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Abstract. Here the authors show that in a distributive near lattice S  with 0, set of 
all ideals of the form (x]*, denoted by )(0 SA  is a join semi lattice with lower bound 
property.  It is a sub semi lattice of lattice of ideals if and only if S is normal. We 
show that )(0 SA  is relatively complimented if and only if S  is sectionally quasi-
complemented. Moreover, )(0 SA  is Boolean when S  is quasi-complemented.   
 
AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10 
 
Keyword: Relatively complemented, Sectionally Quasi-complimented, Annihilator 
ideal. 
 
1. Introduction 
In a distributive lattice L  with 0 , set of all ideals of the form *](x  can be made 
into a lattice )(0 LA , which is by [1] called the lattice of annulates of L . In this paper 
we have studied annulates of nearlattices and generalized several results of [1]. 
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By a near lattice, we mean a meet semilattice with the property that any two 
elements possessing a common upper bound have a supremum.  By [2], this property 
is known as the “upper bound property”. For detailed literature on nearlattices see 
[2], [3] and [7]. 
 
A nearlattice S  is called a distributive nearlattice if for all 

)()()(,,, zxyxzyxSzyx ∧∨∧=∨∧∈ , provided zy ∨  exists.  A nonempty 
subset I  of a nearlattice S  is called an ideal if  

i) For Iyx ∈, , Iyx ∈∨ , provided yx ∨  exists, and 
ii) For xtIx ≤∈ ,  ( St ∈ ) implies It ∈ .  
 

A non empty subset of S  is called a filter if i) for all FyxFyx ∈∧∈ ,, ,  
and ii) FxandxtSt ∈≥∈ ,  imply Ft ∈ . 
 
For a distributive nearlattice S  with 0, )(SI  denotes the set of all ideals, which is a 
distributive lattice. 
 
      A distributive nearlattices S  with 0  is called normal if every prime ideal of S     
contains a unique minimal prime ideal. A distributive near lattice S  with 0  is 
called generalized Stone if for each Sx∈ , Sxx =∨ **](*]( . 
 
In this paper by a “dual nearlattice” we will mean a join semilattice with the lower   
bound property. That is, its notion is dual to a nearlattice. 
 
2. Annulets  
 
For a distributive nearlattice S  with 0 , )(SI  the lattice of  ideals of S  is pseudo    
complemented. An ideal J of S  is called an annihilator ideal if **JJ = . The 
pseudo complement of an ideal J  is the annihilator ideal 0:{* =∧∈= jxSxJ  
for all }Jj∈ . It is well known by [4, Theorem 4, p-58] that the set of annihilator 
ideals )(SA  is a Boolean algebra, where the supremum of J  and K  in )(SA  is 
given by **)*( KJKJ ∩=∨ . Thus for two annulets *](x  and *](y . 

*](*]( yx ∨ = **)*](**](( yx ∩ = .*](*)**](( yxyx ∧=∧  Hence, the set of all 
annulets )(0 SA  of S  is a join sub semilattice of )(SA . Of course, )(0 SA  is not 
necessarily a meet semilattice. But for any Syx ∈,  if yx ∨ exists then 

*](]*(*]( yxyx ∨=∩ . 
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Proposition 2.1. Let S  be a distributive nearlattice with 0 . Then )(0 SA  is a dual 
nearlattice and it is a dual subnearlattice of )(SA . Moreover, )(0 SA  has the 
same largest element *]0(=S  as )(SA . 
          
Proof: We have already shown that )(0 SA  is a join subsemilattice  of )(SA . Now 
suppose *](]*( tx ⊇  and *](]*( ty ⊇  for some Styx ∈,, . Then *](*]( yx ∩  
= *](*](]*)(*]((]*)(*]((]*(]*)(*](( tytxtytxtyx ∧∩∧=∨∩∨=∨∩  
= *)])()(( tytx ∧∨∧  as )()( tytx ∧∨∧  exists by the upper bound property of 
S . This shows that )(0 SA  has the lower bound property. Hence )(0 SA  is a dual 
nearlattice and so a dual subnearlattice of )(SA .    ■ 
 
Proposition 2.2.  Let S  be a distributive nearlattice with 0 . )(0 SA  has a smallest 
element (then of course, it is a lattice) if and only if S  possesses an element d  
such that ]0(]*( =d . 
 
Proof. If there is an element Sd ∈ with  ]0(]*( =d , then clearly ]0(   is the 
smallest element in  )(0 SA  . 
 

       Conversely, if )(0 SA  has a smallest element *](d , then for any ,Sx∈  
*](]*(*](]*( dxdxx ∧=∨= . Thus 0=∧ dx  implies Sx == ]*0(]*( , and 

hence ]0(]*( =d .  ■ 
 

 Following result gives a characterization of a normal nearlattice which is a        
generalization  of [1, Proposition 2.2]. 
 
Theorem 2.3. A distributive  nearlattice S  with 0  is normal if and only if )(0 SA  is 
a join subsemilattice of )(SI . 
 
