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Abstract.  A (p, q) graph G is said to admit a seventh (or eighth) order triangular sum 
labeling if its vertices can be labeled by non negative integers such that induced edge 
labels obtained by the sum of the labels of end vertices are the seventh (or eighth) order 
triangular numbers. A graph G which admits a seventh (or eighth) order triangular sum 
labeling is called a seventh (or eighth) order triangular sum graph. In this paper we prove 
that double star K1,n,n, Tgn and Coconut tree admit seventh and eighth order triangular 
sum labelings. 
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1. Introduction 
The graphs considered here are finite, connected, undirected and simple. The vertex set 
and the edge set of graph are denoted by V(G) and E(G) respectively. For various graph 
theoretic notations and terminology we follow Harary [3] and for number theory we 
follow Burton [1]. We will give the brief summary of definitions which are useful for the 
present investigations. In [8] they have proved star and bistar related graphs are divisor 
cordial graphs. Some authors in [10] have discussed Star in Coloring of some star 
familes. For a dynamic survey of various graph labeling problem along with an extensive 
bibliography we refer to Gallioan [4]. 
 
Definition 1.1. [2,7 ] A triangular number is a number obtained by adding all positive 
integers less than or equal to a given positive integer n. If the nth triangular number is 

denoted by An, then An  = 1 + 2 +  . . . + n  = 1
2

n (n+1). 

 The triangular numbers are 1, 3, 6, 10, 15, 21, 28, 36, . . . 
 
Definition 1.2. [6, 9] A triangular sum labeling of a graph G is a one to one function f: 
V(G) →W (where W is the set of all non-negative integers) that induces a bijection f+ : 
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E(G) → {A 1, A2, . . ., Aq} of the edges of G defined by f (uv) f (u) f (v)+ = +
e uv E(G)∀ = ∈ . The graph which admits such labeling is called a triangular sum graph. 

 
Definition 1.3. [5]  A second order triangular number is a number  obtained  by adding 
all the squares of positive integer less than or equal to a given positive integer n. If the nth  
second order triangular number is denoted by Bn , then 
                      Bn = 12 + 22 + 32 + . . . + n2 

                     )12()1(
6

1 ++= nnn
 

The second  order triangular numbers are 1, 5,14, 30,55,. … 
 
Definition 1.4. A second  order triangular sum labeling of a graph G is a one to one 
function f: V(G) → W  that induces a bijection f+: E(G) → {B 1, B2, . . ., Bn} of the edges 
of G defined by f+(uv) = f(u) + f(v), ∀ e = uv∈ E(G). The graph which admits such 
labeling is called a second  order triangular sum graph. 
 
Definition 1.5. A seventh order triangular number is a number obtained by adding all the 
seventh powers of positive integers less than or equal to a given positive integer n. If the 
nth seventh order triangular number is denoted by Gn, then 
 Gn = 17 + 27 + 37 + . . . + n7 

 [ ]2463)1(
24

1 23422 +−−++= nnnnnn  

 The seventh order triangular numbers are 1, 129, 2316, 18700, 96825, 376761, 
1200304, 3297456, 8080425, 18080425, 37567596, . . . 
 
Definition 1.6. A seventh order triangular sum labeling of a graph G is a one to one 
function f: V(G) → W that induces a bijection f+: E(G) → {G1, G2, . . ., Gq} of the edges 
of G defined by f+(uv) = f(u) + f(v), ∀ e = uv∈ E(G). The graph which admits such 
labeling is called a seventh order triangular sum graph.  
 
Definition 1.7. An Eighth order triangular number is a number obtained by adding all the 
eighth powers of positive integers less than or equal to a given positive integer n. If the 
nth eighth order triangular number is denoted by Hn, then  
 
 Hn = 18 + 28 + … + n8 

 ]39155155[
90

)12()1( 23456 −+−−++++= nnnnnn
nnn

 

The eighth order triangular numbers are 1, 257, 6818, 72354, 462979, 2142595, …. 
 
