Annals of Pure and Applied Mathematics Vol. 1x, No. x, 201x, xxx-xxx ISSN: 2279-087X (P), 2279-0888(online) Published on 10 December 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n2a9

Annals of **Pure and Applied Mathematics**

On Solutions to the Diophantine Equation $M^{x}+(M+6)^{y}=z^{2}$ when M=6N+5

Nechemia Burshtein

117 Arlozorov Street, Tel – Aviv 6209814, Israel Email: <u>anb17@netvision.net.il</u>

Received 1 December 2018; accepted 10 December 2018

Abstract. In this article we investigate solutions to the title equation. We establish: (i) For all values M and even values x, y, then the equation has no solutions. (ii) When M, M + 6 are primes, and x, y interchange odd and even values, then the equation has a unique solution. (iii) If M is prime or composite and so is M + 6, then when x = y = 1 the equation has infinitely many solutions. In this case, a sufficient condition for a solution is determined. For all values M < 200 and x = y = 3, then the equation has no solutions.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The famous general equation

$$p^x + q^y = z^2$$

has many forms. The literature contains a very large number of articles on non-liniar such individual equations involving primes, composites and powers of all kinds. Among them are [2, 3, 8, 9, 10].

A prime gap is the difference between two consecutive primes. Articles as [4, 6] and many others have been written on prime gaps. In 1849, A. de Polignac conjectured that for every positive integer k, there are infinitely many primes p such that p + 2k is prime too. Many questions and conjectures on the above still remain unanswered and unsolved.

When k = 1, the pairs (p, p + 2) are known as Twin Primes. The first four such pairs are: (3, 5), (5, 7), (11, 13), (17, 19). The Twin Prime conjecture stating that there are infinitely many such pairs remains unproved. When k = 2, the pairs (p, p + 4) are

called Cousin Primes. The first four pairs are: (3, 7), (7, 11), (13, 17), (19, 23). The conjecture that there are infinitely many Cousin Primes is still unsettled.

In this article, we concern ourselves with the case k = 3, i.e., pairs of primes of the form (p, p + 6). These pairs are named in the literature as "Sexy Primes" since "*sex*" in *Latin* means "six". The first four such pairs are: (5, 11), (7, 13), (11, 17), (13, 19). As of today, it is not known whether or not there exist infinitely many Sexy pairs.

The authors in [5] and [7] concern themselves with $p^x + (p+6)^y = z^2$ where p, (p+6) are primes and p = 6N + 1. It is shown [5] that the equation has no solutions, whereas in [7] particular cases of the equation are considered. The author [1] establishes certain results and solutions of this equation when p, (p+6) are primes, p = 6N + 5 and x + y = 2, 3, 4.

In this article, we investigate solutions of

$$+ (M+6)^{y} = z^{2}$$
(1)

when M = 6N + 5. If M, M + 6 are primes, x, y are even or if one of them is, then equation (1) has exactly one solution. If M is prime or composite and so is M + 6, then for all such cases with x = y = 1, equation (1) has infinitely many solutions. A solution with primes M, M + 6 when x = 5 and y = 1 is also exhibited.

 M^{χ}

This is done in a series of self-contained theorems and tables.

2. Solutions of $M^{x} + (M + 6)^{y} = z^{2}$

Theorem 2.1. Let $N \ge 0$, $n \ge 1$, $m \ge 1$ be integers. If M = 6N + 5, then for all values M, n, m, the equation

$$M^{2n} + (M+6)^{2m} = z^2 \tag{2}$$

has no solutions.

Proof: For all values M, n, m, one can easily see that M^{2n} and $(M + 6)^{2m}$ are of the form 4A + 1 and 4B + 1. If (2) exists, then z^2 is even, and hence z = 2T. From (2) we then obtain

$$(4A + 1) + (4B + 1) = 2(2A + 2B + 1) = 4T^{2}$$

which is impossible.

Equation (2) has no solutions as asserted.

Remark 2.1. In Theorem 2.1, it was shown that (2) has no solutions for all values M. Hence, the result is in particular true when M and M + 6 are primes.

Hereafter, when M and M + 6 are primes, we shall use the notation M = p and M + 6 = P.

On Solutions to the Diophantine Equation $M^{x} + (M + 6)^{Y} = z^{2}$ when M = 6N + 5

We now consider equation (1) i.e., $M^x + (M + 6)^y = z^2$ with M, (M + 6) as primes p and P. In Theorem 2.2 we consider the case when x is even and y is odd, whereas Theorem 2.3 deals with odd x and even y.

Theorem 2.2. Let $n \ge 1$, $t \ge 0$ be integers. If M = p and M + 6 = P, then for all values p, P, n, t, the equation

$$p^{2n} + P^{2t+1} = z^2 \tag{3}$$

has a unique solution when p = 5, P = 11, n = 1, t = 0, and z = 6.

