Annals of Pure and Applied Mathematics Vol.19, No.2, 2019, 169-173 ISSN: 2279-087X (P), 2279-0888(online) Published on 16 April 2019 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.616v19n2a5

Annals of **Pure and Applied Mathematics**

On Solutions to the Diophantine Equation $3^x + q^y = z^2$

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 2 April 2019; accepted 15 April 2019

Abstract. In this paper, we consider the equation $3^x + q^y = z^2$ in which q is an odd prime, x, y, z are positive integers and x + y = 2, 3, 4. When q > 3, the cases of infinitely many solutions, of a unique solution and of no-solutions are determined. The case q = 3 with particular values x, y is also discussed. Various solutions for x + y = 2, 3, 4, and also for x + y > 4 are exhibited. Sroysang [5] raised the Open Problem "Let q be a positive odd prime number. Now, we questions that what is the set of all solutions (x, y, z) for the Diophantine equation $3^x + q^y = z^2$ where x, y and z are non-negative integers." Based on our findings, a set of all solutions for the equation does not exist.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving particular primes and powers of all kinds. Among them are for example [1, 3, 4, 6].

In this paper, we consider the equation

$$3^x + q^y = z$$

in which q is an odd prime and x, y, z are positive integers. All other values introduced are also positive integers.

Our main objective is to determine solutions to the equation when q > 3 and x + y = 2, 3, 4. All six possibilities are investigated. It is shown that the equation has infinitely many solutions, a unique solution, and also no-solution cases.

Sroysang [5] investigated the equation $3^x + 17^y = z^2$ and proved it has no solutions in positive integers. He also raised the problem as to what is the set of all

Nechemia Burshtein

solutions (x, y, z) for the equation $3^x + q^y = z^2$. Although a formal proof is not given here, the results obtained imply that the answer to his problem is negative.

2. On solutions to the equation $3^x + q^y = z^2$

In this section, we first determine solutions to $3^x + q^y = z^2$ when q > 3 and x + y = 2, 3, 4. 4. Several solutions are exhibited. This is done in **Theorem 2.1**. Secondly, we discuss the case q = 3 with particular values x, y. Finally, we demonstrate some solutions to the equation when x + y > 4.

Theorem 2.1. Suppose that $3^x + q^y = z^2$ where q > 3 is prime, and x, y, z are positive integers. If x, y satisfy x + y = 2, 3, 4, then:

(a) The equation 3¹ + q¹ = z² has infinitely many solutions.
(b) The equation 3¹ + q² = z² has no solutions.
(c) The equation 3² + q¹ = z² has a unique solution.
(d) The equation 3¹ + q³ = z² has no solutions when 3¹ + q³ ≤ 234885116.
(e) The equation 3² + q² = z² has no solutions.
(f) The equation 3³ + q¹ = z² has infinitely many solutions.

Proof: The six possible equations are considered separately, each of which is self-contained.

The case x + y = 2.

For x + y = 2, we have x = y = 1.

(a). x = 1 and y = 1. We have

$$3^1 + q^1 = z^2. (1)$$

In (1), z^2 is even and denote z = 2T. Since $z^2 = 4T^2$, therefore q = 4N + 1 where $N + 1 = T^2$ and $N = T^2 - 1$. Thus, $q = 4N + 1 = 4(T^2 - 1) + 1$ and $q = 4T^2 - 3$ q prime. (2) When T = 3a, then q is not prime. Therefore we have in (2) that T = 3a + 1, T = 3a + 2.

(i) If T = 3a + 1, then $4T^2 - 3 = 4(3a + 1)^2 - 3 = 36a^2 + 24a + 1$ provided $q = 36a^2 + 24a + 1$ is prime. (3) (ii) If T = 3a + 2, then $4T^2 - 3 = 4(3a + 2)^2 - 3 = 36a^2 + 48a + 13$ provided $q = 36a^2 + 48a + 13$ is prime. (4)

We now demonstrate some solutions of (1) using (3) and (4). If (3), then the first two solutions for which q is prime are:

Solution 1. $3^1 + 61^1 = 8^2$ a = 1,

Solution 2. $3^1 + 193^1 = 14^2$ a = 2.

On Solutions to the Diophantine Equation $3^x + q^y = z^2$

If (4), then the first two solutions for which q is prime are:

 $3^1 + 13^1 = 4^2$ Solution 3. a = 0. $3^1 + 97^1 = 10^2$ Solution 4. a = 1.

There are infinitely many primes of the form 4N + 1. There are also infinitely many primes q of the form q in (3) as well as of the form q in (4). For our purposes, it certainly suffices that only one of these forms contain infinitely many primes. The equation $3^1 + q^1 = z^2$ has infinitely many solutions.

The case x + y = 3.

The case x + y = 3, has the two possibilities (b) and (c).

(b). x = 1 and y = 2. We have

$$3^1 + q^2 = z^2$$

which yields $3 = z^2 - q^2 = (z - q)(z + q)$. Hence, z - q = 1 and z + q = 3. Then z = q + 1implying that 2q + 1 = 3 or q = 1 which is impossible. The equation $3^1 + q^2 = z^2$ has no solutions.

(c). x = 2 and y = 1. We obtain

$$a^{2} + a^{1} = z^{2}$$

 $3^2 + q^1 = z^2$ which yields $q = z^2 - 3^2 = (z - 3)(z + 3)$. Thus, z - 3 = 1 and z + 3 = q. Therefore z = 4and q = 7.

 $3^2 + 7^1 = 4^2$

The equation $3^2 + q^1 = z^2$ has the unique solution

Solution 5.

The case x + y = 3 is complete, and consists of exactly one solution.

The case x + y = 4.

The case x + y = 4 consists of three possibilities demonstrated in (d) – (f).