Definition 1.6. An Eighth order triangular sum labeling of a graph G is a one-to-one 
function f: V(G) → W that induces a bijection f+: E(G) → {H 1, H2, …, Hq} of the edges 
of G defined by f+(uv) = f(u) + f(v), ∀e = uv∈ E(G). The graph which admits such 
labeling is called a eighth order triangular sum graph. 
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2. Main result  
Theorem 2.1. The star graph K1, n admits seventh order triangular sum labeling.  
Proof:  Let u be the central vertex and let u1, u2, . . ., un be the pendant vertices of the star 
K1, n. Then the vertex set V(K1, n) = {u, ui/ 1≤ i ≤ n} and the edge set E(K1,n) = {uui  / 1 ≤ i 
≤ n}. Clearly K1,n has n + 1 vertices and n edges. Define f : V(K1,n) → W by 
f(u) = 0 

f(ui) = Gi = niiiii
ii ≤≤+−−++

1,]2463[
24

)1( 234
22

. 

Then f induces a bijection f + : E(G)  → {G1, G2, . . ., Gn} given by 

f + (uui) = f(u) + f(ui) = 0 + Gi = Gi= ni1,]2463[
24

)1( 234
22

≤≤+−−++
iiii

ii
. 

Clearly, the induced edge labels are the first n seventh order triangular numbers. Hence 
K1,n admits a seventh order triangular sum labeling.   
 
Example 2.2. A seventh order triangular sum labeling of K 1, 5 is shown in figure 2.1. 
 
 
  
 
 
 
 
 
 
 

 
Figure 2.1: K 1, 5 with a seventh order triangular sum labeling 

 
Theorem 2.3. The double star K1, n, n admits seventh order triangular sum labeling.  
Proof:  Let G be the double star K1,n,n. Let V(G) = {u, ui, vi / 1 ≤ i ≤ n} be the vertex set 
and E(G) = {uui, uivi/1 ≤ i ≤ n} be the edge set of K1,n,n. Then G has 2n + 1 vertices and 
2n edges. Define f : V(G) → W  by  
f(u) = 0 
f(ui) = Gi, 1 ≤  i ≤  n  
f(v i) = Gn+i− f(ui), 1 ≤  i ≤  n 
Then f induces a bijection f + : E(G)  → {G1, G2, . . ., G2n} given by 
f+ (uui) = f(u) + f(ui) = 0 + Gi = Gi, 1 ≤  i ≤  n 
f+(uivi) = f(ui) + f(vi) = f(ui) + Gn+I - f(ui) = Gn+i,  1 ≤ i ≤ n. 
Thus, the induced edge labels are the first 2n seventh order triangular numbers. Hence G 
admits a seventh order triangular sum labeling.  
 
Example 2.4. A seventh order triangular sum labeling of K 1,4,4 is shown in figure 2.2. 
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Figure 2.2: K 1, 4, 4   with a seventh order triangular sum labeling 

Theorem 2.5. The bistarBm,n admits seventh order triangular sum labeling.  
Proof:  Let u and v be the vertices of K2.  Join m pendent vertices u1, u2, . . ., um at u and 
join n pendent vertices v1, v2, . . ., vn at v. The resultant graph is the bistar G = Bm,n with 
vertex set V(G) = {u, v, ui, vj  /  1 ≤ i ≤ m, 1 ≤ j ≤ n} and  edge set E(G) {uui, vvj, uv  /  1 
≤ i ≤ m, 1 ≤ j ≤ n}. Clearly G has m + n + 2 vertices and m + n + 1 edges. Define f: V(G) 
→ W by 
f(u) = 0 
f(v) = 1 
f(ui) = Gi+1,  1 ≤ i  ≤ m 
f(v j) = Gm+1+j - f(v), 1 ≤ j  ≤ n 
Then f induces a bijection f+ : E(G) → {G1, G2, …, Gm + n + 1) given by 
f+(uui) =  f(u) + f(ui) = 0 + Gi+1 = Gi+1, mi ≤≤1  
f+(uv) = f(u) + f(v) = 1 = G1 
f+(vvj) = f(v) + f(vj) = f(v) + Gm+1+j - f(v) = Gm+1+j,  1 ≤  j ≤  n. 
Thus, the induced edge labels are the first m + n + 1 seventh order triangular numbers. 
Hence Bm, n admits a seventh order triangular sum labeling.  