Proof: From (3) we have

 $P^{2t+1} = z^2 - p^{2n} = z^2 - (p^n)^2 = (z - p^n)(z + p^n).$ Since P is prime, the (2t + 2) divisors of P^{2t+1} are 1, P^1 , P^2 , ..., P^{2t} , P^{2t+1} . Thus, (4)

from (4) the first (t + 1) possibilities are:

 $z - p^n = 1$ and $z + p^n = P^{2t+1}$, $z - p^n = P^1$ and $z + p^n = P^{2t}$, ..., $z - p^n = P^t$ and $z + p^n = P^{t+1}$. Observe that the last (t + 1) possibilities are a priori eliminated.

We now examine the first possibility.

Suppose that $z - p^n = 1$ and $z + p^n = P^{2t+1}$. The two equalities imply

$$2p^n = P^{2t+1} - 1. (5)$$

We will show that (5) yields exactly one solution.

In (5) when n = 1 and $t \ge 1$, we have

$$2p^1 + 1 = P^{2t+1} = (p+6)^{2t+1}$$

which does not exist.

Moreover from (5), when n = 1 and t = 0, then $2p^1 = P^1 - 1$

or 2p = (p + 6) - 1 = p + 5. Hence, p = 5 and P = 11 implying a solution of (3), namely

Solution 1.

$$5^2 + 11^1 = 6^2$$
.

Rewriting (5), i.e., $2p^n = P^{2t+1} - 1^{2t+1}$, results in $p^n = ((P-1)/2)(P^{2t} + P^{2t-1} + \dots + P^2 + P^1 + 1)$

where (P-1)/2 > 1 is an integer. Since p, P are primes, it then follows for all values n > 1 and $t \ge 0$ that (6) is impossible.

The first possibility is complete.

We now consider all the remaining t possibilities for $z - p^n$.

Suppose that $z - p^n = P^u$ where $1 \le u \le t$, and $z + p^n = P^{(2t+1)-u}$. Hence, $z = p^n + P^u$ yields

$$2p^n + P^u = P^{(2t+1)-u}. (7)$$

For all values $n \ge 1$ and $t \ge 1$, the two sides of (7) are clearly in contradiction since p, P are primes. Therefore (7) is impossible. The equation $p^{2n} + P^{2t+1} = z^2$ has no solutions when $n \ge 1$ and $t \ge 1$.

Thus, when n = 1 and t = 0, Solution 1 is the unique solution of the equation as asserted.

This concludes the proof of **Theorem 2.2**.

Theorem 2.3. Let $n \ge 0$, $t \ge 1$ be integers. If M = p and M + 6 = P, then for all values p, P, n, t, the equation

$$p^{2n+1} + P^{2t} = z^2 \tag{8}$$

has no solutions.

Proof: From (8) we obtain

 $p^{2n+1} = z^2 - P^{2t} = z^2 - (P^t)^2 = (z - P^t)(z + P^t).$ (9) Since *p* is prime, the (2*n* + 2) divisors of p^{2n+1} are 1, p^1 , p^2 , ..., p^{2n+1} . Thus, from (9) the first (*n* + 1) possibilities are: $z - P^t = 1$ and $z + P^t = p^{2n+1}$, $z - P^t = p^1$ and $z + P^t = p^{2n}$, ..., $z - P^t = p^n$ and $z + P^t$ $= p^{n+1}$, where the last (*n* + 1) possibilities are a priori eliminated.

We now consider the first possibility. Suppose that $z - P^t = 1$ and $z + P^t = p^{2n+1}$. The two equalities imply $2P^t = p^{2n+1} - 1.$ (10)

When n = 0, we obtain $2P^t = p^1 - 1$ which is impossible for all values $t \ge 1$ since P > p.

Rewriting (10), we have that
$$2P^t = p^{2n+1} - 1^{2n+1}$$
 yields
 $P^t = ((p-1)/2)(p^{2n} + p^{2n-1} + \dots + p^2 + p^1 + 1)$ (11)
where $1 < (p-1)/2 < P$ is an integer. For all values $n > 0, t \ge 1$ and since P is prime,
it follows that (11) does not exist. Therefore, for all $n \ge 0$ and $t \ge 1$, equation (8) has
no solutions.

This concludes the first possibility.

We shall now examine the remaining *n* possibilities for $z - P^t$. Suppose that $z - P^t = p^v$ where $1 \le v \le n$, and $z + P^t = p^{(2n+1)-v}$. Thus, $z = P^t + p^v$ yields

$$2P^t + p^v = p^{(2n+1)-v}.$$
 (12)

Since p, P are primes, then for each value $n \ge 1$ and $t \ge 1$, the two sides of (12) are contradictory. Thus (12) is impossible.

When $n \ge 0$ and $t \ge 1$, the equation $p^{2n+1} + P^{2t} = z^2$ has no solutions.

