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Abstract. Recently, the ve-degree concept is defined in Graph Theory. We introduce the 
first and second hyper-ve-degree indices of a molecular graph. Considering these hyper-
ve-degree indices, we define the first and second hyper-ve-degree polynomials of a 
graph. We compute the first and second ve-degree Zagreb indices and their polynomials 
of dominating oxide networks. Also we compute the first and second hyper-ve-degree 
indices and their polynomials of dominating oxide networks. 
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1. Introduction 
Chemical Graph Theory is a branch of Graph Theory whose focus of interest is to finding 
topological indices of chemical graphs, which correlate well with chemical properties of 
the chemical molecules. A molecular graph is a simple graph related to the structure of a 
chemical compound. Each vertex of this graph represents an atom of the molecule and its 
edges to the bonds between atoms. Several topological indices have been considered in 
Theoretical chemistry, especially in QSAR and QSPR research, see [1]. 

Let G be a finite, simple connected graph with vertex set V(G) and edge set E(G). 
The degree dG(v) of a vertex v is the number of vertices adjacent to v. The set of all 
vertices which adjacent to v is called open neighborhood of v and denoted by N(v). The 
closed neighborhood set of v is the set N[v] = N(v) ∪ {v}. Let Sv denote the sum of the 
degrees of all vertices adjacent to a vertex v. In [2], Chellali et al. defined the ve-degree 
concept in graph theory as follows: 
 
Definition 1. The ve-degree dve(v) of a vertex v in a graph G is the number of different 
edges that incident to any vertex from the closed neighborhood of v. 
 Recently, Ediz [3] introduced the first ve-degree Zagreb beta index of a graph G 
and it is defined as 

 ( ) ( ) ( ) ( )( )
( )

1 .ve ve
uv E G

Ve G S G d u d vβ

∈

= = +∑                (1) 



V.R.Kulli 

2 

 

 Also Ediz [3] introduced the second ve-degree Zagreb index of a graph G and it 
is defined as 

 ( ) ( ) ( ) ( )
( )

2 .ve ve
uv E G

Ve G S G d u d vµ

∈

= = ∑  (2)  

 Considering the ve-degree indices, we propose the first and second ve-degree 
polynomials of a graph G as 

 ( ) ( ) ( )

( )
1 , .ve ved u d v

uv E G

Ve G x x +

∈

= ∑  (3) 

and ( ) ( ) ( )

( )
2 , .ve ved u d v

uv E G

Ve G x x
∈

= ∑   (4) 

 We introduce the first and second hyper-ve-degree indices of a graph G as 

 ( ) ( ) ( )( )
( )

2
1 ve ve

uv E G

HVe G d u d v
∈

= +∑   (5) 

and ( ) ( ) ( )( )
( )

2
2 .ve ve

uv E G

HVe G d u d v
∈

= ∑   (6) 

 Considering the hyper-ve-degree indices, we propose the first and second hyper-
ve-degree polynomials of a graph G as 

 ( ) ( ) ( )

( )

2

1 , .ve ved u d v

uv E G

HVe G x x
 + 

∈

= ∑   (7) 

and ( ) ( ) ( )

( )

2

2 , .ve ved u d v

uv E G

HVe G x x
 
 

∈

= ∑   (8) 

 The third ve-degree index of a graph G is defined as 

 ( ) ( ) ( )
( )

3 .ve ve
uv E G

Ve G d u d v
∈

= −∑   (9) 

 Considering the third ve-degree index, we introduce the third ve-degree 
polynomial as 

 ( ) ( ) ( )

( )
3 , .ve ved u d v

uv E G

Ve G x x
−

∈

= ∑   (10) 

 Recently, some ve-degree topological indices were studied, for example, in [4,5, 
6,7] and also several topological indices were studied, for example in [8,9,10,11,12,13]. 
Recently, some polynomials were studied, for example, in [14,15,16,17,18,19,20, 
21,22,23,24,25]. 
 We consider the family of dominating oxide networks [26,27]. In this paper, we 
determine the first and second ve-degree indices, the first and second hyper-ve-degree 
indices, the third ve-degree index for dominating oxide networks. 
 