Example 2.6. A seventh order triangular sum labeling of B4,3 is shown in figure 2.3. 
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Figure 2.3: B4,3 with a seventh order triangular sum labeling 
Theorem 2.7. Yn + 1 admits a seventh order triangular sum labeling if n ≥ 3. 
Proof: Let Pn be the path u1u2 .  .  . un. Let v be the vertex adjacent to u2. The resultant 
graph G is Yn + 1 with vertex set V(G) = {ui, v / 1 ≤ i ≤ n} and the edge set E(G) = {uiui+1, 
vu2/ 1 ≤ i ≤ n – 1}. Clearly the graph G has n + 1 vertices and n edges. Define f : V(G) → 
W by 
f(u1) = 1 = G1 

f(v) = 129 = G2 
f(u2) = 0 
f(ui) = Gi+1 - f(ui-1),    3 ≤ i ≤ n  
Then f induces a bijection f+: E(G) → {G1, G2, . . ., Gn} given by 
f +(u1u2) = f(u1) + f(u2) = 1 = G1 

f +(u2v) = f(u2) + f(v) = 0 + 129 = G2 

f +(u2u3) = f(u2) + f(u3) = 0 + 23161 = G3 

f +(uiui+1) = f(ui) + f(ui+1) = f(ui) + Gi+1 - f(ui) = Gi+1, 3 ≤ i ≤ n 
Thus, the induced edge labels are the first n seventh order triangular numbers. Hence G 
admits seventh order triangular sum labeling.  
 
Example 2.8. A seventh order triangular sum labeling of Y5+1 is shown in figure 2.4. 
 
 
 
 
 
 
 
 

 
Figure 2.4: Y5+1 with a seventh order triangular sum labeling 

 
Theorem 2.9. Tgn admits seventh order triangular sum labeling. 
Proof:  Let u1u2 . . . un be the path of length n. For 1 ≤ j ≤ n – 2, let vj and wj be the 
vertices adjacent to uj+1. The resultant graph is called a Twig graph Tgn, with vertex set 
V(Tgn) = {ui, vj, wj / 1 ≤ i ≤ n, 1 ≤ j ≤ n - 2} and the edge set E(Tgn) = {uiui+1, vjuj+1, wjuj+1 

/ 1 ≤ i ≤ n – 1, 1 ≤ j ≤ n – 2}. Clearly the graph Tgn has 3n - 4 vertices and 3n - 5 edges. 
Define f: V(G) → W by 
f(u2) = 0  
f(u3) = G1 

f(ui) = Gi – 2 – f(ui - 1),  4 ≤ i ≤ n 
f(u1) = G3n-5 

f(v i) = Gn-2+i – f(ui+1), 1 ≤ i ≤ n – 2 
f(w i) = G3n - 5 - i – f(ui+1), 1 ≤ i ≤ n – 2. 
Then f induces a bijection f+ : E(G) →  {G1, G2, . . ., G3n - 5 } given by 
f+(u1u2) = f(u1) + f(u2) = G3n-5 

f+(uiui+1) = f(ui) + f(ui+1) = Gi-1, 2 ≤ i ≤ n – 1 
f+(viui+1) = f(vi) + f(ui+1) = Gn-2+i – f(ui+1) + f(ui+1) = Gn-2+i, 1 ≤ i ≤ n – 2. 
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f+(wiui+1) = f(wi) + f(ui+1) = G3n-5-i+ f(wi) – f(wi) =  G3n - 5 - i,  1 ≤ i ≤ n – 2. 
Thus, the induced edge labels are the first 3n−5 seventh order triangular numbers. Hence 
Tgn admits a seventh order triangular sum labeling. 
 
Example 2.10. A seventh order triangular sum labeling of Tg5 is shown in figure 2.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 2.5: Tg5 with a seventh order triangular sum labeling 
 
Theorem 2.11. The Coconut tree T(m, n) admits a seventh order triangular sum labeling. 
Proof:  Let  u1, u2, …, un  be the end vertices of star K1, n with central vertex u. Let v1, v2, 
…,vm be the path Pm. Identifying v1 with u. The resultant graph G is a coconut tree T(m,n) 
with vertex set V(G) = {vi, uj/1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set E(G) = {vivi+1, v1uj, /1 ≤ j 
≤ n, 1 ≤ i ≤ m −1}. Clearly G has n + m vertices and n + m − 1 edges. Define f: V(G) → 
W by 
 
f(v1) = 0 
f(v i) = Gi−1− f(vi - 1),  2 ≤ i ≤ m 
f(uj) = Gm+j-1, 1 ≤ j ≤ n. 
 
