Annals of Pure and Applied Mathematics Vol. 19, No. 1, 2019, 53-57 ISSN: 2279-087X (P), 2279-0888(online) Published on 12 February 2013 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.599v19n1a6

Annals of **Pure and Applied Mathematics**

All the Solutions of the Diophantine Equations

 $(p+1)^{x} - p^{y} = z^{2}$ and $p^{y} - (p+1)^{x} = z^{2}$ when p is Prime and x + y = 2, 3, 4

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 5 February 2019; accepted 12 February 2019

Abstract. In this article we consider the two equations $(p + 1)^x - p^y = z^2$ and $p^y - (p + 1)^x = z^2$ in which $p \ge 2$ is prime, and x, y, z are positive integers. When x + y = 2, 3, 4, we establish that:

- (i) The equation $(p + 1)^1 p^1 = z^2$ has a unique solution (p, x, y, z) = (p, 1, 1, 1) for each and every prime $p \ge 2$.
- (ii) The equation $p^2 (p+1)^1 = z^2$ has the unique solution (p, x, y, z) = (2, 1, 2, 1).
- (iii) The equation $(p + 1)^3 p^1 = z^2$ has the unique solution (p, x, y, z) = (2, 3, 1, 5).
- (iv) No solutions exist for all other possible equations.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are [1, 2, 4] and others.

In this paper, we consider the two equations

$$(p+1)^{x} - p^{y} = z^{2},$$

 $p^{y} - (p+1)^{x} = z^{2}$

in which p is prime, x, y, z are positive integers, and x + y = 2, 3, 4.

In Section 2 the two equations are investigated for solutions. It is shown that the first equation has a unique trivial solution for each prime $p \ge 2$ when x + y = 2, and also a unique solution when

Nechemia Burshtein

p = 2 and x + y = 4. The second equation has a unique solution when p = 2 and x + y = 3. For all other possibilities, the two equations have no solutions.

2. Solutions of $(p + 1)^{x} - p^{y} = z^{2}$ and $p^{y} - (p + 1)^{x} = z^{2}$

We note that when x + y = 2, 3, 4, each equation clearly has a total of six possibilities. In Theorem 2.1, all the twelve cases are considered. Besides primes $p \ge 2$, and positive integers x, y, z, all other values introduced in our discussion are positive integers.

Theorem 2.1. Suppose that in $(p + 1)^x - p^y = z^2$ and in $p^y - (p + 1)^x = z^2$, $p \ge 2$ is prime, and x, y, z are positive integers. If x, y satisfy x + y = 2, 3, 4, then:

- (i) The equation $(p + 1)^1 p^1 = z^2$ has a unique solution (p, x, y, z) = (p, 1, 1, 1) for each and every prime $p \ge 2$.
- (ii) The equation $p^2 (p+1)^1 = z^2$ has the unique solution when p = 2, (p, x, y, z) = (2, 1, 2, 1).
- (iii) The equation $(p + 1)^3 p^1 = z^2$ has the unique solution when p = 2, (p, x, y, z) = (2, 3, 1, 5).
- (iv) No solutions exist for all other possible nine equations.

Proof: The twelve possible equations are considered separately, each of which is self-contained.

The case x + y = 2.

For x + y = 2, the only possibility is x = 1 and y = 1.

Case 1. $(p+1)^1 - p^1 = z^2$. For all primes $p \ge 2$ we have z = 1. The equation has infinitely many solutions of the form

$$(p, x, y, z) = (p, 1, 1, 1).$$

Case 2. $p^1 - (p+1)^1 = z^2$.

We obtain $z^2 = -1$ which is impossible.

The equation $p^1 - (p+1)^1 = z^2$ has no solutions.

This concludes the case x + y = 2.

The case x + y = 3.

For x + y = 3, we have x = 1 with y = 2 and x = 2 with y = 1.

Case 3. $(p+1)^1 - p^2 = z^2$.

For each and every prime $p \ge 2$, the value $(p + 1)^1 - p^2 < 0$ yields $z^2 < 0$ which is impossible.

The equation $(p+1)^1 - p^2 = z^2$ has no solutions.

Case 4. $p^2 - (p+1)^1 = z^2$.

All the Solutions of the Diophantine Equations $(p + 1)^x - p^y = z^2$ and $p^y - (p + 1)^x = z^2$ when p is Prime and x + y = 2, 3, 4

The equation yields $p^2 - z^2 = p + 1$ or (p - z)(p + z) = p + 1 where p - z > 0. If z > 1, then the equality is clearly impossible. When z = 1, then p = 2. The unique solution of this case is

Solution 1.

(p, x, y, z) = (2, 1, 2, 1).

