Annals of Pure and Applied Mathematics Vol. 18, No. 2, 2018, 185-188 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 November 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n2a7

Annals of **Pure and Applied Mathematics**

(1)

On the Non-Linear Diophantine Equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$

Satish Kumar¹, Deepak Gupta² and Hari Kishan³

¹Department of Mathematics, D.N.College Meerut, U.P., India <u>email: ¹skg22967@gmail.com</u>; ³<u>harikishan10@rediffmail.com</u> ¹Corresponding author. Email: <u>deepakgupta1763@gmail.com</u>

Received 10 October 2018; accepted 22 November 2018

Abstract. In this paper, we discussed all the solutions of non-linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$, where x, y and z are non-negative integers and proved that these non-linear Diophantine equations have no non-negative integer solution.

Keywords: Diophantine Equations, Exponential Equations, Catalan's Conjecture

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The Diophantine equation plays a major role in number theory. There is no general method to determine that a given Diophantine equation has how many solutions. In [5], Catalan conjectured that the Diophantine equation $a^x - b^y = 1$, where a, b, x and y are nonnegative integers under condition min {a, b, x, y}>1 has a unique solution (a, b, x, y) = (3, 2, 2, 3). In [10], Sroysang proved that the Diophantine equation $3^{x} + 5^{y} = z^{2}$ where x, y and z are non-negative integers has a unique solution (x, y, z) = (1, 0, 2). In [1], Acu proved that the Diophantine equation $2^{x} + 5^{y} = z^{2}$, where x, y and z are non-negative integers has only two solutions (x, y, z) = (3, 0, 3) and (2, 1, 3). In [8], B. Sroysang proved that the Diophantine equation $8^x + 19^y = z^2$, where x, y and z are non-negative integers has a unique solution (x, y, z) = (1, 0, 3). In [11], Sroysang proved that the Diophantine equation $2^{x} + 3^{y} = z^{2}$ where x, y and z are non-negative integers, has only three solutions (x, y, z) = (0, 1, 2), (3, 0, 3) and (4, 2, 5). In [9], Sroysang proved that the Diophantine equation $31^x + 32^y = z^2$ has no non-negative integer solution. In [3], Burshtein proved that the Diophantine equation $2^{a} + 7^{b} = c^{2}$ when a and b both are odd integers, has no solution. In [2], Burshtein discussed an open problem of Chotchaisthit, on the Diophantine equation $2^{x} + p^{y} = z^{2}$, where p is particular prime and y = 1. In [4], Burshtein also discussed on the Diophantine equation $2^{x} + p^{y} = z^{2}$ for odd prime p and x, y and z are positive integers. In [6], S. Kumar et.al. proved that the Diophantine equation $61^{x} + 67^{y} = z^{2}$ and $67^{x} + 73^{y} = z^{2}$ have no non-negative integer solution.

In most of these papers, the authors used theory of congruence and/or Catalan's conjecture [7] to find or to show the non-existence of the solutions of the Diophantine equations of form $p^x + q^y = z^2$.

In this paper, we discussed about the solutions of non-linear Diophantine equations

 $31^{x} + 41^{y} = z^{2}$

Satish Kumar, Deepak Gupta and Hari Kishan

 $61^{x} + 71^{y} = z^{2}$ And (2)

where x, y, and z are non-negative integers and proved that these Diophantine equations has no non-negative integers solution. We have used the Catalan's conjecture to solve these non-linear Diophantine equations.

2. Preliminaries

Proposition 2.1. The Diophantine equation $a^x - b^y = 1$, where a, b, x and y are integers under condition min $\{a, b, x, y\} > 1$ has unique solution (a, b, x, y) = (3, 2, 2, 3). **Proof.** See in [1].

Lemma 2.1. The Diophantine equation $1+41^y = z^2$, where y and z are non-negative integers, has no non-negative integer solution.

Proof: Here we consider three cases.

