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Abstract. This paper is concerned mainly with the studyrattional order prey-predator
system with time delay analyzing stage structurstesy, the characteristic equation
which deals with the local stability is calculatead the existence of Hopf bifurcation is
derived using Routh Hurwitz strategies.

The parameter in this paper are fractional order tane delay. They deal with
oscillatory behaviour of solutions and by Lyapurgdgbal stability, dynamical value of
complex system which are reviewed with incommertsucaider. Atlast the numerical
examples are used to validate the effectivenedsmifed analytic results.
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1. Introduction

During the past three centuries, Fractional Cakuwuas developed by Riemann,
Liouville, Grunwald and Letnikov. In the early 2Gentury, this concept was most
significant in scientific fields, mechanics, physiengineering, informatics and artificial
neural networks. The extensive usage of fractiaatulus includes viscoelasticity,
dielectric polarization, electro magnetic waves so@n.

Material and energy cannot be instantaneously mmétesd to almost all the
natural systems. Hence the existence of the timaydeannot be ignored. Delay
Differential Equation(DDE) is a differential equati in which the derivative of the
function at any time depends on the solution aviptes time. The starting condition of
the time delay system in which the history of theEis (<, 0). Dynamical analysis of
the systems with time delays is more complex duthéonon deterministic polynomial
time hard (NP-hard) nature of the stability sys{éin Fractional order system describes
behaviour of real physical system more truthfulisi the integer order system [4, 7].

Cao and Xiao was derived the Hopf bifurcation asialjor a nonlinear system is
a efficient approach and they investigated theopiéisolution properties obtained near
stationary state of systems and the issue of Rifime for four neuron simplified
bidirectional associative memory network with tvimé delays with the technique of
Hopf bifurcation. Additionally Wei Hu et al., [9]istussed about details of Hopf
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bifurcation memristor-based chaotic circuit withaol in a fractional order delay system.
They investigated the stability and bifurcation &@eébrs of this fractional order delayed
memristor-based chaotic circuit system. Also défaration with fractional order induces
the basic and energetic computation for neurongi@tides the information process.

Mathematical modeling through differential equatiomnd simulation via
computers play a significance role in the studynofti species population interactions.
So many works had been already done on these preautaly, there may be few works
available on multi species interaction by consiagirDE with time delay. Xu and Ma et
al. [10] had been discussed the stability and Huoififircation in a ratio dependent
predator-prey with stage structure while the gloftability and Hopf bifurcation of a
predator-prey model with Holling type Il functionsdsponses. Deng et al. [1] analysed
the Hopf bifurcation for a ratio dependent predguay system along with two different
type of delays and considered the stage strucburthé predator.

2. Preliminaries and model description
2.1. Fractional derivative and its approximations
Fractional calculus is the generalization of inédigm and differentiation to a non integer

order integro-differential operatqyD# defined by

dOl
s R(a) >0
DE= 1 R(a) =0

[{d0)™* R(a)<0
There are many definitions in fractional derivasiviktom which one of the best well
known definitions of Riemann-Liouville definitios i

df@) 1 d* t  f(@

dt® T(n—a)dt"), (t —r)en+l
for n-1<a <n, whereT is the gamma function. The geometrical and physica
interpretation of fractional derivative is

[ e obe foye = soLife) - 25 DEFFOlmg
0

for n-1< a < n where = iw denote the Laplace varlable
The fractional integral of order > 0 of a function y : (Ox) — R is given by
1 t
a [ _ a—1
Iy = — fo (t — )% y(s)ds
where the right hand side is pointwise defined@mnoj.
DEx () = —px(©)

+Za”ﬁ x](t) +Zblkgk(xk(t—r)) i=12,..., t>0

(H)) The transfer functloyfl,g](] = 1 2 .n)satisfies Lipschitz condition, i.e., there
exists positive constant$ G; such that