2. Results for dominating oxide networks 
The family of dominating oxide networks is symbolized by DOX(n). The molecular 
structure of a dominating oxide network is presented in Figure 1. 
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Figure 1: The structure of a dominating oxide network 

 
 In [8], Ediz obtained the partition of the edges with respect to their sum degree of 
end vertices of dominating oxide networks in Table 1. 
 

 (Su, Sv)  (8, 12) (8, 14) (12, 12) (12, 14) (14, 16) (16, 16) 
Number of 

edges 
12n 12n–12 6 12n–12 24n–24 54n2– 114n+60 

Table 1: 
 

Also he obtained the ve-degree partition of the end vertices of edges for 
dominating oxide networks in Table 2. 

 
 (dve(u), 
dve(v))  

(7, 10) (7, 12) (10, 10) (10, 12) (12, 14) (14, 14) 

Number of 
edges 

12n 12n–12 6 12n–12 24n–24 54n2– 114n+60 

Table 2: The ve-degree of the end vertices of edges for DOX networks 
 
 In the following theorem, we compute the values of Ve1(DOX(n)) and 
Ve2(DOX(n)) for dominating oxide networks. 
 
Theorem 1. The first ve-degree Zagreb beta index and second ve-degree Zagreb index of 
a dominating oxide network DOX(n) are given by 
(i) Ve1(DOX(n)) = 1512n2 – 1872n + 684 
(ii) Ve2(DOX(n)) = 10584n2 – 15024n + 5880. 
Proof: Let G be the graph of a dominating oxide network DOX(n). 
(i) Using equation (1) and Table 2, we deduce 

 ( )( ) ( ) ( )( )
( )

1 ve ve
uv E G

Ve DOX n d u d v
∈

= +∑  

 = (7+10)12n + (7+12)(12n – 12) + (10+10)6 + (10+12)(12n – 12) 
  + (12+14)(24n – 24) + (14+14)(54n2 – 114n + 60) 
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 = 1512n2 – 1872n + 684. 
(ii) Using equation (2) and Table 2, we deduce 

 ( )( ) ( ) ( )
( )

2 ve ve
uv E G

Ve DOX n d u d v
∈

= ∑  

 = (7×10)12n + (7×12)(12n – 12) + (10×10)6+(10×12)(12n – 12) 
  + (12×14)(24n – 24) + (14×14)(54n2 – 114n + 60) 
 = 10584n2 – 15024n + 5880 
 In the following theorem, we determine the value of Ve1(DOX(n), x) and 
Ve2(DOX(n), x) for dominating oxide networks. 
 
Theorem 2. The first and second ve-degree polynomials of a dominating oxide network 
DOX(n) are given by 
(i) Ve1(DOX(n), x) = 12nx17 + (12n – 12) x19 + 6x20 + (12n – 12) x22  

+ (24n – 24)x26 + (54n2 – 114n + 60) x28 
(ii) Ve2(DOX(n, x)) = 12nx70 + (12n – 12) x84 + 6x100 + (12n – 12) x120  

+ (24n – 24)x168 + (54n2 – 114n + 60) x196 
Proof: Let G be the graph of a dominating oxide network DOX(n). 
(i) By using equation (3) and Table 2, we derive 

 ( )( ) ( ) ( )

( )
1 , ve ved u d v

uv E G

Ve DOX n x x +

∈

= ∑  

 = 12nx17 + (12n – 12) x19 + 6x20 + (12n – 12) x22 + (24n – 24)x26  

+ (54n2 – 114n + 60) x28
. 

(ii) By using equation (4) and Table 2, we derive 

 ( )( ) ( ) ( )

( )
2 , ve ved u d v

uv E G

Ve DOX n x x
∈

= ∑  

 = 12nx70 + (12n – 12) x84 + 6x100 + (12n – 12) x120 + (24n – 24)x168  

+ (54n2 – 114n + 60) x196
.  

 
 In the following theorem, we compute the first and second hyper-ve-degree 
indices of a dominating oxide network DOX(n). 
 