Then f induces a bijection f+ : E(G) →  {G1, G2, . . ., Gm + n - 1 }given by   
f+ (vivi+1) = f(vi ) + f(vi+1) = f(vi) + Gi - f(vi) = Gi,  1 ≤ i ≤ m- 1 
f∗(v1uj) =  f(v1 ) +f(uj) = 0 + Gm+j-1 =  Gm + j - 1,  1 ≤ j ≤ n. 
Thus, the induced edge labels are the first n + m − 1 seventh order triangular numbers. 
Hence G admits a seventh order triangular sum labeling.  
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Example 2.12. A seventh order triangular sum labeling of  T (4, 5) is shown in figure 2.6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                
           

Figure 2.6: T (4, 5) with a seventh order triangular sum labeling 
 
Theorem 2.13. The star graph K1,n admits an eighth order triangular sum labeling.  
Proof: Let u be the central vertex and let u1, u2, . . ., un be the pendant vertices of the star 
K1,n. Then the vertex set V(K1, n) = {u, ui  / 1 ≤ i ≤ n} and the edge set E(K1,n) = {uui  / 1 ≤ 
i ≤ n}. Clearly K1,n has n + 1 vertices and n edges. Define f : V(K1,n) → W by 
 
f(u) = 0 
f(ui) = Hi, ni1 ≤≤ . 
 
Then f induces a bijection f + : E(G)  → {H 1, H2, . . ., Hn} given by 
f + (uui) = f(u) + f(ui) = 0 + Hi = Hi,  1 ≤ i ≤ n. 
 
Cleary, the induced edge labels are the first n eighth order triangular numbers. Hence K1, n 
admits an eighth order triangular sum labeling.   
 
Example 2.14. An eighth order triangular sum labeling of K 1, 5 is shown in Figure 2.7. 
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Figure 2.7: K 1, 4 with an eighth order triangular sum labeling  
 

Theorem 2.15. The double star K1, n, n admits an eighth order triangular sum labeling.  
Proof:  Let G be the double star K1, n, n. Let V(G) = {u, ui, vi / 1 ≤ i ≤ n} be the vertex set 
and E(G) = {uui, uivi  / 1 ≤ i ≤ n} be the edge set of K1,n,n. Then G has 2n + 1 vertices and 
2n edges. Define f : V(G) → W  by  
f(u) = 0 
f(ui) = Hi ,  1 ≤  i ≤  n  
f(v i) = Hn+i - f(ui), 1 ≤  i ≤  n 
Then f induces a bijection f + : E(G)  → {H 1, H2, . . ., H2n} given by 
f+ (uui) = f(u) + f(ui) = 0 + Hi = Hi, 1 ≤  i ≤  n 
f+(uivi) = f(ui) + f(vi) = f(ui) + Hn+I - f(ui) = Hn+i,  1 ≤ i ≤ n. 
Thus, the induced edge labels are the first 2n eighth order triangular numbers. Hence G 
admits an eighth order triangular sum labeling.  
 
Example 2.16. An eighth order triangular sum labeling of double star K1,3,3is shown in 
figure 2.8. 
 
 
 
 
 
 
 
 
 

 
 

Figure 2.8: Double star K1, 3, 3 with an eighth order triangular sum labeling 
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Theorem 2.17. Yn+1 admits an eighth order triangular sum labeling.  
Proof: Let Pn be the path u1u2 .  .  .  un. Let v be the vertex adjacent to u2. The resultant 
graph G is Yn+1 with vertex set V(G) = {ui, v / 1 ≤ i ≤ n} and the edge set E(G) = {uiui+1, 
vu2 /1 ≤ i ≤ n – 1}. Clearly the graph G has n + 1 vertices and n edges. Define f: V(G) → 
W by 
f(u1) = 1 
f(u2) = 0 
f(v) = 257 
f(ui) = Hi - f(ui-1),   3 ≤ i ≤ n. 
Then f induces a bijection f+ : E(G) →  {H 1, H2, . . ., Hn} given by 
f+(u1u2) = f(u1 ) + f (u2)  = 1 = H1 
f+(u2v) = f(u2) +f(v)  = 257 = H2 
f+(u2u3) =  f(u2 ) + f(u3) = 0 + 6818 = H3 
f+(uiui+1) = f(ui) + f(ui+1)  = f(ui) +  Hi+1 –  f(ui) = Hi+1, 3 ≤ i ≤ n. 
Cleary, the induced edge labels are the first n eighth order triangular numbers. Hence G 
admits an eighth order triangular sum labeling.  
 
