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Abstract.  In this article we investigate solutions to the title equation.  We establish:  (i)  

For all values  M and even values x,  y,  then the equation has no solutions.  (ii)  When  

M,  M + 6  are primes, and  x,  y interchange odd and even values, then the equation has a 

unique solution.  (iii)  If M  is prime or composite and so is M + 6, then when x = y = 1 

the equation has infinitely many solutions. In this case, a sufficient condition for a 

solution is determined.  For all values M < 200  and x = y = 3, then the equation has no 

solutions. 
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1.  Introduction 

The field of Diophantine equations is ancient, vast, and no general method exists to 

decide whether a given Diophantine equation has any solutions, or how many solutions.  

In most cases, we are reduced to study individual equations, rather than classes of 

equations. 

 

       The famous general equation 

px + qy= z2 

has many forms. The literature contains a very large number of articles on non-liniar such 

individual equations involving primes, composites and powers of all kinds. Among them 

are [2, 3, 8, 9, 10].   

 

       A prime gap is the difference between two consecutive primes.  Articles as  [4, 6]  

and many others have been written on prime gaps.  In 1849, A. de Polignac  conjectured 

that for every positive integer  k,  there are infinitely many primes  p  such that  p + 2k  is 

prime too.  Many questions and conjectures on the above still remain unanswered and 

unsolved.   

 

       When  k = 1,  the pairs  (p,  p + 2)  are known as Twin Primes.  The first four such 

pairs are:  (3, 5), (5, 7),  (11, 13),  (17, 19).  The Twin Prime conjecture stating that there 

are infinitely many such pairs remains unproved.  When  k = 2,  the pairs  (p,  p + 4)  are 
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called  Cousin Primes.  The first four pairs are:  (3, 7),  (7, 11),  (13, 17),  (19, 23).  The 

conjecture that there are infinitely many Cousin Primes is still unsettled.  

 

       In this article, we concern ourselves with the case  k = 3,  i.e., pairs of primes of the 

form  (p,  p + 6).  These pairs are named in the literature as  "Sexy Primes"  since  "sex" 

in  Latin means  "six".  The first four such pairs are: (5, 11),  (7, 13),  (11, 17),  (13, 19).  

As of today, it is not known whether or not there exist infinitely many Sexy pairs. 

 

       The authors in  [5]  and  [7]  concern themselves with  px + (p + 6)y = z2  where  p,  (p 

+6)  are primes  and  p = 6N + 1.  It is shown  [5]  that the equation has no solutions, 

whereas in  [7]  particular cases of the equation are considered.  The author  [1]  

establishes certain results and solutions of this equation when  p, (p + 6)  are primes,  p = 

6N + 5  and  x + y = 2, 3, 4. 

 

       In this article, we investigate solutions of   

                                                                   Mx + (M + 6)y= z2                                         (1) 

when  M = 6N + 5.  If  M,  M + 6  are primes,  x,  y  are even or if one of them is, then 

equation  (1)  has exactly one solution.  If   M   is prime or composite and so is  M + 6,  

then for all such cases with  x = y = 1,  equation  (1)  has  infinitely  many  solutions.  A 

solution with primes   M,  M + 6   when  x = 5  and  y = 1  is also exhibited. 

 

       This is done in a series of self-contained theorems and tables. 

 

2.   Solutions of  Mx + (M + 6)y = z2 

 

Theorem  2.1.  Let  N ≥ 0,  n ≥ 1,  m ≥ 1  be integers. If  M = 6N + 5, then for all values  

M, n, m,  the equation  

                                                                 M2n + (M + 6)2m = z2                                         (2) 

has no solutions. 

 

Proof:   For all values  M,  n,  m,  one can easily see that  M2n  and  (M + 6)2m  are of the 

form  4A + 1  and  4B + 1.  If  (2)  exists, then  z2  is even, and hence  z = 2T.  From  (2)  

we then obtain 

(4A + 1) + (4B + 1) = 2(2A + 2B + 1) = 4T2 

which is impossible. 

 

       Equation  (2)  has no solutions as asserted.                                     □ 

 

Remark  2.1.    In Theorem  2.1, it was shown that  (2)  has no solutions for all values M. 

Hence, the result is in particular true when  M  and  M + 6  are primes. 

 

       Hereafter,  when  M  and  M + 6  are primes,  we  shall  use  the notation  M = p  and   

M + 6 =P. 
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       We now consider equation (1)  i.e.,  Mx + (M + 6)y = z2  with  M, (M + 6)  as primes  

p  and  P.  In Theorem  2.2  we consider the case when  x  is even and  y  is odd,  whereas  

Theorem 2.3  deals with odd  x  and even  y. 