I ) — [ Fjlx -yl bi(x) —g;I< Gjlx -yl forall x, ye R.
(H3) It has a constant§(j = 1, 2, ... n) such that the following inequalities hold:

dt
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n
C][ll > Z C](Fl|a”| + Gllbl]D i = 1,2, e

j=1
Improvements of above models will provide us a meedeling method which describes
the significance of fractional differential equatsoin the interaction of multiple species.
Comparing to integer order differential equatiol3CES have ability to provide precise
description of the modeled mathematical problemedRior — prey models are more
significant in the modeling multi species populatioteractions and these interactions
through integer order models have been studieddwyrauthors [2, 5, 7].
Xu et al. [10], have studied the stability with lpddity and entire Hopf bifurcation by
considering the stage structure for predator. Ateotime delay response in the predator
response is considered in the system. The inteder prey-predator system is given as

dx ay,(t)

dt x(®) (r —ax(®) - 1+ mx(t))

d _ _

T = EIRNCRIING
dy,

ar Dy, (t) — 12y, ()
In the above system x(t) represents the densitthefprey with respect to time, (t)
andy, (t) denote the densities of the immature and matwdgbor with respect to time,
respectively. The parametera,,a,, m, r,r;, r, andD are positive constants in whiah
is the intraspecific constant of the preys the instrinsic growth rate of the pres, and
r, are the death rates of the immature and the mpredator respectively. The response

function of the mature predator is denote £4~-. The capturing rate of mature

represented by,.a,/a; is the rate of conversing prey into a new immaforedator.
The rate of immature predator becomes mature medstdenoted by non- negative
parameter D and this rate is proportional to thesidg of the immature predator. The
time delay due to the gestation of mature predatoonsider by the constant 0. It is
assumed that mature adult predators can only boimgrito the reproduction of predator
biomass.

In this work, we investigate a fractional order \ppredator interaction along
with time delay is described by

d%p, a;p3(t — 1)

ac - P )<r apy (1) 1+mp1(t)>
d%z t)ps(t—

2 = CROBED 1y (6) = Bpa(1) (1)
d%ps3

= Bp(t) — reps(t)

With the following initial condition;(0), p,(0) > 0 andp;(t) = @(t), ¢ € [-1,0],a €
(0,1], @(t) is the smooth function. The parameter descriptavassame as in the integer
order system.

3. Dynamicsin afractional order predator-prey system

3.1. Stability analysis

In this section we proceed with stability analygfi€Eommensurate fractional order
system ¢ = a; = a, = a3).
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3.2. Stability of the equilibrium points
In this section, we analyse the local stabilityeath of feasible equilibria of the system
(1) and the existence of Hopf bifurcation at thexistence equilibrium. Equating the
derivatives to the zeros and solving the systemdre can get three distinct types of
equilibria.

i. Ey(0, 0, 0) represents the trivial equilibrium of the system.

ii. E; G 0, 0) represents the predator extinction equilibrium.

iii. Further if the conditionH;) a,rB — ry,(a + mr)(8 +r;) > 0 holds then
the system (1) has a unique coexistence equilibEyip; ,p, ,p3 ) where

B = (B +11)
! gzﬁ —mry(B+ 1)
— R
b2 = EP3
— _ azBlarf-ry(at+tmr)(f+1y)]
Ps = ay[azB-mry(B+11)]? (2)
The local stability of system (1) can be done basedn the Jacobian matrix of the
system.
The characteristic equation of the system (1) aflibgum state is
—At
a_ |l_ aip3pm _ _ _a1ps aip.e
2= (~ap + (1+mp1)2] T AP ) 0 (1+mpy)
-At| —
_ _ Gab3 a azpse [ =0 3
(1+mpy)? A+t E e
0 _ﬂ /1a + rz
Then the characteristic polynomial is simplified as
3%+ A 2%% + A A% + (A2 + Ay + A)e™ ™+ Ag =0 (4)
where
Ai=nr+nr+L+2a —r+&
1 1T P1 (1+ mpy)?
aips
Ay =r,(n+B)+(+rp+pB)[2ap; — 7 +W]
a
Ay = — 28P1
(1+mpy)
_ fpir
Ay= ———
(1+mpy)
2 2aa,pp,”
f= — —2
(1+mpy)
Ag = 1,(nn + B)[2apy — 7 + &]
(1 +mpy)?