Theorem 3. The first and second hyper-ve-degree indices of a dominating oxide network 
DOX(n) are given by 
(i) HVe1 (DOX(n)) = 42336 n2 – 59544n – 23076 
(ii) HVe2 (DOX(n)) = 2074464 n2 – 3470448n – 1430112. 
Proof: Let G be the graph of dominating oxide network DOX(n). 
(i) By using equation (5) and Table 2, we deduce 
HVe1(DOX(n)) = (7+10)212n + (7+12)2 (12n – 12) + (10+10)2 6+(10+12)2(12n–12) 
   + (12+14)2 (24n – 24) + (14+14)2 (54n2 – 114n + 60) 
  = 42336 n2 – 59544n – 23076 
(ii) By using  equation (6) and Table 2, we derive 
HVe2(DOX(n)) = (7×10)212n + (7×12)2 (12n – 12) + (10×10)2 6+(10×12)2(12n–12) 
   + (12×14)2 (24n – 24) + (14×14)2 (54n2 – 114n + 60) 
  = 2074464 n2 – 3470448n – 1430112. 
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 In the following theorem, we determine the value of HVe1(DOX(n), x) and 
HVe2(DOX(n), x) for dominating oxide networks. 
 
Theorem 4. The first and second hyper-ve-degree polynomials of a dominating oxide 
network are given by 
(i) HVe1(DOX(n), x) = 12nx289 + (12n – 12) x361 + 6x400 + (12n – 12) x484  

+ (24n – 24)x676 + (54n2 – 114n + 60) x784
. 

(ii) HVe2(DOX(n), x) = ( ) ( )
2 2 2 270 84 100 12012 12 12 6 12 12+ − + + −nx n x x n x  

( ) ( )
2 2168 2 19624 24 54 114 60 .+ − + − +n x n n x  

Proof: Let G be the graph of a dominating oxide network DOX(n). 
(i) By using equation (7) and Table 2, we derive 

 ( )( ) ( ) ( )

( )

2

1 , ve ved u d v

uv E G

HVe DOX n x x
 + 

∈

= ∑  

 = ( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2

7 10 7 12 10 10 10 1212 12 12 6 12 12+ + + +
+ − + + −nx n x x n x  

( ) ( ) ( ) ( )
2 2

12 14 14 14224 24 54 114 60n x n n x+ +
+ − + − +  

= 12nx289 + (12n – 12) x361 + 6x400 + (12n – 12) x484  

+ (24n – 24)x676 + (54n2 – 114n + 60) x784
. 

(ii) By using equation (8) and Table 2, we derive 

 ( )( ) ( ) ( )

( )

2

2 , ve ved u d v

uv E G

HVe DOX n x x
 
 

∈

= ∑  

 = ( ) ( )
2 2 2 270 84 100 12012 12 12 6 12 12+ − + + −nx n x x n x  

( ) ( )
2 2168 2 19624 24 54 114 60 .+ − + − +n x n n x  

In the following theorem, we compute the third ve-degree index and its 
polynomial of dominating oxide network. 
 
Theorem 5. The third ve-degree index and its polynomial of a dominating oxide network 
are given by 
(i) Ve3 (DOX(n)) = 168n – 132. 
(ii) Ve3 (DOX(n), x) = (12n – 12)x5 + 12nx3 + (36n – 36)x2 + (54n2 – 114n + 60)x0. 
Proof: Let G be the graph of a dominating oxide network DOX(n). 
(i) By using equation (9) and Table 2, we deduce 

( )( ) ( ) ( )
( )

3
∈

= −∑ ve ve
uv E G

Ve DOX n d u d v  

  = 12n×3 + (12n – 12)5+6×0 + (12n–12)2 + (24n–24)2 
   + (54n2 – 114n + 60)0 
  =168n – 132. 
(ii) By using equation (10) and Table 2, we derive 



V.R.Kulli 

6 

 

 ( )( ) ( ) ( )

( )
3 ,

−

∈

= ∑ ve ved u d v

uv E G

Ve DOX n x x  

= 12x3 + (12n – 12)x5 + 6x0 + (12n – 12)x2 + (24n – 24)x2 

 + (54n2 – 114n + 60)x0. 
= (12n–12)x5+12nx3 + (36n – 36)x2 + (54n2 – 114n + 60)x0. 
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