 

Theorem  2.2.   Let n ≥ 1,  t ≥ 0  be integers.  If  M = p  and  M + 6 = P,  then for all 

values   p,  P,  n,  t,  the equation    

                                                              p2n + P2t+1 = z2                                                      (3) 

has a unique solution when  p = 5,  P = 11,  n = 1,  t = 0,  and  z = 6.   

 

Proof:   From  (3)  we have 

                                   P2t+1 = z2 – p2n = z2 – (pn)2 = (z – pn)(z + pn).                                   (4) 

Since  P  is prime, the  (2t + 2)  divisors of  P2t+1  are 1,  P1,  P2, … , P2t,  P2t+1. Thus, 

from  (4)  the first  (t + 1)  possibilities are: 

z - pn = 1 and z + pn = P2t+1, z - pn = P1 and  z +  pn = P2t, … , z -  pn = Pt and  z +  pn = Pt+1. 

Observe that the last  (t + 1)  possibilities are a priori eliminated. 

 

       We now examine the first possibility. 

       Suppose that  z - pn = 1 and  z +  pn = P2t+1. 

The two equalities imply  

                                                            2pn = P2t+1 – 1.                                                       (5) 

We will show that  (5)  yields exactly one solution. 

       In  (5)  when  n = 1 and  t ≥ 1,  we have  

2p1 + 1 = P2t+1 = (p + 6)2t+1 

which does not exist. 

       Moreover from  (5),  when  n = 1  and  t = 0,  then 

2p1 = P1 – 1 

or 2p = (p + 6) – 1 = p + 5.  Hence,  p = 5  and  P = 11  implying a solution of  (3), 

namely  

 

Solution  1.                                           52 + 111 = 62. 

 

       Rewriting  (5),  i.e.,  2pn = P2t+1 – 12t+1,  results in  

                          pn = ((P – 1)/2)(P2t + P2t-1 + ⸱⸱⸱ + P2 + P1 +1)                                        (6) 

where  (P – 1)/2 > 1 is an integer.  Since   p,  P   are primes, it then follows for all values   

n > 1  and  t ≥ 0  that  (6)  is impossible. 

 

       The first possibility is complete. 

 

       We now consider all the remaining  t  possibilities for  z - pn.   

       Suppose that  z - pn = Pu  where  1 ≤  u  ≤ t,  and  z + pn = P(2t+1)– u.  Hence,  z = pn + Pu  

yields  

                                                       2pn + Pu = P(2t+1)– u.                                                     (7) 

For all values  n ≥ 1  and  t ≥ 1, the two sides of  (7)  are clearly in contradiction since  p,  

P  are primes.  Therefore  (7)  is impossible.  The equation p2n + P2t+1 = z2  has no 

solutions when  n ≥ 1  and t ≥ 1. 
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       Thus, when  n = 1 and t = 0, Solution  1 is the unique solution of the equation as 

asserted. 

 

       This concludes the proof of Theorem 2.2.                                 □ 

 

Theorem  2.3.   Let  n ≥ 0,  t ≥1 be integers.  If  M = p  and  M + 6 = P,  then for all 

values   p,  P,  n,  t,  the equation    

                                                              p2n+1 + P2t = z2                                                      (8) 

has no solutions. 

 

Proof:   From  (8)  we obtain 

                                     p2n+1 = z2 - P2t = z2 – (Pt)2= (z - Pt)(z +Pt).                                    (9) 

Since  p  is prime,  the  (2n + 2)  divisors of  p2n+1  are  1,  p1,  p2, … ,  p2n+1. Thus, from  

(9)  the first  (n + 1)  possibilities are: 

z – Pt = 1  and z +  Pt = p2n+1,      z - Pt = p1  and  z +  Pt = p2n, … , z -  Pt = pn  and  z +  Pt 

= pn+1, where the last  (n + 1)  possibilities are a priori eliminated. 

 

       We now consider the first possibility. 

       Suppose that   z – Pt = 1  and  z +  Pt = p2n+1.  The two equalities imply 

                                                          2Pt = p2n+1 – 1.                                                       (10) 

When  n = 0,  we obtain  2Pt = p1 – 1  which  is  impossible  for  all  values  t ≥ 1  since   

P > p.   