Putd = iw is a root of (4) where > 0 and i =cos—~ + isin=" then we substitute the

expression ofl into (4) and separate the real and imaginary pdesjuation (4) gives
U+ pcoswt + YPsinwt =0 (5)
N+ Ycoswt — Psinwt =0 (6)
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where

3a

3an 2 am
U= w’*cos —+ A w*%cosar + Aza)aCOST + Ag

an
¢ = A3a)“cos7 + A, —As

an
Y = A3w“sin7

3am an

3“sin7 + A w*%sinam + Azsin7

n=w

Suppose that (5) and (6) have roots, the expressistwt and sinwt can be obtained as
follows.
ne-—uyp

sinwt; = o (7
COSWT, = % (8)
and
cos?wty + sinfwt; =1 9)
Based on (5) and (6) we derive
1( . _1mp-
T, = w—o(sm 1(%) + 2nn) , n=0,12.. (10)
1 1, —(pu+
T, = w—o(cos 1(%) + 2nn), n=01.2.. (11)

Define the bifurcation point
Tg = min('[l(n), Tz(n)), n= 0,1,2, e
wheret; ™, and 1, are defined by (10) and (11) respectively.

From (9) we obtain the characteristic equation gitlee solutionv > 0 then we can
solve the equation (4) as follows

—_E;pf:ﬂp ))2 + (—ldz) ;ﬁ)z —1

cos’wty + sinfwt; = (

Solving, then we get
¢? +9? =y’ +n? (12)

Substitutingg, u, n, ¥ in (12) then we get

W + Q1w + Quw** + Q33 + Quw?** + Qsw* + Qs =0 (13)
where
aT
Q; = 2A;cos (7)
Q, = A? 4+ 24, cosamn
3ar am
Q; =2 <A6 cos (T) + A14,; cos (7)>
Q4 = A% + 24, Agcosam — A3
Qs = 2 cos (') (42As — A3(As + 45))
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Q¢ = A% - AAZ} - AE — 24,45

Lemma 1. Whent = 0, the equilibrium point of the fractional order ®m (1) is
asymptotically stable ifH3) holds.

(Hy) P, >0, P,>0,P;>0

Proof: Whent = 0, then the characteristic equation (4) becomes

ASC{ + Plllza + lea +P3 =0 (14)
where
Pi=r+nr+p+2a —r+&
1 1T T P1 (1+ mpy)3
a;ps a,Bp1

Py =r(ri+B)+ (r +r+ B)[2ap, — 1

+ —
(1 +mp,)3 (1 +mp,)
a;ps ] 2aa,fp,”

a,Bp,r n _
1 +mp)2l (1 +mpy)

T (1 +mpy)

3 +12(r + B) [Zapl_r

WhenP; > 0, P, > 0and P; > 0 hold, then (14) has three roots with negative real
parts. Hence, the zero equilibrium point of thecti@al system (1) is asymptotically
stable wherr = 0. Then the proof is complete.

Remark 1.

The condition(H;) are only sufficient conditions, not necessarilye omhey can assure
the asymptotically stable of the incommensuratetisaal system (1) when= 0.

We need the following additional assumption to thet transversal condition of the
existence for Hopf bifurcation:

A
(H)  Ref)|r—, #0
Differentiate (4) with respect tband 7 then
i/ _ a1+i,81 (15)

T ar+if,
where
L . (o’ )
a; = —Azw*t1sin (7 - a)TO) + wsinwty (44 + As)
an
B1 = Azw** cos (7 — a)‘ro) + wcoswty (A, + As)

301 <3oc - 1)
a; = 3aw cos > /3

20 —1

a—1
+ 24 aw?* 71 cos( )n + aa)“_l(Azcos< 5 )n
a—Dr

(
A (
+ 3 COS >

+ As) coswrg

B, = 3aw3* 1sin <3a _ 1) T+ 24;a0?%71 sin(
(a—Dr
=

aT
- (J)To))+A3T0(J)a CosS (7 - (A)To) + To(A4

20 —1

a—1
)n + aa)“_l(Azsin< 5 )T[

aT
+ A3 sin - (A)T0>)+A3T0(A)a sin (7 + (J)To) _To(A4

+ A5) sinwt
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Multiply and divide (15) byx, — i, then we get
A’ _ ot B1B2 + i(azf1 — a12)
. ;% + By’
Then RED) vy, wewy = 2220102 2

ay2+p;°
As the above mentioned concept, the following theocan be as follows.

