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1. Introduction

Stone [1] introduced and studied Regular openthets Regular semi open sets, Pre-open
sets, gspr closed sets, gpr closed sets, gp céededRg closed setsarglosed setsg-g-
closed sets, pgprw closed sets are introduced tdied by Cameron [2], Mashhour,
Abd El-Monsef and El-Deeb [3], Govindappa Navala@handrashakarappa and
Gurushantanavar [4], Gnanambal [5], Maki, Umehahdoiri [6], Palaniappan and Rao
[7], Vadivel and Vairamamanickam [8], Dontchev avdiri [9], Wali and Vivekananda
Dembre [10] respectively.

2. Preliminaries

Throughout this paper space (¥, and (Y, o) (or simply X and Y) always denote
topological space on which no separation axiomsaaseimed unless explicitly stated.
For a subset A of a space X, CI(A), Int(A); ,R-CI(A) and P-int(A) denote the Closure
of A, Interior of A, Compliment of A, pre-closurg A and pre-interior of (A) in X
respectively.

Definition 2.1. A subset A of a topological space @) is called

() Regular opemet [1]if A =int(cl(A)) and a regular closed s = cl(int(A)).
(i)  Regular semi open set [2] if there is a regulanaget U such that TAD cl(U).
(iii)  Pre-open set [3] if Alint(cl(A)) and pre-closed set if cl(int(A)l) A.
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(iv) Generalized semi pre regular closed (briefly,gdpsad) set [4] if spcl(AEU
whenever A2U and U is regular open in X.

(v) Generalized pre regular closed set (briefly, gpsetl) [5] if pcl(AJU whenever
AOU and U is regular open in X.

(vi) Generalized pre closed (briefly,gp-closed) set [B] pcl(A)SU whenever AU
and U is open in X.

(vii) Regular generalized closed set(briefly,rg-closéq)iff cl(A) U whenever AlU
and U is regular open in X.

(viii) Regular-generalized- closed set [8] if a- cl(A)SU whenever AU and U is
regular o -open in X.

(iX) =m-generalized closed set (brieftg-closed) [9] if cl (AE U whenever & U and
U isw-open in X.

(x) pre generalized pre regulaseakly closed set(briefly pgprclosed) [10] if
pCI(A)OU whenever AlU and U is rg-open in (X1).

3. Pre generalized pre regular weakly closed sets iopological spaces

Definition 3.1. [10] A subset A of topological space (¥, is called gpre generalized
pre regulareakly closed sets (briefly pgpiclosed set) if pClI(AYU whenever A U
and U is rg-open in (X1).

Results 3.2From [10]

() Every closed set is pgpfclosed set in X.

(i) Every regular closed set is pgprw-closed set in X.

(iii) Every pgprw-closed set is gspr, gpr, gprgclosed set.

(iv) The Union of two pgps -closed subsets of X is pgpf closed set.

(v) If Ais pre generalized pre regular weakly closetlin X and AIBO pCI(A) then B
is also pre generalized pre regular weakly clog¢dhsX.

(vi) If a subset A of topological space X is a pre galiwed pre regular weakly closed
set in X; then pCI(A) - A does not contain any reanpty ragi-closed set in X.

4. Pre generalized pre regular weakly open sets
Definition 4.1. A subset A of a topological space {Kjs called pre generalized pre
regularoeakly open (briefly pgps-open) set in X if A is pgpmw-closed in X.

The following theorem is the analogue of resBI& (i) to (iv).

Theorem 4.2. For any topological spaces ¢Xwe have the following .
() Every open set is pgpropen.

(i) Every regular open set is pgprw closed set.

(i) Every pgpt-open set is gspr, gpr,gp,rgg-open set.

Theorem 4.3.I1f A and B are pgps-open sets in space X, themR is also an pgps-
open in X.

Proof: Let A and B be two pgpropen sets in X. Then‘Aand B are pgpn-closed
sets in X by Results 3.2 (iv) ‘A B®is also pgpn-closed set in X. that isAJ B =
(ANB)° is pgpmw-closed set in X.ThereforeB is an pgpw-open set in X.
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Remark 4.4. The union of pgps-open set in X is generally not an pgpopen set in X.

Example 4.5.Let X={a,b,c,d}, 1 ={X,¢,{a},{c,d},{a,c,d}}. If A={c} B={a} Then A &
B are pgpw-open set in X but AJ B={a,c} is not an pgpn-open set in X.