 

       Rewriting  (10),  we have that  2Pt = p2n+1 – 12n+1  yields 

                                       Pt = ((p – 1)/2)(p2n + p2n-1+ ⸱⸱⸱ + p 2 + p1 +1)                          (11) 

where 1< (p – 1)/2 < P  is an integer.  For all values   n > 0,  t ≥ 1  and since  P  is prime,  

it follows that  (11)  does not exist. Therefore, for  all  n ≥ 0  and  t ≥ 1,  equation  (8)  has 

no solutions. 

 

       This concludes the first possibility. 

 

       We shall now examine the remaining  n  possibilities for  z - Pt.  

       Suppose that  z - Pt = pv  where  1≤ v ≤ n,  and  z + Pt = p(2n+1)-v.  Thus,  z =  Pt + pv 

yields   

                                                                 2Pt+ pv =p(2n+1)-v.                                             (12) 

Since  p,  P  are primes, then for each value  n ≥ 1  and  t ≥ 1, the two sides of  (12)  are 

contradictory.  Thus  (12)  is impossible. 

       When  n ≥ 0  and  t ≥ 1,  the equation   p2n+1 + P2t = z2  has no solutions. 

 

       The proof of  Theorem 2.3  is complete.                                              □ 

 

       The remaining part of this article is concerned with solutions of Mx + (M + 6)y = z2  

when  x,  y  are odd.  The general case presents great difficulties, and we shall consider 

only two cases, namely:  the case  x = y = 1,  and the case  x = y = 3.  This is done in 

Theorem  2.4. 
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Theorem  2.4.   Let  N ≥ 0,  n ≥ 0,  t ≥ 0  be integers.  If   M = 6N + 5, then the equation 

                                                    M2n+1 + (M + 6)2t+1 = z2                                                (13) 

has: 

(a)   Infinitely many solutions when  n = t = 0. 

(b)   No solutions for all values  M < 200  when  n = t = 1. 

 

Proof:   (a) Suppose that  n = t = 0 in  (13). 

 

       To begin with, we remark that we do not intend to find all the solutions  of  (13)  

when  n = t = 0,  but rather show the existence of infinitely many solutions in this case. 

 

       When  M  and  M + 6  are composites, we shall hereafter use the notation  M = c  and  

M + 6  = C. 

 

       In the following Table 1, we exhibit nine solutions of  (13)  in which  n = t = 0.  

These solutions comprise the four existing types of solutions, namely:  

(M,  M + 6)  =  (p,  P),    (c,  P),   (p,  C),    (c,  C). 

The solutions appear in this order. 

Table 1.          Solutions  of  Mx + (M + 6)y = z2           when  x = y= 1. 

Solution M = p M = c M + 6 = P M + 6 = C z2 

Solution  1 

Solution  2 

Solution  3 

5 

47 

6047 

 11 

53 

6053 

 42 

102 

1102 

Solution  4 

Solution  5 

 95 

125 

101  

131 

 142 

162 

Solution  6 

Solution  7 

29 

797 

  35 

803 

82 

402 

 

Solution  8 

Solution  9 

 12797 

39197 

 12803 

39203 

1602 

2802 

 

 

       Each type described in Table 1 occurs infinitely many times.   

       Observe first that there exist infinitely many primes/composites in each of the 

following two progressions: 

 

8K – 1:     7,       15,       23,       31,       39,       47,   … ,  95,  …  , 

and 

8K + 5:   13,       21,       29,       37,       45,       53,   … ,  101,  …  . 
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Each three columns in both progressions, respectively represent integers of the form  

6L+1, 6L+3,  6L+5. 

Since  M = 6N + 5,  a solution of  (13)  is obtained when  

M1 + (M + 6)1 = 12N + 16 = 4(3N + 4) = z2 

implying that  z2  is even,  and denote  z = 2T.  Thus  3N + 4 = T2,  and  T  is odd or  T  is 

even. To prove our assertion, it suffices to consider anyone of the two possibilities.  

Suppose that  T  is odd.  Denote  T = 2R +1,  hence  3N + 4 = (2R + 1)2  or  3(N + 1) = 

4R(R + 1).  Then,  3 | R  or  3 | (R + 1).  It suffices to assume only 3 | R.  Denote  R = 3S  

where  S ≥ 1 is an integer.  Thus,  N = 4S(3S + 1) – 1.  We then obtain  

 

{
𝑀 =  6𝑁 +  5 =  6(4𝑆(3𝑆 +  1)–  1) +  5 = 8(3𝑆(3𝑆 +  1))–  1 =   8𝐾 –  1,

𝑀 +  6 =  6𝑁 +  11 =  6(4𝑆(3𝑆 +  1)  −  1)  +  11 =  8(3𝑆(3𝑆 +  1))  +  5 =   8𝐾 +  5,
(14) 

 

where  K  is the product of two consecutive integers  (3S)  and  (3S + 1).   