Theorem 1. Assume thatH,) - (H,) are satisfied, for system (1), the following résul
hold.
(1) The zero equilibrium point is asymptotically stafdet € [0, 7).
(2) The system (1) undergoes a Hopf bifurcation at dhigin whent = 1, i.e.,
system (1) has a branch of periodic solution biting from the zero
equilibrium point neat = t,.

Remark 2. It needs to be underlined that we choose the suimefdelays as bifurcation
to consider the bifurcation phenomenon of systehirflthe present paper. In fact,
fractional order or system parameters also canctaffee dynamical behaviours of
fractional system (1), which will be studied in duture work.

4. Numerical smulation

In this section, we provide the stability and exigte of Hopf bifurcation for
commensurate fractional order predator prey sysiaoh Lyapunov global stability of
incommensurate fractional order system. The pammvetiues chosen for the numerical
simulations are a =1@; =5, a,=3,8=1, m=0.1, ,=1/8,r, =1/8 and the
initial conditions of the populations are x(0) 20y,(0) = 0.2, y,(0) = 0.2.

Table 1. Stability mature for r = 8 and commensurate frawl orderr = 1.

Equilibrium Eigenvalue Nature Index
E;(0,0,0) 8,-0.1250,-1.125( Saddl 1
E;(0.8125,0,0) - 8, 0.6706, -1.9206 Saddle 1
E,(0.0471,0.182,1.456) | -1.7841, - 0.09280.7483i | Asymptotically Stablg 2
Relation between matured predator and immatured predator Relation between population with respect to
when 1=0 and various a time when 1=0 and a=1 andr=8
1
A0 0‘1 OTZ 013 0‘4 0‘5 015 o7 o 0w ® ®» e % ® 0 % ® 1w
Immatured Predator ¥y Timet

Figure 1: Stability for mature with commensurate fractioaalera = 1 andt = 0,r =8

4.1. Commensurate fractional order (¢ = a; =a; =a3z)andt= 0

In this section, we analyse the non-delayed pregaty system by considering the
commensurate fractional ord@r = o, = a, = a3) and varying the value of growth rate
r of prey. The equilibrium points of system (1) ath@ eigen values of corresponding
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Jacobian matrix are given in Table 1 and Tabler@mFTable 1, we can seen thatlg
are saddle points of index 1 angigsasymptotically stable for r = 8. If the growthte of
prey is increased that is r = 15, then the corneding equilibrium &, E; and Eand their
respective eigenvalues are given in Table 2. Itmseen thatdand g are saddle points
of index 1 and Es saddle point of index 2.

Table 2: Stability mature for r = 15 and commensurate foaetl ordera = 1

Equilibrium Eiger value: Nature Index
E((0,0,0) 15,-0.1250,-1.125( Saddl 1
E;(0.8125,0,0) -15, 1.0547, - 2.3047 | Saddle 1
E;(0.0471,0.182,1.456) -2.0047, 0.034& Saddle 2
0.9968i

Metured Precttary,,

Relation between matured predator and immatured predator when r=15

Relation between population with respect to time when 1=15
T T T T T

-

X y1y2,

time t

o 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Immatured Predator y

Figure 2: Unstable for mature with and commensurate fraationdera = 1 and
t=0,r=15

Hence it is clear that for the given parameter egland the fixed r, the system
(1) will converge to fixed point far < @ then the system undergoes Hopf bifurcation for
a = @. Then the system shows oscillatory behaviour whena which is shown in the
Figure 2. For the given set of parameter values sthbility of commensurate fractional
order system can be perturbed dayTable 3 provides the numerical experiment on
equilibrium, E, becomes stable or unstable by varying the fraatiorder o.

4.2. Dynamicsfor different T and fixed commensurate a

In this section, we analyse the effect of time gétathe stability of the delayed predator
prey system(1) by choosing thato be fixed. In numerical simulations, the paramete
and the initial values are consideredras 8,a = 16,a, =5,a, =3, =1,m = 0.1,
r,=1/8,r, =1/8 and x(0) =0.2y,(0) = 0.2, y,(0) = 0.2. Fora = 0.98, the critical
value of time delay is calculated &s= 0.4895 with unique positive roab, = 0.6325,
two pair of complex conjugates 0.27331.1187i , - 0.3444 1.0989i with one
satisfying the condition for existence of Hopf bifation that is 0.2733 > 0. If the value
of time delayr exceeds the critical valug then the system undergoes Hopf bifurcation
att =t which is shown in the Figure 3 and 4. Figure 5 shdlat decrease in the
fractional order derivativeg = 0.96 will increase the value of critical time delay
Tt =1.1.
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Table 3: Stability nature for different fractional order

