Annals of Pure and Applied Mathematics Vol. 11, No. 2, 2016, 57-65 ISSN: 2279-087X (P), 2279-0888(online) Published on 5 May 2016 www.researchmathsci.org

0-ideals in 0-distributive Nearlattice

*Y.S.Pawar*¹ and *M.A.Gandhi*²

¹Department of Mathematics, Shivaji University, Kolhapur Email: <u>yspawar1950@gmail.com</u> ²Department of Mathematics, General Engineering N. K. Orchid College of Engineering and Technology, Solapur-413002 Corresponding author. E-mail: <u>madhavigandhi17@gmail.com</u>

Received 3 March 2016; accepted 2 April 2016

Abstract. Some properties of 0-ideals in 0-distributivenearlattices are derived. It is proved that the set of all 0-ideals in a 0-distributive nearlattice forms a distributive lattice under the specially defined operations on it.

Keywords: Distributive nearlattice, 0-distributive nearlattice, Prime ideals, 0-ideals.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

Cornish [1] introduced the concept of 0-ideal in a distributive lattice and studied their properties with the help of congruence relations. As a generalization of the concept of a distributive lattice, 0-distributive lattices are introduced by Varlet [4]. Recently in [5, 6] the authors have defined 0-distributive nearlattices. As in any abstract algebra, ideals play a vital role in nearlattices. Special types of ideals are introduced and studied in Nearlattices by various authors (See [2,7,8]). Our aim is to introduce and study 0-ideals in 0-distributive nearlattices. A necessary and sufficient condition for a proper 0-ideal of a 0-distributive nearlattice is the intersection of all the minimal prime ideals containing it. We also prove that the poset of all 0-ideals under set inclusion forms a distributive nearlattice.

2. Preliminaries

In this article, we collect some basic concepts needed in the sequel for some other nonexplicitly stated elementary notions please refer to [5,6].

A nearlattice is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. This property is known as the upper bound property. A nearlattice S is called distributive if for all f(x,y) = f(x,y) + f(x,y) +

 $x, y, z \in S, x \land (y \lor z) = (x \land y) \lor (x \land z)$, provided $(y \lor z)$ exists.

A nearlattice Swith 0 is called 0-distributive if for all $x, y, z \in S$, with $(x \land y) = 0 = (x \land z)$ and $y \lor z$ exists imply, $x \land (y \lor z) = 0$. Of course, every distributive nearlattice Swith 0 is 0-distributive. A subset I of a nearlattice S is called a downset if $x \in I$ and for $t \in S$ with $t \le x$ imply $t \in I$. An ideal I in a nearlattice S is a non-empty subset of S such that it is down set and whenever $a \lor b$ exists for $a, b \in I$ then $a \lor b \in I$.

A proper ideal *I* in *S* is called a prime ideal if $a \land b \in I$ implies that either $a \in I$ or $b \in I$. A non-empty subset *F* of *S* is called a filter if $t \ge a, a \in F$ implies $t \in F$ and if $a, b \in F$ then $a \land b \in F$. A proper filter *F* in *S* is called prime if $a \lor b$ exists and $a \lor b \in F$ implies either $a \in F$ or $b \in F$. It is easy to prove that *F* is a filter of *S* if and only if S - F is a prime down set. Moreover, a prime down set *P* is a prime ideal if and only if S - P is a prime filter. A proper filter *M* of a nearlattice *S* is called maximal if and only if for any filter *Q* with $Q \supseteq M$ implies either Q = M or Q = S. Dually we define a minimal prime ideal (down set).

Let S be a nearlattice with 0. An element a^* is called the pseudo-complement of a if $a \wedge a^* = 0$ and if $a \wedge x = 0$ for some $x \in S$, then $x \leq a^*$. A lattice L with 0 and 1 is called pseudo-complemented if its every element has a pseudo-complement. Since a nearlattice S with 1 is a lattice, so pseudo-complementation is not possible in a general nearlattice. A nearlattice S with 0 is called sectionally pseudo-complemented if the interval [0, x] for each $x \in S$ is pseudo-complemented. For $A \subseteq S$, we denote $A^{\perp} = \{x \in A \in S\}$ $S/x \wedge a = 0$ for all $a \in A$. If S is distributive then clearly A^{\perp} is an ideal of S. Moreover $A^{\perp} = \bigcap_{a \in I} \{\{a^{\perp}\}\}$. If A is an ideal, then obviously A^{\perp} is the pseudo-complement of A in I(S). Therefore, for a distributive nearlattice S with 0, I(S) is pseudo-complemented. For any filter F of S define $F^0 = \{x \in S \mid x \land y = 0, \text{ for some } y \in F\}$. An ideal I in S is called 0-ideal if $I = F^0$ for some filter F in S. For any prime ideal P of S define O(P) = $\{x \in S | x \land y = 0 \text{ for some } y \notin P\}$. Note that for any prime ideal P of, $0(P) \subseteq P$. For any non empty subset A of S, the set $A^* = \{x \in S | x \land y = 0 \text{ for all } y \in A\}$ is called an annihilator of A in S. An ideal I in S is called an annihilator ideal if $I = I^{**}$. An ideal I in S is called dense in S if $I^* = \{0\}$. An element $x \in S$ is said to be dense in S if, $(x]^* =$ $\{x\}^* = \{0\}$. An ideal *I* of *S* is called an α -ideal if $(x]^{**} \subseteq I$ for each $x \in I$.