 

       Finally,  

                                       z2 = 4(3N + 4) = 4(2R + 1)2 = 4(6S + 1)2.                                 (15) 

 

       In  (14)  and  (15),  infinitely many integers  S =  1, 2, 3, … , k, …  yield infinitely 

many values  M,  M + 6,  z2,  namely   

M = 8(3S(3S + 1)) – 1,   M+ 6 = 8(3S(3S+ 1)) + 5,    z2 = 4(6S + 1)2 

which satisfy the identity  

M1 = (M + 6)1 = z2. 

Hence, each and every integer  S  determines a solution of the identity. 

       Thus, equalities  (14)  and  (15)  establish a sufficient condition for an infinitude of 

solutions to equation  (13)  when  n = t = 0. 

 

       Part  (a)  is complete. 

 

       For the convenience of the reader, Table 2  demonstrates nine solutions of M1 +  (M 

+ 6)1 = z2  when  1≤ S ≤ 9. 

 

Table 2.      Solutions of   M1+ (M + 6)1 = z2         when  1 ≤ S ≤ 9. 

Solution S M M + 6 z2 Type of Solution 

Solution  1 

Solution  2 

Solution  3 

Solution  4 

Solution  5 

Solution  6 

Solution  7 

Solution  8 

Solution  9 

1 

2 

3 

4 

5 

6 

7 

8 

9 

95 

335 

719 

1247 

1919 

2735 

3695 

4799 

6047 

101 

341 

725 

1253 

1925 

2741 

3701 

4805 

6053 

142 

262 

382 

502 

622 

742 

862 

982 

1102 

(c,  P) 

(c,  C) 

(p,  C) 

(c,  C) 

(c,  C) 

(c,  P) 

(c,  P) 

(p,  C) 

(p,  P) 
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Remark  2.2.   All four types of solutions are represented in Table 2. It is noted that 

Solutions 1 and  9 here coincide respectively with Solutions 4  and  3  in Table 1. 

 

Remark   2.3.    It is shown in [1]  for the first 10000  primes when  p, (p + 6)  are primes 

and  x = y = 1, that the equation  px + (p + 6)y = z2  has exactly seven solutions  (type (p,  

P)), all of which are exhibited.  Three of these solutions are  Solutions  1 – 3 in Table 1, 

the other four solutions are not demonstrated here. 

 

(b)   Suppose that  n = t = 1  in  (13).  

 

       There are  33  values  M  when  M < 200.  The  33  values  5 ≤ M ≤ 197 have been 

examined in  (13)  when  n = t = 1,  and  M3 + (M + 6)3 = z2  has no solutions.  

 

       This concludes part  (b),  and Theorem  2.4.                                               □ 

 

       Enlarging the value  M   in  (b) requires the aid of a computer. 

 

Remark  2.4.    In  [1]  it is established:  If  n = 0,  t = 1,  and if  n = 1, t = 0,  then for all 

primes  p, (p + 6),  the equation  p2n+1+ (p + 6)2t+1 =  z2  has no solutions.  

 

3.  Conclusion 

The odd prime  p = 5  is a unique one. No other prime has a last digit which is equal to  5.  

It is quite evident that the values  M = p = 5  and  M + 6 = p + 6 = 11  have a particular 

role in the equation  Mx + (M + 6)y = z2.  First, we have the unique solution 

 

Solution  1.                                       52 +111 = 62           (x = 2,     y = 1). 

Secondly, in  Solution  1  of  Table 1,  we have 

                                                          51 + 111 = 42          (x = 1,     y = 1).  

Finally,  another solution is given by   

 

Solution  2.                                        55 + 111 = 562       (x = 5,     y = 1). 

Observing that  53 +111 ≠ z2,    57 +111 ≠ z2,    59 +111 ≠ z2,    511 +111 ≠ z2.  Further 

calculations require a computer. 

 

       Consider equation  (13)  i.e.,  M2n+1+ (M + 6)2t+1=  z2  when  M = 5.  Solution  1 of  

Table 1 and Solution  2  are solutions of this equation. The following question may now 

be raised. 

 

Question  1.    Does the equation 52n+ 1 + 112t + 1 = z2  have any other solutions ? 

 

       If the answer is indeed negative to Question 1, then  Solution 2  with n > 0  is 

therefore unique.  Moreover, when  M = 5,  then  5x + 11y = z2  has exactly three solutions 

in all of which  y = 1  as shown above. 
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