The proof of **Theorem 2.3** is complete.

The remaining part of this article is concerned with solutions of $M^x + (M + 6)^y = z^2$ when x, y are odd. The general case presents great difficulties, and we shall consider only two cases, namely: the case x = y = 1, and the case x = y = 3. This is done in Theorem 2.4. On Solutions to the Diophantine Equation $M^{x} + (M + 6)^{y} = z^{2}$ when M = 6N + 5

Theorem 2.4. Let $N \ge 0$, $n \ge 0$, $t \ge 0$ be integers. If M = 6N + 5, then the equation $M^{2n+1} + (M+6)^{2t+1} = z^2$ (13)

has:

(a) Infinitely many solutions when n = t = 0.

(b) No solutions for all values M < 200 when n = t = 1.

Proof: (a) Suppose that n = t = 0 in (13).

To begin with, we remark that we do not intend to find all the solutions of (13) when n = t = 0, but rather show the existence of infinitely many solutions in this case.

When M and M + 6 are composites, we shall hereafter use the notation M = c and M + 6 = C.

In the following **Table 1**, we exhibit nine solutions of (13) in which n = t = 0. These solutions comprise the four existing types of solutions, namely:

$$(M, M+6) = (p, P), (c, P), (p, C), (c, C).$$

The solutions appear in this order.

Solution	M = p	M = c	M + 6 = P	M + 6 = C	z^2
Solution 1	5		11		42
Solution 2	47		53		10 ²
Solution 3	6047		6053		110 ²
Solution 4		95	101		142
Solution 5		125	131		16 ²
Solution 6	29			35	8 ²
Solution 7	797			803	40^{2}
Solution 8		12797		12803	160 ²
Solution 9		39197		39203	280^{2}

Table 1. Solutions of $M^x + (M+6)^y = z^2$ when x = y = 1.

Each type described in Table 1 occurs infinitely many times.

Observe first that there exist infinitely many primes/composites in each of the following two progressions:

8K-1: 7, 15, 23, 31, 39, 47, ..., 95, ..., and 8K+5: 13, 21, 29, 37, 45, 53, ..., 101,

Each three columns in both progressions, respectively represent integers of the form 6L+1, 6L+3, 6L+5.

Since M = 6N + 5, a solution of (13) is obtained when

 $M^{1} + (M + 6)^{1} = 12N + 16 = 4(3N + 4) = z^{2}$

implying that z^2 is even, and denote z = 2T. Thus $3N + 4 = T^2$, and T is odd or T is even. To prove our assertion, it suffices to consider anyone of the two possibilities. Suppose that T is odd. Denote T = 2R + 1, hence $3N + 4 = (2R + 1)^2$ or 3(N + 1) = 4R(R + 1). Then, 3 | R or 3 | (R + 1). It suffices to assume only 3 | R. Denote R = 3Swhere $S \ge 1$ is an integer. Thus, N = 4S(3S + 1) - 1. We then obtain

$$\begin{cases} M = 6N + 5 = 6(4S(3S + 1) - 1) + 5 = 8(3S(3S + 1)) - 1 = 8K - 1, \\ M + 6 = 6N + 11 = 6(4S(3S + 1) - 1) + 11 = 8(3S(3S + 1)) + 5 = 8K + 5, \end{cases}$$

where K is the product of two consecutive integers (3S) and (3S + 1).

Finally,

$$z^{2} = 4(3N+4) = 4(2R+1)^{2} = 4(6S+1)^{2}.$$
(15)

In (14) and (15), infinitely many integers S = 1, 2, 3, ..., k, ... yield infinitely many values $M, M + 6, z^2$, namely

 $M = 8(3S(3S+1)) - 1, M+6 = 8(3S(3S+1)) + 5, z^2 = 4(6S+1)^2$ which satisfy the identity

$$M^1 = (M+6)^1 = z^2.$$

Hence, each and every integer S determines a solution of the identity.

Thus, equalities (14) and (15) establish a sufficient condition for an infinitude of solutions to equation (13) when n = t = 0.

Part (a) is complete.

For the convenience of the reader, **Table 2** demonstrates nine solutions of $M^1 + (M + 6)^1 = z^2$ when $1 \le S \le 9$.

Solution	S	М	<i>M</i> + 6	z^2	Type of Solution
Solution 1	1	95	101	14 ²	(c, P)
Solution 2	2	335	341	26 ²	(c, C)
Solution 3	3	719	725	38 ²	(p, C)
Solution 4	4	1247	1253	50^{2}	(c, C)
Solution 5	5	1919	1925	62^{2}	(c, C)
Solution 6	6	2735	2741	74 ²	(c, P)
Solution 7	7	3695	3701	86 ²	(c, P)
Solution 8	8	4799	4805	98 ²	(p, C)
Solution 9	9	6047	6053	110 ²	(p, P)

Table 2. Solutions of $M^1 + (M + 6)^1 = z^2$ when $1 \le S \le 9$.

