Annals of Pure and Applied Mathematics Vol. 18, No. 1, 2018, 83-90 ISSN: 2279-087X (P), 2279-0888(online) Published on 23 August 2018 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v18n1a12

Annals of **Pure and Applied Mathematics**

Interval Valued Q-fuzzy Quasi-ideals in a Semigroups

T.Selvakumar¹ and M.V.Suresh²

¹Department of Mathematics ¹St. Peter's University, Avadi, Chennai – 54, Tamilnadu, India Email: <u>tselvak93@gmail.com</u> ²Department of Mathematics ²St. Peter's University, Avadi, Chennai – 54, Tamilnadu, India Email: <u>m.v.sureshpari@gmail.com</u> ¹Corresponding author

Received 27 June 2018; accepted 14 August 2018

Abstract. We initiate the study of interval-valued Q-fuzzy quasi-ideal of a semigroup. In Section 2, we list some basic definitions in the later sections. In Section 3, we investigate interval-valued Q-fuzzy subsemigroups and in Section 4, we define interval valued Q-fuzzy quasi-ideals and establish some of their basic properties.

Keywords: interval-valued Q-fuzzy set, interval-valued Q-fuzzy left(right) ideal, interval-valued Q-fuzzy bi-ideal, interval-valued Q-fuzzy quasi-ideal.

AMS Mathematics Subject Classification(2010): 03E99, 20M99

1. Introduction

The theory of fuzzy sets proposed by Zadeh [13] in 1965 has achieved a great success in various fields. Since then, Ahsan and Latif [1] investigated fuzzy quasi-ideals in a semigroup. With the research of fuzzy sets, in 1965, Zadeh [14] introduced the notion of interval-valued fuzzy sets as a generalization of fuzzy sets. After then, Biswas [3] applied it to group theory. Rosenfeld [9] defined fuzzy subgroup and gave some of its properties. Rosenfeld's definition of fuzzy group is a turning point for pure Mathematicians. Since then, the study of fuzzy algebraic structures have been carried out in many directions such as semi-group, groups, rings, near-rings, modules, vector spaces, topology and so on.

Recently, Kang and Hur [4] studied interval-valued fuzzy subgroups and investigated some of its properties. Narayanan and Manikandan [8] studied Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups and investigated some of its properties.

Thillaigovindan and Chinnadurai [11] studied on interval-valued fuzzy quasi-ideals of semi-groups and investigated some of its properties. Solairaju and Nagarajan [10] defined a new structure and constructions of Q-fuzzy group. Kim et al. [5] studied interval-valued fuzzy Quasi-ideals in a semigroups and investigated some of its properties. Murugadas et al. [7] studied interval-valued Q-fuzzy ideals generated by an interval-valued Q-fuzzy subset in ordered semi-groups and investigated some of its properties. Venkatesan and Sriram [12] studied multiplicative operations of IFMs of two operators namely X_1 and X_2

and investigated its algebraic properties.

In this paper, we initiate the study of interval-valued Q-fuzzy quasi-ideal of a semigroup. In Section 2, we list some basic definitions in the later sections. In Section 3, we investigate interval-valued Q-fuzzy subsemigroups and in Section 4, we define interval-valued Q-fuzzy quasi-ideals and establish some of their basic properties.

2. Preliminaries

In this section, we give to some basic definitions of interval-valued fuzzy set that are necessary for this paper.

Definition 2.1. Let $A, B \in D(I)^X$ and let $\{A_\alpha\}_{\alpha \in \Gamma} \subset D(I)^X$. Then i) $A \subset B$ iff $A^L \leq B^L$ and $A^U \leq B^U$. ii) A = B iff $A \subset B$ and $B \subset A$. iii) $A^L = [1 - A^U, 1 - A^L]$. iv) $A \cup B = [A^L \lor B^L, A^U \lor B^U]$. v) $A \cap B = [A^L \land B^L, A^U \land B^U]$. vi) $\bigcup_{\alpha \in \Gamma} A_\alpha = [\bigvee_{\alpha \in \Gamma} A_\alpha^L, \bigvee_{\alpha \in \Gamma} A_\alpha^U]$. vii) $\bigcap_{\alpha \in \Gamma} A_\alpha = [\bigwedge_{\alpha \in \Gamma} A_\alpha^L, \bigwedge_{\alpha \in \Gamma} A_\alpha^U]$.

