Annals of Pure and Applied Mathematics Vol. 18, No. 1, 2018, 95-97 ISSN: 2279-087X (P), 2279-0888(online) Published on 5 September 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n1a14

Annals of **Pure and Applied Mathematics**

On Solutions to the Diophantine Equation $x^3 - y^2 = z^2$

Nechemia Burshtein

117 Arlozorov Street, Tel Aviv 6209814, Israel Email: anb17@netvision.net.il

Received 3 August 2018; accepted 4 September 2018

Abstract. In this note, we investigate solutions to the title equation. We exhibit a solution in which $x \neq y$ and x, y are primes. When x = y, it is established that the equation has infinitely many solutions: (i) For x prime. (ii) For x composite of odd and even values. Several such solutions are demonstrated.

Keywords: Diophantine equations

AMS Mathematics Subject Classification (2010): 11D61

1. Introduction

The field of Diophantine equations is ancient, vast, and no general method exists to decide whether a given Diophantine equation has any solutions, or how many solutions. In most cases, we are reduced to study individual equations, rather than classes of equations.

The literature contains a very large number of articles on non-linear such individual equations involving primes and powers of all kinds. Among them are for example [1, 3, 4, 6]. The title equation stems from $p^x \pm q^y = z^2$.

Whereas in most articles, the values x, y are investigated for the solutions of the equation, in this paper these values are fixed positive integers. In [3] we have considered the equation $p^3 + q^2 = z^2$ for all primes $p \ge 2$ and q > 1 prime or composite. In the equation $x^3 - y^2 = z^2$, the values x, y, z are positive integers, and we are interested in how many solutions exist when x, y are primes and also composites.

2. Solutions of the equation $x^3 - y^2 = z^2$

In this section we establish the following result.

Theorem 2.1. The equation $x^3 - y^2 = z^2$ in positive integers x, y, z has:

(a) At least one solution when $x \neq y$ and x, y are primes.

(b) Infinitely many solutions when x = y, and x is prime.

(c) Infinitely many solutions when x = y, and x is composite. **Proof:** (a) In $x^3 - y^2 = z^2$ suppose that x, y are distinct primes. When x = 5 and $y = z^2$ 11 we have

 $5^3 - 11^2 = 2^2$. Solution 1.

Thus, $x^3 - y^2 = z^2$ has at least one solution when x < y are primes, and case (a) is complete.

Nechemia Burshtein

(b) In $x^3 - y^2 = z^2$ suppose that x = y and x is prime. When x = y, then $x^3 - y^2 = x^2(x - 1) = z^2$, z is even (1) implying in (1) that x - 1 must be a square. Denote $x - 1 = T^2$, and $x = T^2 + 1$ where T = 1, 2, ..., n, ... Certainly, x is prime only when T assumes even values. Moreover, when x is an odd prime p, then p is of the form x = p = 4N + 1.

The equation $x = T^2 + 1$ generates infinitely many composites, and also infinitely many primes all of which besides p = 2 are of the form p = 4N + 1. The value T = 2yields x = p = 4N + 1 = 5. The prime p = 5 is a unique prime occurring once in the line of all primes. Therefore, we consider the primes whose last digit is equal to 1, 3, 7 and 9. If the last digit of x = p ends in 3 or in 9, then the square $x - 1 = T^2$ ends in the digit 2 or respectively in 8. Since no even square can end in the digit 2 and in the digit 8, it follows that x = p must end in the digit 1 or in the digit 7. All of the above conditions may be seen in the following Table 1 when the first ten values of T are demonstrated.

	Table	1:
--	-------	----

Т	x - prime	x- composite	T	x - prime	x- composite
1	2		6	37	
2	5		7		50
3		10	8		65
4	17		9		82
5		26	10	101	

We now exhibit the five solutions of $x^3 - y^2 = z^2$ which relate to the five primes p contained in Table 1.