Case 5. $(p+1)^2 - p^1 = z^2$. The equation $(p+1)^2 - p^1 = z^2$ yields $p^2 + p + 1 = z^2$ or $p^2 + p = z^2 - 1$ and p(p+1) = (z-1)(z+1). (1)

If p = 2, then $z^2 = 7$ is impossible. Hence, if the equation has a solution, then p > 2. From (1) it now follows that either $p \mid (z-1)$ or $p \mid (z+1)$.

If $p \mid (z-1)$ denote Ap = z - 1, and Ap + 2 = z + 1. From (1) we then obtain p(p+1) = (Ap)(Ap+2) which is impossible for all values A. Thus $p \nmid (z-1)$.

If $p \mid (z+1)$ denote pB = z+1, and pB-2 = z-1. Then (1) yields p(p+1) = (pB - 2)(pB) or p+1 = B(pB-2), and B=1 is impossible. Since $p = (2B+1)/(B^2-1)$ is never an integer for all B > 1, therefore $p \nmid (z+1)$. Thus p > 2 is impossible, and case 5 is complete.

The equation $(p + 1)^2 - p^1 = z^2$ has no solutions.

Case 6. $p^1 - (p+1)^2 = z^2$. For each and every prime $p \ge 2$, the value $p^1 - (p+1)^2 < 0$ and $z^2 < 0$ which is impossible.

The equation $p^1 - (p+1)^2 = z^2$ has no solutions.

The case x + y = 3 is complete.

The case x + y = 4.

The case x + y = 4 has six possibilities demonstrated in the following cases 7 - 12.

Case 7. $(p+1)^1 - p^3 = z^2$.

For each and every prime $p \ge 2$, the value $(p + 1)^1 - p^3 < 0$ implies $z^2 < 0$ which is impossible.

The equation $(p+1)^1 - p^3 = z^2$ has no solutions.

Case 8. $p^3 - (p+1)^1 = z^2$. If p = 2, then $z^2 = 5$ which is impossible. Hence, if the equation has a solution, then p > 2.

The equation
$$p^3 - (p+1)^1 = z^2$$
 yields $p^3 - p = z^2 + 1$ where $p(p^2 - 1) = z^2 + 1$ or
 $(p-1)p(p+1) = z^2 + 1$, z is odd. (2)

Denote z = 2T + 1. Thus,

$$z^{2} + 1 = (2T + 1)^{2} + 1 = 4T^{2} + 4T + 2 = 2(2T^{2} + 2T + 1),$$
 (3)
and $z^{2} + 1$ is a multiple of 2.

Since p > 2, it follows that p - 1 is even and p + 1 is even. Therefore, the left side of (2) is a multiple of at least 4. Then (2) and (3) yield

$$(p-1)p(p+1) = 2(2T^2 + 2T + 1)$$

Nechemia Burshtein

a contradiction, implying that (2) does not exist.

The equation $p^3 - (p+1)^1 = z^2$ has no solutions.

Case 9. $(p+1)^2 - p^2 = z^2$. The equation $(p+1)^2 - p^2 = z^2$ implies $2p + 1 = z^2$ or $2p = z^2 - 1 = (z-1)(z+1)$ z is odd. (4)

If p = 2, then $z^2 = 5$ which is impossible. Hence p > 2. Since z is odd, it follows that each of the values z - 1 and z + 1 is even. Therefore, the right side of (4) is a multiple of at least 4, whereas the left side of (4) is a multiple of 2 since p is odd. Hence (4) does not exist.

The equation $(p+1)^2 - p^2 = z^2$ has no solutions.

Case 10. $p^2 - (p+1)^2 = z^2$.

For each and every prime $p \ge 2$, the value $p^2 - (p + 1)^2 < 0$ and $z^2 < 0$ which is impossible.

The equation $p^2 - (p+1)^2 = z^2$ has no solutions.

Case 11. $(p + 1)^3 - p^1 = z^2$. When p = 2, then z = 5, and we have

Solution 2.

$$(p, x, y, z) = (2, 3, 1, 5)$$

Suppose now that p > 2. The value *z* is odd, and denote z = 2T + 1. The equation $(p+1)^3 - p = z^2$ yields $p^3 + 3p^2 + 2p + 1 = z^2$ or $p(p^2 + 3p + 2) = z^2 - 1$ and p(p+1)(p+2) = (z-1)(z+1). (5) From (5) it follows that either $p \mid (z-1)$ or $p \mid (z+1)$.