Definition 2.2. Let *S* be semigroup and let $\tilde{0} \neq A \in D(I)^S$. Then *A* is called an: i) Interval-valued Q-fuzzy semigroup of *S* if $A^L(xy,q) \ge A^L(x,q) \land A^L(y,q)$ and

 $A^{U}(xy,q) \ge A^{U}(x,q) \land A^{U}(y,q)$ for any $x, y \in S, q \in Q$.

- ii) Interval-valued Q-fuzzy left ideal of S if $A^{L}(xy,q) \ge A^{L}(y,q)$ and $A^{U}(xy,q) \ge A^{U}(y,q)$ for any $x, y \in S, q \in Q$.
- iii) Interval-valued Q-fuzzy right ideal of S if $A^L(xy,q) \ge A^L(x,q)$ and $A^U(xy,q) \ge A^U(x,q)$ for any $x, y \in S, q \in Q$.
- iv) Interval-valued Q-fuzzy (two sided) ideal of S if it is both an *IVLI* and *IVRI* of S. We will denote the set of all *IVSGs* of S as *IVSG(S)*. It is clear that $A \in IVI(S)$ if and only if $A^L(xy,q) \ge A^L(x,q) \land A^L(y,q)$ and $A^U(xy,q) \ge A^U(x,q) \land A^U(y,q)$ for any $x, y \in S, q \in Q$ and if $A \in IVLI(S)$,

3. Interval-valued Q-fuzzy subsemigroups

then $A \in IVSG(S)$.

In this section, we investigate interval-valued Q-fuzzy subsemigroups and its some algebraic properties.

Definition 3.1. A mapping $A = X \times Q \to D(I)$ is called an interval-valued Q-fuzzy set in *X*, denoted by $A = A^L \to A^U$ if A^L , $A^U \in I^X$ such that $A^L \leq A^U$, i.e., $A^L(x) \leq A^U(x)$ for each $x \in X$ where $A^L(x,q)$ [respectively $A^U(x,q)$] is called the lower [respectively upper] end point of *x* to *A*. For any $[a,b] \in D(I)$, the interval-valued fuzzy set *A* in *X* defined by $A(x) = [A^L(x,q), A^U(x,q)] = [a,b]$ for each $x \in X$ and $q \in Q$ is denoted by [a,b] and if a = b, then the IVS [a,b] is denoted by simply \tilde{a} . In particular, $\tilde{0}$ and $\tilde{1}$ denote the interval-valued Q-fuzzy empty set and the interval-valued Q-fuzzy whole set in X, respectively. We will denote the set of all IVSs in X as $D(I)^X$. It is clear that set $A = [A^L, A^U] \in D(I)^X$ for each $A \in I^X$. Interval Valued Q-fuzzy Quasi-ideals in a Semigroups

Definition 3.2. Let (X, \cdot) be a groupoid and let $A, B \in D(I)^X$. Then the interval-valued Q-fuzzy product of A and B, denoted by $(A \circ B)$, is an IVS in X defined as follows : For each $x \in X$, $q \in Q$

 $(A \circ B)(x,q) = \begin{cases} [a,b], & \text{if } yz = x,q \in Q, \\ [0,0], & \text{otherwise.} \end{cases}$

where $= \bigvee_{yz=x} (A^L(y,q) \land B^L(z,q)), b = \bigvee_{yz=x} (A^U(y,q) \land B^U(z,q)).$ It is clear that for any $A, B, C \in D(I)^X$, if $B \subset C$, then $(A \circ B) \subset (A \circ C)$ and $(B \circ A) \subset (C \circ A).$

Result 3.3. Let (S, ...) be a groupoid. i) If "." is associative, then so is "°" in $D(I)^S$. ii) If "." has an identity $e \in S$, then $e_1 \in IVF_P(X)$ is an identity of ° in $D(I)^S$.