Paramete Equilibrium Eigenvalue Nature
a=0.97 E,(0.0471,0.1820,1.456) | -0.0134+0.9972 Asymptotically Stabl
a=0.98 E,(0.0471,0.1820,1.456) | 0.002°#0.9973 Unstable

ko eyt ad e et = and ol e o= 08 Relation between the populations and time when tau=0.4 and alpha=0.98
1.8

Matured Predator y,,

% n 0 10 20 30 40 50 60 70 80 90 100
Py, Immatured Predator y,

Figure 3: Stability mature for r=8 and commensurate fractiamdera=0.98 andr=0.4

4.3. Incommensurate fractional order atz =0
We will investigate the predator prey system bysigering the incommensurate type of

fractional order.. The values of parameter r = 15, a =df=5,a, =3, =1,m =

0.1, n =1/8, , =1/8 and the initial condition of the populations ar@)x= 0.2,
y1(0) =0.2 , y,(0) =0.2. We consider two different cases to analyse the
incommensurate fractional order system (1).

Case (i):

Leta(aq, ay, az) =(0.92, 1, 1) now for the given derivative orddte equilibriumg,

is globally as asymptotically stable.

Stability mature for r=8 and commensurate fractional order +=(0.92,1,1) and ~= 0.48
2

Relation between the populations and time when t=0.48 and alpha=(0.92,1,1)
2

18

16

14

12

Matured Predator y,,
xyLy2

0.8

0.6

0.4

o 10 20 30 40 50 60 70 80 90 100
Time t

0.2 L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Immatured Predator y,

Figure 4: Stability mature for r = 8 and incommensuratetfoa@l ordera = (0.92,1,1)
andt = 0.48
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Case (ii):
Leta( oq, ay, 0a3) = (0.94, 1, 1) by above method the system (1) dwessatisfy the
asymptotically stability condition. Hence the systél) is unstable. Further the same
method can be used to check for all other valuefraaftional orders. The pictorical
representation of case( i) and case (ii) are dygplan Figure 6.

Rez‘a‘i"" between immature and mature predator at tau=0.48 and alpha = (0.94,1,1) Stability mature for r=8 and incommensurate fractional order —alpha=(0.94,1,1) and ~tau= 0.48
2

Matured Predator Y,
X, ylLy2

0.81

0.6

0.4+

o 10 20 30 40 50 60 70 80 920 100
Time t

02 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Immatured Predator y,

Figure5: Unstable mature for r = 8 and incommensurate fsaatiorderx = (0.94,1,1)
andt = 0.48

4.4, Dynamics for incommensur ate fractional order with fixed T

We do not provide explicit expression for a criticgagnitude ofr for stability, but we
provide information about the existence of sucluesal Figure 6 depicts the stability and
periodical solution of incommensurate fractionallesrby considering the time delay as
constant.

Relation between mature and immature predator

Matured Predator y,

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Immatured Predator y,

Relation between time and population with constant value of time delay

o 10 20 3 40 50 60 70 80 90 100
Time t

Figure 6: Solutions of the system (1) undergoes Hopf biftiocawhen the value of time
delay exceeds its critical value that is= 0.7 > 0.4882f) and become stable for
decreasing the fractional order.
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5. Conclusion

In this work, we have developed a theoretical fraori that includes sufficient
biological complexity to accurately describe thenayics of multi-species interaction.
The complex dynamics of a proposed fractional orstage structured predator-prey
system with and without time delay have investidatedetail via numerical simulations.
We have studied the stability of trivial equilibmuand predator extinction equilibrium
through the characteristic polynomial and fractlavder Routh—Hurwitrz criterion. The
signification of incorporating the delay into thgseem when it exceeds its derived
critical value. Also the stability of incommenswafractional ordered predator prey
system has been discussed. The complex dynamickotf commensurate and
incommensurate fractional order system have bealyzsd with varying the respective
fractional order as well as time delay. Also wecdissed the fractional order predator
prey with stage structure for the predator and tislay.
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