Theorem 4.6. A subset A of a topological space X is pgqapen iff
Ul p-int(A), whenever U is rgclosed and WJA.
Proof: Assume that A is pgpropen set in X and U is aeclosed set of (Xg) s.t

U OA. Then X-A is a pgpp-closed set in (X7).Also X—AO X—U and X-U is rgu-
open set of (X1).This implies that pcl(¢A) O X—U.But pcl(X—A)=X —p-int(A).

Thus, X—p int(A) O X—U, so UO p-int(A).Conversely: SupposeUp-int (A) whenever
U is rgu-closed and Ul A. To prove that A is pgpr-open set. Let F be agopen set of
(X, 1) s.t X=A OF. Then X-F O A. Now X—F is rgi-closed set containing A,So>¢
O p-int(A),X—p-int(A) O F but pcl(X=A) = X—p-int(A) O F. Thus pcl(<A) O F i.e
X—A is pgprn-closed set & hence A is pgpopen set.

Theorem 4.7. If p-int(A) O B OA and A is pgpi-open set, then B is pgpropen set.
Proof: Let p-int(A)dIBOA, Thus X—A 00 X—B O X—p-int(A), i.e.

X—A 0O X—B 0O cl(X—A),Since X—A is pgpko-closed set,then from result 3.2 (v) [10]
X—B is pgpw-closed set. Therefore B is pgpopen set.

Theorem 4.8. If A O X is pgpr-closed then pcl(Ay-A is pgpr-open set.

Proof. Let A be pgpw-closed. Let H1 pcl(A) —A, where F is rg—closed; then from
result 3.2 (vi) [10] we have H=.Therefore FO p-int (pcl(A) —A) and Theorem4.6
pcl(A) —A is pgpr-open set.

The reverse implication does not hold good.

Example 4.9.Let X={a,b,c,d}, T ={X, ¢.{a},{c,d},{a,c,d}}Let A={a,d}, pcl(A)= {a,c,d}
then pcl(A)-A={c} which is pgpr-open set in X, but A is not pgp+closed.

Theorem 4.10. A set A is pgpw-open set in (Xg) if and only if U=X whenever U is
rgoa -open and p-int(A)J (X— A) O U.

Proof: Suppose that A is pgpropen set in X. Let U be sgopen and

p-int(A) U (X-A) O U ,U° 0O (p-int(A) UA9 = (p-int(A))°'N A i.e U O (p-int(A)°— A°
(because AB = ANB°).Thus U pcl(A)-A° (because (p-int(Aj)= pcl(A%)).Now A°
is also pgpw-closed and Uis rgu-closed then from result 3.2 (vi) [10] it follovi$=¢
then U=X. Conversely: Suppose F is pgjotosed and EA.

Then p-int(A) U (X-A) O p-int(A) U (X-F). It follows that p-int(A)U (X —F)=X.
Theorem 4.111f A and B be subsets of space X, If B is pgpmw-open and

p-int(B) O A then ANB is pgpw-open.
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Proof: Let B is pgpw-open in X. P-int(BYJ A and p-int(B)O B is always then
p-int(B) O ANB and also p-int(BlJ ANB [0 B and B is pgps-open set by Theorem 4.7
, ANB is also pgpiw-open set in X.

5. pgprw-neighbourhood
Defintion 5.1. (i) Let (X, 1) be a topological space and LeflX , A subset of N of X is

said to bepgpro-neighbourhood of x if there exists an pgprw-openG s.t. x OGO N.

(i) The collection of all pgps-neighbourhood ok [1X is called pgpw-neighbourhood
system at x and shall be denoted by pgprw-N(x).

Theorem 5.2. Every neighbourhood N of [1X is a pgp®-neighbourhood of X.

Proof: Let N be neighbourhood of poinkdX . To prove that N is a pger
neighbourhood of x by definition of neighbourdod an open set G s.t.
xOG O N.Hence N is pgps-neighbourhood of x.

Remark 5.3.In general, a pgpr-nbhd N of X€ X need not be a nbhd of x in X, as seen
from the following example.

Example 5.4. Let X = {a, b, ¢, d} with topology = {X, ¢.{a},{b ,{a, b},{a,b,c}}. Then
pgptmo(X) = {X, ¢,{a}, {b},{c}.{a, b},{b,c}.{a, c} {a, b, c},{a,b,d }}. The set {c,d} is
pgptw-nbhd of the point ¢, since the pgpopen set {c} is such that € {c} c{c,d}.
However, the set {c,d} is not a nbhd of the poinsiace no pgprw open set G exists such
that ce G c{c,d}.