Proposition 3.4. Let S be a groupoid, let Q be a non empty set and let $A, B, C \in D(I)^S$. Then

i) $A \circ (B \cup C) = (A \circ B) \cup (A \circ C), (B \cup C) \circ A = (B \circ A) \cup (C \circ A).$ ii) $A \circ (B \cap C) \subset (A \circ B) \cap (A \circ C), (B \cap C) \circ A \subset (B \circ A) \cap (C \circ A).$ **Proof:** (i) Let $x \in S, q \in Q$ Suppose x is not expressible as x = yz. Then clearly $(A \circ (B \cup C))(x, q) = \tilde{0} = ((A \circ B) \cup (A \circ C))(x, q).$ Suppose x is expressible as x = yz. Then $(A \circ (B \cup C))(x, q) = \sqrt{(A^{L}(y, q) \wedge (B \cup C)^{L}(z, q))}$

$$= \bigvee_{\substack{x=yz \\ x=yz}} (A^{L}(y,q) \land (B \cup C)^{2}(z,q))$$

= $\bigvee_{\substack{x=yz \\ x=yz}} (A^{L}(y,q) \land B^{L}(z,q)) \lor (A^{L}(y,q) \land C^{L}(z,q))$
= $\bigvee_{\substack{x=yz \\ x=yz}} (A^{L}(y,q) \land B^{L}(z,q)) \lor \bigvee_{\substack{x=yz \\ x=yz}} (A^{L}(y,q) \land C^{L}(z,q))$
= $(A \circ B)^{L}(x,q) \lor (A \circ C)^{L}(x,q)$
= $((A \circ B) \cup (A \circ C))^{L}(x,q)$

Thus $A \circ (B \cup C) = (A \circ B) \cup (A \circ C)$. By the similar arguments, we have $(B \cup C) \circ A = (B \circ A) \cup (C \circ A)$.

ii) Let $x \in S, q \in Q$. Suppose x is not expressible as x = yz. Then clearly $(A \circ (B \cup C))(x,q) = \tilde{0} = ((A \circ B) \cap (A \circ C))(x,q)$. Suppose x is expressible as x = yz. Then $(A \circ (B \cap C))(x,q)$ $= \bigvee_{x=yz} (A^L(y,q) \wedge (B \cap C)^L(z,q))$ $= \bigvee_{x=yz} (A^L(y,q) \wedge B^L(z,q)) \wedge (A^L(y,q) \wedge C^L(z,q))$

$$= \bigvee_{\substack{x=yz\\x=yz}}^{x=yz} (A^L(y,q) \land B^L(z,q)) \land \bigvee_{\substack{x=yz\\x=yz}} (A^L(y,q) \land C^L(z,q))$$
$$= (A^\circ B)^L(x,q) \land (A^\circ C)^L(x,q)$$

 $= ((A \circ B) \cap (A \circ C))^{L}(x, q).$ Similarly, we have that $(A \circ (B \cap C))^{U}(x, q) \le ((A \circ B) \cap (A \circ C))^{U}(x, q).$ Thus $A \circ (B \cap C) \subset (A \circ B) \cap (A \circ C).$ By the similar arguments, we have $(B \cap C) \circ A \subset (B \circ A) \cap (C \circ A).$

Proposition 3.5. Let S be a semigroup and let $\tilde{0} \neq A \in D(I)^S$. Then $A \in IVSG(S)$ if and only if $(A \circ A) \subset A$.

Result 3.6. Let *A* be a non-empty subset of a semigroup *S*. i) *A* is a subsemigroup of *S* if and only if $[\chi A, \chi A] \in IVSG(S)$. ii) $A \in LI(S)$ if and only if $[\chi_A, \chi_A] \in IVLI(S)$.

Result 3.7. Let S be a semigroup and let $\tilde{0} \neq A \in D(I)^S$. Then $A \in IVLI(S)$ if and only if $(\tilde{1} \circ A) \subset A$.