A 0-distributive nearlattice *S* with 0 is said to be quasi-complemented if for each $x \in S$, there exists $x' \in S$ such that $x \wedge x' = 0$ and $((x]^* \vee (x']^*)^* = (0]$. A 0-distributive nearlattice *S* with 0 is said to be normal if every prime ideal of *S* contains a unique minimal prime ideal.

Let I(S) denote the set of all ideals of a 0-distributive nearlattice *S* with 0, then $(I(S), \land, \lor)$ is a distributive lattice where $I \land J = I \cap J$ and $I \lor J = < I \cup J >$ for any two ideals *I* and *J* of *S*.

3.0-ideal

We begin with the following lemma:

Lemma 3.1. In any 0-distributive nearlattice *S* with 0, we have

a) For any filter F of S, F^0 is a down set in S and $F \cap F^0 \neq \emptyset \Longrightarrow F = S = F^0$.

b) If *S* contains a dense element, then $F^0 = S \Leftrightarrow F = S$, for any filter *F* of *S*.

c) For a filter F of S, $F^0 = \{0\}$ if and only if S has a dense element.

d) For any prime ideal *P* of *S*, 0(P) is a down set in Sand $0(P) = (S \setminus P)^0$.

e)For a proper filter F of S, F^0 is contained in some minimal prime ideal of S.

f) If *M* is a minimal prime ideal of *S* containing F^0 , then $M \cap F = \emptyset$ for any filter *F* of *S* **Proof:**

a) Obviously, for any filter *F* of *S*, F^0 is a down setin*S*. Let *F* be a filter of *S* such that $F \cap F^0 \neq \emptyset$. Select $x \in F \cap F^0$. $x \in F^0 \Rightarrow x \land y = 0$, for some $y \in F$. As $x \in F$ and $y \in F, 0 = x \land y \in F \Rightarrow F = S$ and hence $F^0 = S$.

b) $F = S \Rightarrow F^0 = S$, obviously. Let $F^0 = S$ and *d* be a dense element in $S.d \in F^0 \Rightarrow d \land f = 0$, for some $f \in F$. As $f \in \{d\}^{\perp} = \{0\}$, we get f = 0. Thus $0 \in F$ and hence F = S. **c**) Assume that there exists a filter *F* in *S* such that $\{0\} = F^0$. But then $(f]^{\perp} = \{0\}$ for some $f \in F$. This shows that *S* has a dense element. Conversely, assume that *S* has a dense element. Then the set *D* of all dense elements in *S* is a filter with $D^0 = \{0\}$. Hence the result.

d) Let *P* be a prime ideal of *S*. Then $S \setminus P$ is a filter of *S*. We have $x \in O(P) \Leftrightarrow x \land y = 0$ for some $y \notin P \Leftrightarrow x \land y = 0$ for some $y \notin S \setminus P \Leftrightarrow x \in (S \setminus P)^0$. Therefore $O(P) = (S \setminus P)^0$.

e) Let *F* be a proper filter of *S*. Then *F* must be contained in some maximal filter say *M* in *S*. Then $S \setminus M$ is a minimal prime ideal containing F^0 .

f) Let *M* be a minimal prime ideal of *S* containing F^0 . Assume that $M \cap F \neq \emptyset$. Select $x \in M \cap F$. *M* being minimal prime ideal, there exists $y \notin M$ such that $x \land y = 0$. As $x \land y = 0$ and $x \in F$ we get $y \in M$; a contradiction. Hence $M \cap F = \emptyset$

Remarks. (1) In 0-distributive nearlattice *S* for any proper filter $F, F \cap F^0 = \emptyset$. (2) In a 0-distributive nearlattice*S*, a proper down set F^0 contains no dense elements. (3) If *S* is a 0-distributive nearlattice, then for any filter *F* of *S*, F^0 is an ideal in *S* and for any prime ideal in Pof *S*, 0(P) is an ideal in *S*.