Case I. If y = 0. Then $z^2 = 2$, which is impossible. **Case II.** If y = 1. Then $z^2 = 42$, which is also impossible.

Case III. If y > 1. Then $z^2 = 1+41^y > 42$.

This gives z > 6. Here min $\{y, z\} > 1$, so by Proposition, in this case also no solution.

Lemma 2.2. The Diophantine equation $1 + 71^{y} = z^{2}$, where y and z are non-negative integers, has no non-negative integer solution.

Proof: Here we consider three cases.

Case I. If y = 0. Then $z^2 = 2$, which is impossible.

Case II. If y = 1. Then $z^2 = 72$, which is also impossible.

Case III. If y > 1. Then $z^2 = 1+71^y > 72$.

This gives z > 8. Here min $\{y, z\} > 1$, so by Proposition, in this case also no solution.

Lemma 2.3. The Diophantine equation $31^x + 1 = z^2$, where x and z are non-negative integers, has no non-negative integer solution.

Proof: Here we consider three cases.

Case I. If x = 0. Then $z^2 = 2$, which is impossible. **Case II.** If x = 1. Then $z^2 = 32$, which is also impossible.

Case III. If x > 1. Then $z^2 = 31^x + 1 > 32$.

This gives z > 5. Here min $\{x, z\} > 1$, by Proposition, in this case also no solution.

Lemma 2.4. The Diophantine equation $61^x + 1 = z^2$, where x and z are non-negative integers, has no non-negative integer solution.

Proof: Here we consider three cases.

Case I. If x = 0. Then $z^2 = 2$, which is impossible.

Case II. If x = 1. Then $z^2 = 62$, which is also impossible.

Case III. If x > 1. Then $z^2 = 61^x + 1 > 62$.

This gives z > 7. Here min $\{x, z\} > 1$, by Proposition 2.1, in this case also no solution.

3. Main results

Theorem 3.1. The non-linear Diophantine equation $31^{x} + 41^{y} = z^{2}$, where x, y, and z are non-negative integers, have no solution.

Proof: Here we consider three cases.

On the Non-Linear Diophantine Equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$

Case I. If x = 0, then by Lemma 2.1, there is no non-negative integer solution. **Case II.** If $x \ge 1$ and y = 0, then by Lemma 2.3, there is no non-negative integer solution. **Case II.** If $x \ge 1$ and $y \ge 1$, then 31^x and 41^y both are odd. Thus z^2 is even, so z is even. Let z = 2n then $z^2 \equiv 4n^2 \pmod{5}$ (3) where n is non negative integer. Now $31 \equiv 1 \pmod{5}$ and $41 \equiv 1 \pmod{5}$, therefore $31^x \equiv 1 \pmod{5}$ and $41^y \equiv 1 \pmod{5}$. Thus $z^2 = 31^x + 41^y \equiv 2 \pmod{5}$. (4) From Eqn. (3) and (4), we obtain $4n^2 \equiv 2 \pmod{5}$ implies $n^2 \equiv 3 \pmod{5}$.

This is impossible.

Corollary 3.1.1. The non-linear Diophantine equation $31^x + 41^y = k^{2t}$, where x, y, and z are non-negative integers, k and t are positive integers, has no solution. **Proof:** Let $k^t = z$, then this Diophantine equation becomes $31^x + 41^y = z^2$, which has no solution by Theorem 3.1.

Corollary 3.1.2. The non-linear Diophantine equation $31^x + 41^y = k^{2t+2}$, where x, y, and z are non-negative integers, k and t are positive integers, has no solution. **Proof:** Let $k^{t+1} = z$, then this Diophantine equation becomes $31^x + 41^y = z^2$, which has no

solution by Theorem 3.1.

Theorem 3.2. The non-linear Diophantine equation $61^x + 71^y = z^2$, where x, y, and z are non-negative integers, have no solution.

Proof: Here we consider three cases.