Proposition 3.8. Let S be a semigroup and let $A, B, C \in D(I)^S$, $q \in Q$. If $A \subset B$, then $(A^{\circ}C) \subset (B^{\circ}C)$ and $(C^{\circ}A) \subset (C^{\circ}B)$.

Proof: Let $x \in S$, $q \in Q$. Suppose (x,q) is not expressible as (x,q) = (yz,q). Then clearly $(A^{\circ}C)(x,q) = \tilde{0} = (B^{\circ}C)(x,q)$. Suppose x is not expressible as x = yz. Then $(A^{\circ}C)^{L}(x,q)$

$$= \bigvee_{\substack{x=yz}\\ x=yz} (A^{L}(y,q) \land C^{L}(z,q))$$
$$= \bigvee_{\substack{x=yz\\ x=yz\\ (B^{\circ} \cap C)^{L}(x,q)}} (B^{L}(y,q) \land C^{L}(z,q))$$

 $= (B \circ C)^{L}(x, q).$ Similarly, we have that $(A \circ C)^{U}(x, q) \leq (B \circ C)^{U}(x, q).$ Hence $(A \circ C) \subset (B \circ C)$. By the similar arguments, we have $(C \circ A) \subset (C \circ B)$.

4. Interval valued Q-fuzzy quasi-ideals

A nonempty subset A of a semigroup S is called a quasi- ideal of S if $AS \cap SA \subset A$. We will denote the set of all quasi-ideals of S as QI(S).

Definition 4.1. Let *S* be a semigroup and let $\tilde{0} \neq A \in D(I)^S$. Then *A* is called an interval-valued fuzzy quasi-ideal (in short, *IVQI*) of *S* if $(\tilde{1} \circ A) \cap (A \circ \tilde{1}) \subset A$. We will denote the set of all IVQIs of *S* as IVQI(S).

Example 4.2. Let $S = \{a, b, c\}$ be any semigroup with the following multiplication table: We define a mapping $A : S \to D(I)$ as follows:

A(a) = [0.1, 0.8], A(b) = [0.1, 0.8], A(c) = [0.3, 0.6].Then we can see that $A \in IVQI(S)$.

Theorem 4.3. Let A be a nonempty subset of a semigroup S. Then $A \in QI(S)$ if and

Interval Valued Q-fuzzy Quasi-ideals in a Semigroups

only if $[\chi_A, \chi_A] \in IVQI(S)$.

•	а	b	С
а	а	а	а
b	а	b	b
С	а	а	b

Proof: Suppose $A \in QI(S)$ and let $x \in S$. Suppose $x \in A, q \in Q$. Then clearly $\chi_A(x,q) = 1 \ge \left(\left(\tilde{1} \circ [\chi_A,\chi_A] \right) \cap \left([\chi_A,\chi_A] \circ \tilde{1} \right) \right)^L(x,q).$

Thus $(\tilde{1}^{\circ}[\chi_A,\chi_A]) \cap ([\chi_A,\chi_A]^{\circ}\tilde{1}) \subset [\chi_A,\chi_A]$. Suppose $x \notin A$. Then either x is expressible as x = yz or not.

Case (i): Suppose x is not expressible as x = yz. Then

 $((\tilde{1}^{\circ}[\chi_A,\chi_A]) \cap ([\chi_A,\chi_A]^{\circ}\tilde{1}))(x,q) = \tilde{1} = [\chi_A,\chi_A](x,q).$ Case (ii): Suppose x is expressible as x = yz.

Since $x \notin A$, either $y \in A$ or $z \notin A$. If $y \in A$ and $z \notin A$, then there cannot be another expression of the form x = ab, where $a \notin A$ and $b \in A$ (Assume that there exist $a \notin A$ and $b \in A$ such that x = ab. Then $x \in SA \cap AS \subset A$. Thus $x \in A$. This contradicts the fact that $x \notin A$). Thus either $(\tilde{1} \circ [\chi_A, \chi_A])(x, q) = \tilde{0}$ or $([\chi_A, \chi_A] \circ \tilde{1})(x, q) = \tilde{0}$. So $((\tilde{1} \circ [\chi_A, \chi_A]) \cap ([\chi_A, \chi_A] \circ \tilde{1}))(x) = \tilde{0}$. Then $((\tilde{1} \circ [\chi_A, \chi_A]) \cap ([\chi_A, \chi_A] \circ \tilde{1})) \subset [\chi_A, \chi_A]$. Hence, in all, $[\chi_A, \chi_A] \in IVQI(S)$. Conversely, suppose the necessary condition holds.