On Solutions to the Diophantine Equation $M^{x} + (M + 6)^{Y} = z^{2}$ when M = 6N + 5

Remark 2.2. All four types of solutions are represented in **Table 2**. It is noted that **Solutions 1** and **9** here coincide respectively with **Solutions 4** and **3** in **Table 1**.

Remark 2.3. It is shown in [1] for the first 10000 primes when p, (p + 6) are primes and x = y = 1, that the equation $p^x + (p + 6)^y = z^2$ has exactly seven solutions (type (p, P)), all of which are exhibited. Three of these solutions are **Solutions 1 – 3** in **Table 1**, the other four solutions are not demonstrated here.

(b) Suppose that n = t = 1 in (13).

There are 33 values M when M < 200. The 33 values $5 \le M \le 197$ have been examined in (13) when n = t = 1, and $M^3 + (M + 6)^3 = z^2$ has no solutions.

This concludes part (b), and Theorem 2.4.

Enlarging the value M in (b) requires the aid of a computer.

Remark 2.4. In [1] it is established: If n = 0, t = 1, and if n = 1, t = 0, then for all primes p, (p + 6), the equation $p^{2n+1} + (p + 6)^{2t+1} = z^2$ has no solutions.

3. Conclusion

The odd prime p = 5 is a unique one. No other prime has a last digit which is equal to 5. It is quite evident that the values M = p = 5 and M + 6 = p + 6 = 11 have a particular role in the equation $M^x + (M + 6)^y = z^2$. First, we have the unique solution

Solution 1. $5^2 + 11^1 = 6^2$ (x = 2, y = 1). Secondly, in Solution 1 of Table 1, we have $5^1 + 11^1 = 4^2$ (x = 1, y = 1).

Finally, another solution is given by

Solution 2. $5^5 + 11^1 = 56^2$ (x = 5, y = 1). Observing that $5^3 + 11^1 \neq z^2$, $5^7 + 11^1 \neq z^2$, $5^9 + 11^1 \neq z^2$, $5^{11} + 11^1 \neq z^2$. Further calculations require a computer.

Consider equation (13) i.e., $M^{2n+1} + (M+6)^{2t+1} = z^2$ when M = 5. Solution 1 of **Table 1** and **Solution 2** are solutions of this equation. The following question may now be raised.

Question 1. Does the equation $5^{2n+1} + 11^{2t+1} = z^2$ have any other solutions ?

If the answer is indeed negative to **Question 1**, then **Solution 2** with n > 0 is therefore unique. Moreover, when M = 5, then $5^x + 11^y = z^2$ has exactly three solutions in all of which y = 1 as shown above.

REFERENCES

- 1. N.Burshtein, Solutions of the diophantine equation $p^x + (p + 6)^y = z^2$ when p, (p + 6) are primes and x + y = 2, 3, 4, *Annals of Pure and Applied Mathematics*, 17 (1) (2018) 101-106.
- 2. N.Burshtein, The diophantine equation $p^x + (p + 4)^y = z^2$ when p > 3, p + 4 are Primes is insolvable in positive integers *x*, *y*, *z*, *Annals of Pure and Applied Mathematics*, 16 (2) (2018) 283-286.
- 3. N.Burshtein, All the solutions of the diophantine equation $p^x + (p + 4)^y = z^2$ when p, p + 4 are primes and x + y = 2, 3, 4, *Annals of Pure and Applied Mathematics*, 16 (1) (2018) 241-244.
- 4. P.Erdős, On the difference of consecutive primes, *Quart. J. Math. Oxford*, 6 (1935) 124 128.
- 5. S.Gupta, S.Kumar and H.Kishan, On the non-linear diophantine equation $p^x + (p + 6)^y = z^2$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 125-128.
- 6. A.Hildebrand and H.Maier, Gaps between prime numbers, *Proceedings of the American Mathematical Society*, 104 (1988) 1–9.
- 7. S.Kumar, S.Gupta and H.Kishan, On the non-linear diophantine equation $61^x + 67^y = z^2$ and $67^x + 73^y = z^2$, Annals of Pure and Applied Mathematics, 18 (1) (2018) 91-94.
- 8. F.N. de Oliveira, On the solvability of the diophantine equation $p^x + (p + 8)^y = z^2$ when p > 3 and p + 8 are primes, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 9-13.
- 9. B.Poonen, Some diophantine equations of the form $x^n + y^n = z^m$, *Acta Arith.*, 86 (1998) 193-205.
- 10. B.Sroysang, More on the Diophantine equation $4^x + 10^y = z^2$, *International Journal of Pure and Applied Mathematics*, 91 (1) (2014) 135-138.