Consider the 0-distributive nearlattice $S = \{0, a, b, c, d, e\}$ as shown by Hasse diagram of Figure 1.The ideal (*a*] is not a 0-ideal of *S*. Hence the set Ω of all 0-ideals of *S* is a subset of the set of all ideals of *S*. The ideal (0] is a 0-ideal of *S* which is not prime. The ideals (*b*] and (*d*] are prime 0-ideals of *S*.

Figure 1:

In general about the 0-ideals of a 0-distributive nearlattice we have

Theorem 3.2. For any 0-distributive nearlattice *S*, the following statements hold.

(a) A proper 0-ideal contains no dense elements.

(**b**) Every prime 0-ideal in *S* is minimal prime.

(c) Every minimal prime ideal in *S* is a 0-Ideal.

(d) Every non dense prime ideal inS is a 0-ideal

(e) Every 0-ideal in S is an α -ideal.

(f) If S is quasi-complemented nearlattice, then every prime ideal P not containing any dense element is a 0-ideal

Proof:

(a) Let a proper 0-ideal *I* contains a dense element *d* in *S*.As *I* is an 0-ideal $I = F^0$ for some filter *F* in *S*. But then $d \in F^0 \Rightarrow d \land f = 0$ for some $f \in F$. As $f \in \{d\}^{\perp} = \{0\}$, we get f = 0. As $0 \in F, F = S$. Hence $F^0 = S$ (by lemma 3.1(b)). This contradicts the fact that *I* is proper and the result follows.

(b) Let P be prime 0-ideal in S.Then $P = F^0$ for some proper filter F in S. Select $x \in P = F^0$. Hence $x \wedge f = 0$, for some $f \in F$. If $f \in P$, then $f \in F \cap F^0$. Hence

 $F \cap F^0 \neq \emptyset$. Then by lemma 3.1(a), $P = F^0 = F = S$ which is not true. Hence $f \notin P$. Therefore *P* is minimal prime.

(c) Let P be a minimal prime ideal in S, then $S \setminus F$ is a filter of S. Since P is minimal prime ideal in S, we get P = 0(P). Hence $P = (S \setminus P)^0$ (by lemma 3.1(c)). Hence P is a 0-ideal.

(d) Let *P* be a non-dense prime ideal of *S*. As $\{P\}^{\perp} \neq \{0\}$, there exists $0 \neq x \in \{P\}^{\perp}$. Hence $P \subseteq P^{\perp\perp} \subseteq (x]^{\perp}$. Now let $y \in (x]^{\perp}$. Then $x \land y = 0 \in P$ and $x \notin P$ imply $y \in P$. Thus $(x]^{\perp} \subseteq P$. From both the inclusions we get $P = (x]^{\perp}$. As $(x]^{\perp} = ([x))^0$, we get $P = ([x))^0$. Therefore *P* is a 0-ideal of *S*.

(e) Let *I* be a 0-ideal in *S*. Hence there exists a filter *F* in *S* such that $I = F^0$. Let $x \in F^0$. Then $x \in (f]^{\perp}$ for some $f \in F$. Hence $(x]^{\perp \perp} \subseteq (f]^{\perp} \subseteq F^0$. This shows that the 0-ideal *I* in *S* is an α -ideal.

(f) Let *S* be a quasi-complemented nearlattice. *P* be a prime ideal of *S* with $P \cap D = \emptyset$. Let $x \in P$. Since *S* is quasi-complemented, there exists $y \in S$ such that $x \wedge y = 0$ and $x \vee y \in D$. But then $y \notin P$ as $P \cap D = \emptyset$. Thus $x \in (S \setminus P)^0$ shows that $P \subseteq (S \setminus P)^0$. As $(S \setminus P)^0 \subseteq P$ always, we get $P = (S \setminus P)^0$ and the result follows.

Converse of theorem 3.2(b) need not be true, i.e. every 0-ideal need not be a minimal prime ideal in S. For this consider 0-distributive nearlattice represented in Figure 1. $\{0\}$ is a 0-ideal, but not a prime ideal in S and hence not a minimal prime ideal in S.

Necessary and sufficient condition for a proper 0-ideal of a 0-distributive nearlattice to be prime is proved in the following theorem.

Theorem 3.3. Let *I* be a proper 0-ideal of a 0-distributive nearlattice *S*. Then *I* is prime if and only if it contains aprime ideal.