Let $x \in SA \cap AS$. Then $x \in SA$ and $x \in AS$. Thus there exist $a, a' \in A$ and $s, s' \in S$ such that x = sa and x = a's'. So

$$\begin{pmatrix} \left(\tilde{1}^{\circ}[\chi_{A},\chi_{A}]\right) \cap \left([\chi_{A},\chi_{A}]^{\circ}\tilde{1}\right) \right) (x,q) \\ = \left(\tilde{1}^{\circ}[\chi_{A},\chi_{A}]\right)^{L}(x,q) \wedge \left([\chi_{A},\chi_{A}]^{\circ}\tilde{1}\right)^{L}(x,q) \\ = \bigvee_{x=yz} \left(\tilde{1}^{L}(y,q) \wedge \chi_{A}(z,q)\right) \wedge \bigvee_{x=yz} \left(\chi_{A}^{L}(y,q) \wedge \chi_{S}^{L}(z,q)\right) \\ \ge \left(\chi_{S}(s) \wedge \chi_{A}(a)\right) \wedge \left(\chi_{A}(a') \wedge \tilde{1}^{L}(s')\right) \\ = 1.$$

Similarly, we have that $((\tilde{1} \circ [\chi_A, \chi_A]) \cap ([\chi_A, \chi_A] \circ \tilde{1}))^U(x) \ge 1$. Then, by the hypothesis, $\chi_A(x) \ge 1$. Thus $x \in A$. So $SA \cap AS \subset A$. Hence $A \in QI(S)$.

Definition 4.4. A nonempty fuzzy set A of a semigroup S is called a Q-fuzzy quasi-ideal of S if $(\chi_S \circ A) \land (A \circ \chi_S) \leq A$, where χ_S is the whole fuzzy set defined by $\chi_S(x, q) = 1$ for each $x \in S, q \in Q$.

Remark 4.5. Let *S* be a semigroup. i) If A is a Q-fuzzy quasi-ideal of S, then $[A, A] \in IVQI(S)$. ii) If $A \in IVQI(S)$, then AL and AU are Q-fuzzy quasi-ideals of S.

Proposition 4.6. Let *S* be a semigroup. Then $IVQI(S) \subset IVSG(S)$. **Proof:** Let $A \in IVQI(S)$. Since $A \subset \tilde{1}$, by Proposition 3.8, $A \circ A \subset \tilde{1} \circ A$ and $A \circ A \subset A \circ \tilde{1}$. Then $A \circ A \subset [\tilde{1} \circ A] \cap [A \circ \tilde{1}]$. Since $A \in IVQI(S), (\tilde{1} \circ A) \cap (A \circ \tilde{1}) \subset A$. Thus $A \circ A \subset A$. Hence, by Proposition 3.5, $A \in IVSG(S)$.

Definition 4.7. Let *S* be a semigroup and let $\tilde{0} \neq A \in D(I)^S$, $q \in Q$. Then *A* is called an interval-valued Q-fuzzy bi-ideal (in short, *IVBI*) of *S* if it satisfies the following conditions: for any $x, y, z \in S, q \in Q$. i) $A^L(xy,q) \ge A^L(x,q) \land A^L(y,q)$ and $A^U(xy,q) \ge A^U(x,q) \land A^U(y,q)$. ii) $A^L(xyz,q) \ge A^L(x,q) \land A^L(z,q)$ and $A^U(xyz,q) \ge A^U(x,q) \land A^U(z,q)$. We will denote the set of all IVBIs of *S* as IVBI(S).