Example 2.18. An eighth order triangular sum labeling of Y5+1is shown in figure 2.9. 
 
 
 
 
 
 
 
 

Figure 2.9: Y5+1 with an eighth order triangular sum labeling 
 
Theorem 2.19. Tgn admits an eighth order triangular sum labeling. 
Proof:  Let u1u2 . . . un be the path of length n. For 1 ≤ j ≤ n – 2, let vj and wj be the 
vertices adjacent to uj+1. The resultant graph is called a Twig graph Tgn, with vertex set 
V(Tgn) = {ui, vj, wj / 1 ≤ i ≤ n, 1 ≤ j ≤ n - 2} and the edge set E(Tgn) = {uiui+1, vjuj+1, wjuj+1 

/ 1 ≤ i ≤ n – 1, 1 ≤ j ≤ n – 2}. Clearly the graph Tgn has 3n − 4 vertices and 3n − 5 edges. 
Define f: V(G) → W by 
f(u2) = 0  
f(u3) = H1 

f(ui) = Hi – 2 - f(ui - 1),  4 ≤ i ≤ n 
f(u1) = H3n-5 
f(v i) = Hn-2+i – f(ui+1), 1 ≤ i ≤ n – 2 
f(w i) = H3n - 5 - i – f(ui+1), 1 ≤ i ≤ n – 2. 
Then f induces a bijection f+ : E(G) →  {H 1, H2, . . ., H3n - 5} given by 
f+(u1u2) = f(u1) + f(u2) = H3n-5 

f+(uiui+1) = f(ui) + f(ui+1) = Hi-1,  2 ≤ i ≤ n – 1 
f+(viui+1) = f(vi) + f(ui+1) = Hn-2+i,  1 ≤ i ≤ n – 2. 
f+(wiui+1) = f(wi) + f(ui+1) =  H3n - 5 - i,  1 ≤ i ≤ n – 2. 
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Cleary, the induced edge labels are the first 3n−5 eighth order triangular numbers. Hence 
Tgn admits an eighth order triangular sum labeling. 
 
Example 2.20. An eighth order triangular sum labeling of Tg4  is shown in figure 2.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.10: Tg4 with an eighth order triangular sum labeling 

 
Theorem 2.21. The coconut tree T(m, n) is an eighth order triangular sum labeling. 
Proof: Let u1, u2, …, un  be the end vertices of star K1, n with central vertex u. Let 
v1, v2, …,vm be the path Pm. Identifying v1 with u. The resultant graph G is a coconut tree 
T(m,n) with vertex set V(G) = {vi , uj/1 ≤ i ≤ m, 1 ≤ j ≤ n} and edge set E(G) = { vivi+1, 
v1uj, / 1 ≤ j ≤ n, 1 ≤ i ≤ m - 1}. Clearly G has n + m vertices and n + m - 1 edges. Define f: 
V(G) → W by 
 
f(v1) = 0  
f(v i) = Hi-1 - f(vi-1),      2 ≤ i ≤ m 
f(uj) = Hn+j-1 ,    1 ≤ i ≤ n. 
 
Then f induces a bijection f+ : E(G) → {H 1, H2, . . ., Hm+n-1 } given by 
f+ (v ivi+1) = f(v i ) + f(vi+1) = Hi,  1 ≤ i ≤ m - 1 
f∗(v1uj) =  f(v1 ) +f(uj) = Hm+j-1, 1 ≤ j ≤ n. 
 
Cleary, the induced edge labels are the first n + m − 1 eighth order triangular numbers. 
Hence G admits an eighth order triangular sum labeling.  
 
Example 2.22. An eighth order triangular sum labeling of T(4, 4) is shown in Figure 
2.11. 
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Figure 2.11: Coconut tree T(4, 4) with an eighth order triangular sum labeling 

3. Conclusion 
In this paper, we prove the seventh and eighth order triangular sum labeling of star graph 
K1, n, double star K1, n, n, bistar Bm,n, Yn + 1, Tgn and Coconut tree T(m, n). 
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