(d). x = 1 and y = 3. We have

 $3^1 + q^3 = z^2$, z is even. (5) The value z^2 is even, denoted $z^2 = 4T^2$. If q = 4N + 3, then $q^3 = 4M + 3$ and (5) is clearly impossible. Therefore q = 4N + 1. Each of the 54 primes q = 4N + 1 where $5 \le q \le 617$, and up to $3 + 617^3 = 234885116$ have been examined. No solutions to (5) have been found.

It is presumed therefore that $3^1 + q^3 = z^2$ has no solutions.

Nechemia Burshtein

(e). x = 2 and y = 2. We have

$$3^2 + q^2 = z^2. (6)$$

From (6) $3^2 = z^2 - q^2 = (z - q)(z + q)$. Hence, z - q = 1, 3, 3², and then respectively $z + q = 3^2$, 3, 1. The last two possibilities are a priori eliminated. Thus, we have z - q = 1 and $z + q = 3^2$. The values z - q = 1 and $z + q = 3^2$ yield $2q + 1 = 3^2$ or q = 4 which is impossible.

The equation $3^2 + q^2 = z^2$ has no solutions.

(f). x = 3 and y = 1. We have

 $3^3 + q^1 = z^2$, z is even. (7)

Since z^2 is even and $z^2 = 4T^2$, it therefore follows that q = 4N + 1. All such primes q where $5 \le q \le 617$ have been examined.

The first five solutions of (7) are as follows:

Solution 6		$3^3 + 37^1$	=	8^{2} .
Solution 7		$3^3 + 73^1$	=	10 ² .
Solution 8		$3^3 + 229^1$	=	16 ² .
Solution 9		$3^3 + 373^1$	=	20 ² .
Solution 1	0.	$3^3 + 457^1$	=	22 ² .

In view of the above solutions, it is presumed that the equation $3^3 + q^1 = z^2$ has infinitely many solutions.

Case (f) is complete, and concludes the proof of **Theorem 2.1**.

So far, we have considered primes q where q > 3. When q = 3, an interesting fact stems from the following Lemma 2.1.

Lemma 2.1. Let m = 1, 2, ..., and suppose that $3^x + 3^y = z^2$, where x, y are consecutive integers.

(i) If x = 2m, y = 2m - 1, then for all $m \ge 1$, $3^{2m} + 3^{2m-1} = z^2$ has no solutions. (ii) If x = 2m + 1, y = 2m, then for all $m \ge 1$, $3^{2m+1} + 3^{2m} = z^2$ has infinitely many solutions.

Proof: (i) Suppose $3^{2m} + 3^{2m-1} = z^2$. Here we shall apply the technique introduced in [1]. For all $m \ge 1$, any solution of $3^{2m} + 3^{2m-1} = z^2$ implies that z^2 is even. It is then easily seen that either z^2 ends in the digit 2 or ends in the digit 8. Since no even square ends either in the digit 2 or ends in the digit 8, it follows that $3^{2m} + 3^{2m-1} = z^2$ has no solutions.

(ii) Suppose that $3^{2m+1} + 3^{2m} = z^2$. Then

On Solutions to the Diophantine Equation $3^x + q^y = z^2$

$$3^{2m+1} + 3^{2m} = 3^{2m}(3+1) = (3^m)^2 \cdot 2^2 = (2 \cdot 3^m)^2 = z^2,$$

where z is a positive integer. Thus, for each and every integer $m \ge 1$, the equation $3^{2m+1} + 3^{2m} = z^2$ has a unique solution.

This concludes our proof.

We now demonstrate some solutions of $3^x + q^y = z^2$ in which x + y > 4.

Solution 11.	$3^3 + 13^2 = 14^2$	x + y = 5.
Solution 12.	$3^4 + 19^1 = 10^2$	x + y = 5.
Solution 13.	$3^5 + 13^1 = 16^2$	x + y = 6.
Solution 14.	$3^5 + 157^1 = 20^2$	x + y = 6.
Solution 15.	$3^7 + 313^1 = 50^2$	x + y = 8.

Final remark. Finding all solutions (x, y, z) for the Diophantine equation $3^x + q^y = z^2$ where x, y, z are positive integers is beyond the scope of this paper. Moreover, a set of all solutions to the equation clearly does not exist. However, finding particular solutions, or all the solutions to a given pair of fixed values x, y is possible. This has been done in this paper for all the possibilities of x + y = 2, 3, 4, and for some particular values when x + y > 4. We mention that **Solutions 3**, 5, 7, 12, 13 were already exhibited in [2].

REFERENCES

- 1. N. Burshtein, On solutions to the diophantine equations $5^{x} + 103^{y} = z^{2}$ and $5^{x} + 11^{y} = z^{2}$ with positive integers *x*, *y*, *z*, *Annals of Pure and Applied Mathematics*, 19 (1) (2019) 75 –77.
- 2. N. Burshtein, On solutions of the diophantine equation $p^x + q^y = z^2$, Annals of Pure and Applied Mathematics, 13 (1) (2017) 143 149.
- 3. S. Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$ where p is a prime number, *Amer. J. Math. Sci.*, 1 (2012) 191 193.
- 4. Md. A. A. Khan, A. Rashid and Md. S. Uddin, Non-negative integer solutions of two diophantine equations $2^x + 9^y = z^2$ and $5^x + 9^y = z^2$, *Journal of Applied Mathematics and Physics*, 4 (2016) 762 765.
- 5. B. Sroysang, On the diophantine equation $3^x + 17^y = z^2$, Int. J. Pure Appl. Math., 89 (2013) 111-114.
- 6. B. Sroysang, On the diophantine equation $3^x + 5^y = z^2$, Int. J. Pure Appl. Math., 81 (2012) 605-608.