Result 4.7. Let *A* be a nonempty subset of a semigroup. Then $A \in BI(S)$ if and only if $[\chi_A, \chi_A] \in IVBI(S)$.

Theorem 4.8. Let *S* be a semigroup and let $\tilde{0} \neq A \in D(I)^S$, $q \in Q$. Then $A \in IVBI(S)$ if and only if $A \circ A \subset A$ and $A \circ \tilde{1} \circ A \subset A$. **Proof:** Suppose $A \in IVBI(S)$. From Proposition 3.5, $A \circ A \subset A$. Let $x \in S, q \in Q$ Suppose *x* is not expressible as x = yz. Then clearly $(A \circ \tilde{1} \circ A)(x,q) = \tilde{0}$. Thus $A \circ \tilde{1} \circ A \subset A$. Suppose *x* is expressible as x = yz. Then $(A \circ \tilde{1} \circ A)(x,q) \neq \tilde{0}$. Thus

Suppose x is expressible as x = yz. Then $(A \circ 1 \circ A)(x,q) \neq 0$. Thus $(A \circ \tilde{1} \circ A)^{L}(x,q)$

$$= \bigvee_{x = yz} (A^L(y,q) \land (\tilde{1} \circ A)^L(z,q)) > 0$$

and

$$= \bigvee_{x = yz} (A^U(y,q) \land (\tilde{1} \circ A)^U(z,q)) > 0$$

So $(\tilde{1} \circ A)^{L}(z,q) > 0$ and $(\tilde{1} \circ A)^{U}(z,q) > 0$. Then there exist $u, v \in S$ with z = uv such that

$$(\tilde{1} \circ A)^{L}(z,q) = \bigvee_{z = uv} (\tilde{1}^{L}(u,q) \wedge A^{L}(q,q)) = \bigvee_{z = uv} A^{L}(v,q))$$

and
$$= \bigvee_{z = uv} (\tilde{1}^{U}(u,q) \wedge A^{U}(v,q)) = \bigvee_{z = uv} A^{U}(v,q))$$

Since $A \in IVBI(S)$, $A^{L}(x,q) = A^{L}(yuv,q) \ge A^{L}(y,q) \land A^{L}(v,q)$ and $A^{U}(x,q) = A^{U}(yuv,q) \ge A^{U}(y,q) \land A^{U}(v,q)$. Then $A^{L}(x,q)$

$$\geq \bigvee_{x = yz} (A^{L}(y,q) \land (\bigvee_{z = uv} A^{L}(q,q))) = (A \circ \tilde{1} \circ A)^{L}(x)$$

and

Interval Valued Q-fuzzy Quasi-ideals in a Semigroups

$$\geq \bigvee_{\substack{x = yz \\ A \circ \widetilde{1} \circ A}} (A^U(y,q) \wedge (\bigvee_{z = uv} A^U(q,q))) = (A \circ \widetilde{1} \circ A)^U(x)$$

Hence, in all, $A \circ \tilde{1} \circ A \subset A$. Conversely, suppose the necessary condition holds. Since $A \circ A \subset A$, it is clear that the following hold: $A^{L}(xy,q) \geq A^{L}(x,q) \wedge A^{L}(y,q)$ and $A^{U}(xy,q) \geq A^{U}(x,q) \wedge A^{U}(y,q)$. For any $x, y \in S, q \in Q$. Let $x, y, z \in S$ and let u = xyz. Then $A^{L}(xyz) = A^{L}(p)$

$$\geq (A \circ \tilde{1} \circ A)^{L}(u)$$

$$= \bigvee_{u = st} (A^{L}(s,q) \wedge (\tilde{1} \circ A)^{L}(t,q))$$

$$\geq A^{L}(x,q) \wedge (\tilde{1} \circ A)^{L}(yz,q)$$

$$= A^{L}(x,q) \wedge \bigvee_{yz=ab}(\tilde{1}^{L}(a,q) \wedge A^{L}(b,q))$$

$$\geq A^{L}(x,q) \wedge A^{L}(y,q) \wedge A^{L}(z,q)$$

$$= A^{L}(x,q) \wedge A^{L}(z,q).$$
Similarly, we have that $A^{U}(xyz,q) \geq A^{U}(x,q) \wedge A^{U}(z,q).$

Hence, $A \in IVBI(S)$.

