^* \subseteq (a]^* \subseteq (0]^* = S$. Since the interval $[(x]^*, S]$ in $A_0(S)$ is complemented, there exists $w \in S$ such that $(a]^* \cap (w]^* = (x]^*$ and $(a]^* \vee (w]^* = S$. Then $(a]^* \vee (w]^* = (a \wedge w]^*$ gives $a \wedge w = 0$ Then $a \wedge w \wedge x = 0$ and $w \wedge x \in I$. Moreover, intersecting $(a]^* \cap (w]^* = (x]^*$ with (x] and using above lemma, we have $(a]^+ \cap (w \wedge x]^+ = (0]$. This shows that I is quasi -complemented.

Conversely, suppose S is sectionally quasi –complemented. Since $A_0(S)$ is distributive, it suffices to prove that the interval $[(a]^*, S]$ is complemented for $a \in S$. $(b]^* \in [(a]^*, S]$. Then $(a]^* \subseteq (b]^* \subseteq S$, Let each so $(b]^* = (a]^* \vee (b]^* = (a \wedge b]^*$. Now consider the interval I = [0, a] in S. Then $a \wedge b \in I$. Since I is quasi-complemented, there exists $w \in I$ such that $(w]^+ \cap (a \wedge b]^+ = (0] = (a]^+.$ $w \wedge a \wedge b = 0$ and This implies $(w \lor (a \land b)]^+ = (a]^+$, as $w \lor (a \land b)$ exists in S. Then by lemma 2.6(i), $(a]^* = (w \lor (a \land b)]^* = (w]^* \cap (a \land b]^* = (w]^* \cap (b]^*$. Also from $w \land a \land b = 0$ we have $w \wedge b = 0$, hence $(w]^* \leq (b]^* = S$. Therefore $A_0(S)$ is relatively complemented.

Since by [5, Theorem 2.3], a nearlattice S is generalized Stone if and only if it is normal and sectionally quasi-complemented, combining Theorems 2.7 and 2.3 we have the following result:

Theorem 2.8. A nearlattice S with 0 is a generalized Stone nearlattice if and only if $A_0(S)$ is a relatively complemented dual subnearlattice of I(S).

REFERENCES

- 1. W. H. Cornish, Annulets and α -ideals in a distributive lattice, *J. Austral. Math. Soc.*, 15(1) (1973) 70-77.
- 2. W. H. Cornish and R.C. Hickman, Weakly distributive semilattices, *Acta. Math. Acad. Soci. Hung.*, 32 (1978) 5-16.
- 3. W. H. Cornish and A. S. A. Noor, Standard elements in a nearlattice, *Bull. Austral. Math. Soc.*, 26(2) (1982), 185-213.
- 4. G. Gratzer, *Lattice theory: First concepts and distributive lattices*, Freeman, SanFrancisco, 1971.
- 5. A. S. A. Noor and A. K. M. S. Islam, Generalized Stone nearlattces, *Jahangirnagar University Journal of Science*, 33 (1) (2010) 105-111.
- 6. A. S. A. Noor and M. A. Latif, Normal nearlattices, *The Rajshahi University Studies*, 9 (1982) 69-74.
- 7. A. S. A. Noor and M. B. Rahaman, Separation properties in nearlattices, *The Rajshahi University Studies*, 22 (1994), Part-B.