Proof. By Proposition  2.1, )(0 SA  is a join subsemilattice of )(SA , and for any 

*](]*(*](,, yxyxSyx ∧=∨∈ . Now by [6, Theorem 1.9], S  is normal if and 
only   if *](]*(*]( yxyx ∧=∨   for all Syx ∈, . Hence *](*](]*(*]( yxyx ∨=∨  
for all Syx ∈, . This proves the theorem.   ■ 
 
      A distributive   nearlattice  S  with 0  is called disjunctive if for ba <≤0  
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),( Sba ∈  there is an element Sx∈  such that 0=∧ xa  where bx ≤<0 . It is 
easy to check that S  is disjunctive if and only if *](]*( ba =  implies ba =  for any 

Sba ∈, . Then  we have the following result. 
 
Theorem 2.4.  A disjunctive normal nearlattice S  is dual isomorphic to )(0 SA . 
Hence S  has a largest element (in that case S  is a lattice) if and only if there exists 

Sd ∈  such that ]0(]*( =d . 
 
Proof. If S  is normal, then by theorem 2.3, )(0 SA  is a join subsemilattice of )(SI , 
and for any ,, Syx ∈  *](*](]*( yxyx ∨=∧ . Also for any near lattice S , 

*](*]( yx ∩  
= *]( yx ∨  if yx ∨  exists in S . Hence the map *](xx →  is a dual 
homomorphism from S  onto )(0 SA . If S  is disjunctive then obviously this map is 
one-one and so is a dual isomorphism. Second part is trivial.   ■ 
 
By [5] a distributive near lattice S  with 0  is called quasi-complemented if for 
each ,Sx∈  there is an /x  such that 0/ =∧ xx and ]0(]*(*]( / =∩ xx . The 
following result generalizes [1, Proposition 2.4]. 
 
 Theorem 2.5.  A distributive nearlattice S  with 0  is quasi-complemented if and 
only  if )(0 SA  is a Boolean subalgebra of )(SA . 
 
 Proof. Suppose S  is quasi-complemented. Then by [5, Th. 2.1] S  has an element 
d  such that ]0(]*( =d . Then by Proposition 2.2, )(0 SA  has a smallest element 

and so it is a sublattice of )(SA . Moreover for each Sx∈  there exists Sx ∈/  such 
that 0/ =∧ xx  and ]0(]*(*]( / =∩ xx . Then 

Sxxxx ==∧=∨ ]*0(]*(]*(*]( // . Therefore )(0 SA  is a Boolean subalgebra of  
)(SA . 

 
 Conversely, if )(0 SA  is a Boolean subalgebra of )(SA , then for any Sx∈  there 
exists Sy∈  such that ]0(]*(*]( =∩ yx  and Syx =∨ ]*(*]( .  
But *](*]( yx ∨  *]( yx ∧=  , and so 0=∧ yx . Therefore S  is a quasi-
complemented..   ■ 
 
 Now we generalize [1, Proposition 2.5]. To prove this we need the following 
lemma. The proof of lemma is trivial. 
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Lemma 2.6. Let ],,0[ xI = x<0  be an interval in a distributive nearlattice S  with 
0 . For Ia∈ , }0:{]( =∧∈=+ ayIya  is  the annihilator of ](a  with respect 
to I . Then 
(i) If Iba ∈,  and ++ ⊆ ](]( ba  then *](]*( ba ⊆  
 (ii)  If Sw∈ , +∧=∩ ](*]( xwIw  ■ 
 
Theorem 2.7. For a distributive nearlattice S  with 0 , )(0 SA  is relatively 
complemented if and only if S  is sectionally quasi -complemented. 
 
Proof. Suppose )(0 SA  is relatively complemented. Consider the interval ],0[ xI =  
and let Ia∈ , then .]*0(]*(]*( Sax =⊆⊆  Since the interval ]]*,[( Sx  in )(0 SA  
is complemented, there exists Sw∈  such that *](]*(*]( xwa =∩  and 

.]*(*]( Swa =∨  Then *](]*(*]( wawa ∧=∨  gives 0=∧ wa  Then 
0=∧∧ xwa  and .Ixw ∈∧  Moreover, intersecting *](]*(*]( xwa =∩  with 

](x  and using above lemma, we have ].0(](]( =∧∩ ++ xwa  This shows that I  is 
quasi -complemented. 
 
 Conversely, suppose S  is sectionally quasi –complemented. Since )(0 SA  is 
distributive, it suffices to prove that the interval  ]]*,[( Sa  is complemented for 
each Sa∈ . Let ∈]*(b ]]*,[( Sa . Then Sba ⊆⊆ ]*(]*( , so 

*](]*(*](]*( babab ∧=∨= . Now  consider the interval ],0[ aI =  in S . Then 
Iba ∈∧ . Since I is quasi-complemented, there exists Iw∈  such that 

0=∧∧ baw  and +++ ==∧∩ ](]0(](]( abaw . This implies 
++ =∧∨ ]()](( abaw , as )( baw ∧∨  exists in S . Then by lemma 2.6(i), 

*](*](]*(*]()]*((]*( bwbawbawa ∩=∧∩=∧∨= . Also from 0=∧∧ baw  
we have 0=∧ bw , hence Sbw =∨ ]*(*]( . Therefore )(0 SA  is relatively 
complemented.   ■ 
 

 Since by [5, Theorem 2.3], a nearlattice S  is generalized Stone if and only 
if it is normal and sectionally quasi-complemented, combining Theorems 2.7 and 2.3 
we have the following result: 
 
Theorem 2.8.  A nearlattice S  with 0  is a generalized Stone nearlattice if and only 
if )(0 SA  is a relatively complemented dual subnearlattice of  )(SI .     ■ 
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