Proposition 4.9. Let *S* be a semigroup. Then $IVQI(S) \subset IVBI(S), q \in Q$. **Proof:** Let $A \in IVQI(S)$. Then, by Proposition 4.6, $A \in IVSG(S)$. Thus $A^L(xy,q) \ge A^L(x,q) \land A^L(y,q)$ and $A^L(xy,q) \ge A^L(x,q) \land A^L(y,q)$ for any $x, y \in S, q \in Q$. So, by Proposition 3.5, $A \circ A \subset A$. It is clear that $A \circ \tilde{1} \subset \tilde{1}$ and $\tilde{1} \circ A \subset \tilde{1}$. Then, by Proposition 3.8, $A \circ \tilde{1} \circ A \subset \tilde{1} \circ A$ and $A \circ \tilde{1} \circ A \subset A \circ \tilde{1}$. Thus $A \circ \tilde{1} \circ A \subset [\tilde{1} \circ A] \cap [A \circ \tilde{1}] \subset A$. Hence, by Theorem 4.8, $A \in IVBI(S)$.

5. Conclusions

In this paper, we initiate the study of interval-valued fuzzy quasi-ideal of a semigroup and investigate interval-valued Q-fuzzy subsemigroups and define interval-valued Q-fuzzy quasi-ideals and establish some of their basic properties.

REFERENCES

- 1. J.Ahsan and R.M.Latif, Fuzzy quasi-ideals in semigroups, J. Fuzzy Math., 9 (2) (2001) 259–270.
- 2. R. Biswas, Rosenfeld's fuzzy subgroups with interval-valued membership functions, *Fuzzy Sets and Systems*, 63 (1995) 87–90.
- 3. A.H.Clifford and G.B.Preston, *The Algebraic Theory of Semigroup* 1, AMS, Soc. Providence, 1961.
- 4. H.W.Kang and K.Hur, Interval-valued fuzzy subgroups and subrings, *Honam Math. J*, 32 (4) (2010) 543–617.
- S.-M.Kim, K.Hur, M.Cheng and G.-B.Chae, Interval valued fuzzy quasi-ideals in a semigrups, *Internatinal journal of Fuzzy Logic and Intelligent Systems*, 12(3) (2012) 215-225.

- 6. T.K.Mondal and S. K. Samanta, Topology of interval-valued fuzzy sets, *Indian J. Pure Appl. Math.*, 30 (1) (1999) 20–38.
- 7. P.Murugadas, A.Arikrishnan and M.R.Thirumagal, Interval-valued q-fuzzy ideals generated by an interval-valued q-fuzzy subset in ordered semi-groups, *Annals of Pure and Applied Mathematics*, 13(2) (2017) 211-222.
- 8. A.L.Narayanan and T.Manikandan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semi-groups, *J.App. Maths and Computing*, 20 (2006) 455-465.
- 9. A.Rosenfeld, Fuzzy groups, *Journal of Mathematical Analysis and Applications*, 35 (1971) 512-517.
- 10. A.Solairaju and R.Nagarajan, A new structure and constructions of Q-fuzzy group, *Advance in Fuzzy Mathematics*, 4 (2009) 23-29.
- 11. N.Thillaigovindan and V.Chinnadurai, On interval-valued fuzzy quasi-ideals of semi-groups, *East Asian Mathematical Journal*, 25(4) (2009) 441-453.
- 12. D. Venkatesan and S. Sriram, Multiplicative operations of intuitionist fuzzy matrices, *Annals of Pure and Applied Mathematics*, 14(1) (2017) 173-181.
- 13. L.A.Zadeh, Fuzzy sets, Inform. and Centrol., 8 (1965) 338-353.
- 14. L.A.Zadeh, The concept of a linguistic variable and its application to approximate reasoning I, *Inform. Sci.*, 8 (1975) 199–249.