Solution	2.	2^{3}	_	2^2	=	2^{2} ,		
Solution	3.	5^{3}	_	5^{2}	=			$(2.5)^2$,
Solution	4.	17^{3}	_	17^{2}	=	68^{2}	=	$(2^2 \cdot 17)^2$,
Solution	5.	37 ³	_	37 ²	=	222^{2}	=	$(2\cdot 3\cdot 37)^2$,
Solution	6.	101^{3}	_	101^{2}	$^{2} =$	1010^{2}	=	$(2\cdot 5\cdot 101)^2$.

There are infinitely many primes p = 4N + 1 whose last digit is equal to 1, and as well with last digit equal to 7. Each such set has a subset of infinite primes $p = T^2 + 1$ where T is even. Hence, there are infinitely many solutions of $x^3 - y^2 = z^2$ where x = y and x is a prime $p = T^2 + 1 = 4N + 1$. This concludes case (b).

(c) In $x^3 - y^2 = z^2$ suppose that x = y and x is composite.

Since x = y, therefore x, y are both even or both odd. Table 1 yields the smallest odd composite c = 65 (T = 8). The next odd value $c = T^2 + 1$ is c = 145 (T = 12). The two solutions of $x^3 - y^2 = z^2$ are then:

Solution 7. $65^3 - 65^2 = 520^2 = (2^3 \cdot 5 \cdot 13)^2$, **Solution 8.** $145^3 - 145^2 = 1740^2 = (2^2 \cdot 3 \cdot 5 \cdot 29)^2$. On Solutions to the Diophantine Equation $x^3 - y^2 = z^2$

When c is an even composite, Table 1 provides the first four such values, i.e., T = 3, 5, 7, 9, and respectively x = c = 10, 26, 50, 82. The first two solutions of which are: Solution 9. $10^3 - 10^2 = 30^2 = (2 \cdot 3 \cdot 5 \cdot)^2$, Solution 10. $26^3 - 26^2 = 130^2 = (2 \cdot 5 \cdot 13)^2$.

For each and every value T > 1, there exists a value $x = T^2 + 1$. It therefore follows that there exist infinitely many composites x = c where x is either odd or x is even. Case (c) is complete.

This concludes the proof of Theorem 2.1. \Box

3. Conclusion

We have shown that the equation $x^3 - y^2 = z^2$ has infinitely many solutions in which x = y, when x is prime, and x is composite odd or even. When $x \neq y$, and x, y are primes, we have demonstrated the solution $5^3 - 11^2 = 2^2$ (Solution 1). This is the only solution of this case known to us thus far. We may now raise the following two questions.

Question 1. Do there exist solutions of $x^3 - y^2 = z^2$ in which x, y are distinct primes other than 5 and 11?

Question 2. Do there exist solutions of $x^3 - y^2 = z^2$ in which x, y are distinct composites ?

REFERENCES

- 1. N.Burshtein, On solutions of the diophantine equations $p^3 + q^3 = z^2$ and $p^3 q^3 = z^2$ when p, q are primes, Annals of Pure and Applied Mathematics, 18 (1) (2018) articles in press.
- 2. N.Burshtein, All the solutions of the diophantine equation $p^3 + q^2 = z^3$, Annals of *Pure and Applied Mathematics*, 14 (2) (2017) 207-211.
- 3. N.Burshtein, All the solutions of the diophantine equation $p^3 + q^2 = z^2$, Annals of *Pure and Applied Mathematics*, 14 (1) (2017) 115-117.
- 4. S.Chotchaisthit, On the diophantine equation $4^x + p^y = z^2$, where p is a prime number, *Amer. J. Math. Sci.*, 1 (1) (2012) 191-193.
- 5. B.Sroysang, More on the diophantine equation $8^x + 19^y = z^2$, *Int. J. Pure Appl. Math.*, 81 (4) (2012) 601-604.
- 6. A.Suvarnamani, Solution of the diophantine equation $p^x + q^y = z^2$, Int. J. Pure Appl. Math., 94 (4) (2014) 457-460.