If $p \mid (z-1)$ denote Ap = z-1, and Ap + 2 = z+1. From (5) we then obtain p(p+1)(p+2) = (Ap)(Ap+2) which is impossible when A = 1. Therefore A > 1, and we have

$$(p+1)(p+2) = A(Ap+2).$$
 (6)

The value Ap + 2 = 1(p + 2) + (A - 1)p, and from (6) (p + 1)(p + 2) = A(1(p + 2) + (A - 1)p) or

$$p+2)((p+1)-A) = A(A-1)p.$$
(7)

Since p > 2 is prime, it follows from (7) that $p \mid ((p + 1) - A)$. But, A > 1 implies that this is impossible. Hence $p \nmid (z - 1)$.

If
$$p \mid (z+1)$$
 denote $Bp = z+1$, and $Bp-2 = z-1$. From (5) we have
 $p(p+1)(p+2) = (Bp-2)(Bp)$ (8)
which is impossible when $B = 1$. Hence $B > 1$. The value $Bp-2 = -1(p+2) + -1$

(B+1)p, and from (8) (p+1)(p+2) = B(-1(p+2) + (B+1)p) or (p+2)((p+1) + B) = B(B+1)p. (9)

Since p > 2 is prime, it follows from (9) that $p \mid (B+1)$. Denote Cp = B+1 and B = Cp - 1. Then from (8), we have

$$(p+1)(p+2) = ((Cp-1)p-2)(Cp-1) = p(Cp-1)^2 - 2(Cp-1)$$

or

$$p^{2} + 3p + 2 = p(p^{2}C^{2} - 2Cp + 1) - 2Cp + 2$$

All the Solutions of the Diophantine Equations $(p + 1)^x - p^y = z^2$ and $p^y - (p + 1)^x = z^2$ when p is Prime and x + y = 2, 3, 4

and

$$p(p+3) = p(p^2C^2 - 2Cp + 1 - 2C).$$

Thus, after simplification by p

 $p(pC^2 - 2C - 1) = 3 - 1 + 2C = 2(C + 1).$ (10) When C = 1, (10) yields p(p - 3) = 4 which is impossible, and hence C > 1. We now

show for all primes p > 2 and all values C > 1 that equality (10) does not exist. Since p > 2, it therefore suffices to show in (10) that if $pC^2 - 2C - 1 > C + 1$ for all C > 1, then (10) does not exist. The inequality $pC^2 - 2C - 1 > C + 1$ yields

 $p > (3C+2) / C^2.$ (11)

For all values C > 1, it is easily seen that $((3C + 2) / C^2) \le 2 < p$ is indeed true. The validity of (11) is established, and hence (10) does not exist.

This completes Case 11.

The equation $(p + 1)^3 - p^1 = z^2$ has a unique solution when p = 2, namely Solution 2, and no solutions for all primes p > 2.

Case 12. $p^1 - (p+1)^3 = z^2$.

For each and every prime $p \ge 2$, the value $p - (p + 1)^3 < 0$. Hence $z^2 < 0$ which is impossible.

The equation $p^1 - (p+1)^3 = z^2$ has no solutions.

The proof of Theorem 2.1. is complete.

Final remark. When x + y = 2 and x + y = 4, then $(p + 1)^x - p^y = z^2$ has a unique solution when p = 2, whereas $p^y - (p + 1)^x = z^2$ with x + y = 3 also has a unique solution when p = 2. Thus, each of the three possibilities x + y = 2, 3, 4 yields a solution when p = 2. Moreover, for $(p + 1)^x - p^y = z^2$ with p = 2, the following solution exists, namely

Solution 3. $3^4 - 2^5 = 7^2$, x + y = 9. One may then ask whether there exist other solutions to $(p + 1)^x - p^y = z^2$ with p = 2 and x + y > 4. The question is also valid for $p^y - (p + 1)^x = z^2$. The same questions may be asked for both equations also when p > 2 and x + y > 4.

REFERENCES

- 1. N.Burshtein, A note on the diophantine equation $p^x + (p + 1)^y = z^2$, Annals of Pure and Applied Mathematics, 19 (1) (2019) 19 20.
- 2. N.Burshtein, Solutions of the diophantine equation $p^x + (p + 6)^y = z^2$ when p, (p + 6) are primes and x + y = 2, 3, 4, *Annals of Pure and Applied Mathematics*, 17 (1) (2018) 101 106.
- 3. N.Burshtein, All the solutions of the diophantine equation $p^x + (p + 4)^y = z^2$ when p, (p + 4) are primes and x + y = 2, 3, 4, *Annals of Pure and Applied Mathematics*, 16 (1) (2018) 241–244.
- 4. A.Suvarnamani, On the Diophantine equation $p^{x} + (p + 1)^{y} = z^{2}$, International Journal of Pure and Applied Mathematics, 94 (5) (2014) 689 692.