Theorem 5.5 If a subset N of a space X is pgpopen, then N is a pgprnbhd of each
of its points

Proof. Suppose N is pgpropen. Let x€ N. We claim that N is pgpr-nbhd of x. For N
is a pgpk-open set such that& N [ N. Since x is an arbitrary point of N, it followlsat

N is a pgpw-nbhd of each of its points.

Remark 5.6. The converse of the above theorem is not trueeirerpl as seen from the
following example.

Example 5.7.Let X = {a, b, ¢, d} with topologyt = {X, ¢ {a},{c,d},{a, c,d}}. Then
pgpwo(X) = {X, ¢, {a}{b}.{c}.{d}.{a,b}{a,c}.{a,d}.{c.d}{a,b,c},{ a,b,d}{a,c,d}}.
The set {b,c} is a pgps-nbhd of the point b, since the pgpopen set {b} is such that
be {b} O {b,c}. Also the set {b,c} is a pgps-nbhd of the point {c}, Since the pgpr
open set {c} is such that € {c} O {b,c}. That is {b,c} is a pgpw-nbhd of each of its
points. However the set {b,c} is not a pgpopen set in X.

Theorem 5.8.Let X be a topological space. If F is a pgmlosed subset of X, and &

F°. Prove that there exists a pganbhd N of x such that NF =¢.

Proof: Let F be pgpn-closed subset of X and& F°. Then Eis pgpmw-open set of X. So
by theorem 5.5 Fcontains a pgpr-nbhd of each of its points. Hence there exists a
pgpro-nbhd N of x such that §F°. That is NN F =¢.
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Theorem 5.9 Let X be a topological space and for eack X, Let pgpm-N (x) be the

collection of all pgpw-nbhds of x. Then we have the following results.

(i) VX €X, pgpw-N (X) # ¢

(i) N €pgpw-N (X) =x €N

(i) Nepgpe-N (x), M DN =M E pgpw-N (X)

(iv) NE€pgpr-N (x), ME pgpi-N (x) = NNM Epgpro-N (x)

(v) N €pgpmw-N (xX) =there exists M= pgpr-N (x) such that MC N and M € pgpiw-
N (y) for every ye M

Proof: (i) Since X is a pgps-open set, it is a pgprnbhd of every x€ X. Hence there

exists at least one pgpinbhd (namely - X) for each & X. Hence pgpn-N (x) # ¢ for

every x€X.

(i) If N epgpro-N (x),then N is a pgps-nbhd of x.So by definition of pgprnbhd,x €
N.

(i) Let N €pgpr-N (x) and MDN. Then there is a pgpfopen set G such that& G
CN. Since NC M, x€ G M and so M is pgpnbhd of x. Hence M= pgpiw-N (x).

(iv) Let N € pgpro-N (x) and M € pgpio-N (x). Then by definition of pgpr-nbhd there
exists pgpw-open sets Gand G such that x©G; CN and x€ G CM.

Hence x€ G;N G, C N NM -- (1). Since G N G, is a pgpw-open set, (being the
intersection of two pgpr-open sets), it follows from (1) that N M is a pgp®-nbhd of
X. Hence NOM €pgprm-N (X).

(v) If N € pgpmw-N (x), then there exists a pgpopen set M such thats&€ M CN. Since
M is a pgpt-open set, it is pgpr-nbhd of each of its points. Therefore &lpgpiw-N (y)
for every ye M.

Theorem 5.10.Let X be a nonempty set, and for eaclexX, let pgpmw-N (x) be a
nonempty collection of subsets of X satisfyingdaling conditions.

(i) N €pgpr-N (x) =XEN

(i) N €pgpro-N (X),M € pgpw-N (X) =N NM € pgprm-N (X).

Let t consists of the empty set and all those non-emsyibgets of G of X having the
property that X2 G implies that there exists areN pgpN (X) such that XN C G,
Thent is a topology for X.

Proof: (i) ¢ €1 by definition. We now show that &1 . Let x be any arbitrary element
of X. Since pgpn-N (x) is nonempty, there is an & pgpro-N (x) and so X N by (i).
Since N is a subset of X, we haveaN C X. Hence XE1.

(il Let Gy €Etand G €1. If x €G; N Gy then XEG; and XEG,. Since G €Etand G
€1, there exists N=  pgprN (x) and M € pgpko-N (X), such that XN C G, and x€

M CG, ThenxENNM CG; N Gy But NNM €pgpro-N (X) by (2). Hence @1 G,
€1 .Let G Etforeveryh € A If x € U{G, : L € A}, then xE G, for someix € A.
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Since Gy €1, there exists an ® pgptN (X) such that XN C G, and consequently
X EN CU{G, : L € A}. HenceU {G : L € A} €. It follows thatr is topology for X.
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