Case I. If x = 0, then by Lemma 2.1, there is no non-negative integer solution. **Case II.** If $x \ge 1$ and y = 0, then by Lemma 2.3, there is no non-negative integer solution. **Case II.** If $x \ge 1$ and $y \ge 1$, then 61^x and 71^y both are odd. Thus z^2 is even, so z is even. Let z = 2n, then $z^2 \equiv 4n^2 \pmod{5}$ (5) Where n is non negative integer.

Now $61 \equiv 1 \pmod{5}$ and $71 \equiv 1 \pmod{5}$, therefore $61^x \equiv 1 \pmod{5}$ and $71^y \equiv 1 \pmod{5}$. Thus $z^2 = 61^x + 71^y \equiv 2 \pmod{5}$ (6)

From Eqn. (3) & (4), we obtain

 $4n^2 \equiv 2 \pmod{5}$ implies $n^2 \equiv 3 \pmod{5}$. This is impossible.

Corollary 3.2.1. The non-linear Diophantine equation $61^x + 71^y = k^{2t}$, where x, y, and z are non-negative integers, k and t are positive integers, has no solution. **Proof:** Let $k^t = z$, then this Diophantine equation becomes $61^x + 71^y = z^2$, which has no solution by Theorem 3.2.

Corollary 3.2.2. The non-linear Diophantine equation $61^{x} + 71^{y} = k^{2t+2}$, where x, y, and z are non-negative integers, k and t are positive integers, has no solution.

Proof: Let $k^{t+1} = z$, then this Diophantine equation becomes $61^x + 71^y = z^2$, which has no solution by Theorem 3.2.

4. Conclusion

Satish Kumar, Deepak Gupta and Hari Kishan

In this paper we discussed the solution of non linear Diophantine equations $31^x + 41^y = z^2$ and $61^x + 71^y = z^2$ and find that these Diophantine equation have no solution for any non negative integers x, y and z.

REFERENCES

- 1. D.Acu, On the diophantine equation $2^{x} + 5^{y} = z^{2}$, *Gen. Math.*, 15(4) (2017) 145-148.
- 2. N.Burshtein, Discussed an open problem of S.Chotchaisthit on the diophantine equation $2^{x} + p^{y} = z^{2}$, Annals of Pure and Applied Mathematics, 16(1) (2018) 31-35.
- 3. N.Burshtein, On the diophantine equation $2^{a} + 7^{b} = c^{2}$, Annals of Pure and Applied Mathematics, 16(2) (2018) 305-306.
- 4. N.Burshtein, On the diophantine equation $2^x + p^y = z^2$, Annals of Pure and Applied Mathematics, 16(2) (2018) 471-477.
- 5. E.Catalan, A note on extraite dune lettre adressee a lediteur, J. Reine Angew. Math., 27 (1884) 192.
- 6. S.Kumar, S.Gupta and H.kishan, On the non-linear diophantine equation $61^{x} + 67^{y} = z^{2}$ and $67^{x} + 73^{y} = z^{2}$, *Annals of Pure and Applied Mathematics*, 18 (1) (2018) 91-94.
- 7. P.Mihailescu, On primary cycalotomic units and a proof of Catalan's conjecture, *J. Reine Angew. Math.*, 27 (2004) 167-195.
- 8. B.Sroysang, On the diophantine equation $8^{x} + 19^{y} = z^{2}$, *Int. J. Pure & Appl. Math.*, 81 (2012) 601-604.
- 9. B.Sroysang, On the diophantine equation $31^x + 32^y = z^2$, *Int. J. Pure Appl. Math.*, 81 (2012) 609-612.
- 10. B.Sroysang, On the diophantine equation $3^x + 5^y = z^2$, Int. J. Pure Appl. Math., 81 (2012) 605-608.
- 11. B.Sroysang, More on the diophantine equation $2^x + 3^y = z^2$, *Int. J. Pure Appl. Math.*, 84 (2013), 133–137.