Proof: If *I* is a prime ideal, then obviously it contains a minimal prime ideal. Now assume that *I* contains a prime ideal *P* but *I* is not prime.Select $a \notin I, b \notin I$ such that $a \land b \in I$. As $P \subseteq I$ and *P* is prime, we have $a \notin P, b \notin P$ with $a \land b \notin P$. Thus $(a \land b)^{\perp} \subseteq P \subseteq I$. As *I* is a 0-ideal of, there exists a filter *F* in *S* such that $I = F^0$. Now $a \land b \in I = F^0 \Rightarrow a \land b \land y = 0$ for some $y \in F$. Hence $y \in (a \land b]^{\perp} \subseteq I = F^0 \Rightarrow y \in F \cap F^0 \Rightarrow F \cap F^0 \neq \emptyset$. By Lemma 3.1(a), $F = F^0 = S$. Hence I = S, which is absurd. Hence *I* is prime. *I* being a prime 0- ideal of *S*, it is minimal prime, by Theorem 3.2(b). Hence the result.

It is well known that every ideal of a 0-distributive nearlattice S cannot be expressed as the intersection of all prime ideals containing it. (a] is an ideal but it cannot be expressed as the intersection of all the prime ideals containing it (ref. Figure 1), but for 0-ideals of a 0-distributive nearlattice S we have the following theorem.

Theorem 3.4. Every 0-Ideal of a 0-distributive nearlattice is the intersection of all minimal prime ideals containing it.

Proof. Let *I* be a 0-ideal of *S*. Hence there exists a filter *F* in *S* such that $I = F^0$. Define $J = \bigcap \{M/M \text{ is a minimal prime ideal containing } I\}$. Clearly $I \subseteq J$. Suppose $I \not\subseteq J$. Choose $x \in J$ such that $x \notin I = F^0$. Hence $x \land y \neq 0$ for each $y \in F$. Fix up any $y \in F$. $x \land y \neq 0 \Rightarrow x \land y \in G$, for some maximal filter *G* of *S*. $S \setminus G$ is a minimal prime ideal,

 $y \notin S \setminus G \Rightarrow (y]^{\perp} \subseteq S \setminus G$. Again we know that $F^0 = \bigcup \{(f]^{\perp} / f \in F\}$. Hence $I = F^0 \subseteq S \setminus G$.

This in turn shows that $x \in S \setminus G$, which is absurd. Hence I = J and the result follows.

Theorem 3.5. Every proper 0-ideal of a 0-distributive nearlattice S is contained in a minimal prime ideal.

Proof: Let *I* be a prime 0-ideal in *S*. Then $I = F^0$ for some proper filter *F* of *S*. Clearly $I \cap F = F^0 \cap F = \emptyset$.

Let $\varphi = \{G/G \text{ is a filter of } S \text{ such that } F \subseteq G \text{ and } I \cap G = \emptyset\}$. Clearly $F \in \varphi$ and φ satisfies Zorn's Lemma. Let M be a maximal element of φ . We claim that M is a maximal filter of S. Suppose K is a proper filter of S such that $M \subset K$. By maximality of M and $F \subseteq M \subseteq K$, we get $I \cap K \neq \emptyset$. Select $x \in I \cap K$. As $x \in I = F^0, x \land y = 0$, for some $y \in F$ but then $x \land y = 0 \in K$; a contradiction. Hence F is a maximal filter of S. Select S such that $I \subseteq S \setminus M$.

Immediately by Theorem 3.5 we have the following result.

Corollary 3.6. A proper filter of a 0-distributive nearlattice S is maximal if and only if $S \setminus F$ is a 0-ideal.

Proof: Let *F* be a maximal filter of *S*. Then $S \setminus F$ is a minimal prime ideal of *S* and hence a 0-ideal. Conversely, let $S \setminus F$ be a 0-ideal. Then $S \setminus F$ being a proper 0-ideal, it must be contained in some minimal prime ideal say *M* of *S* (by Theorem 3.5). Thus, $S \setminus M \subseteq F$.

Theorem 3.7. Intersection of any two 0-ideals in a 0-distributive nearlattice *S* is a 0-ideal of *S*.

It is enough to prove that for any two filters F and G of $S, F^0 \cap G^0 = (F \cap G)^0$. Obviously, $(F \cap G)^0 \subseteq F^0 \cap G^0$. Let $x \in F^0 \cap G^0$, then $x \wedge f = 0$, for some $f \in F$ And $x \wedge g = 0$, for some $g \in G$. As S is 0-distributive $x \wedge (f \vee g) = 0$. As $f \vee g \in (F \cap G)$, we get $x \in (F \cap G)^0$. Thus, $F^0 \cap G^0 \subseteq (F \cap G)^0$. Combining both the results $F^0 \cap G^0 = (F \cap G)^0$.

Corollary 3.8. Intersection of any family of 0-ideals in a 0-distributive nearlattice *S* is a 0-ideal of *S*.

4. The set Ω of all 0-ideals

Let *S* be a 0-distributive nearlattice and let Ω denote the poset (Ω, \subseteq) of all 0-ideals of *S*. In this article we prove that the poset (Ω, \subseteq) need not be a sub lattice of the lattice $(I(S), \Lambda, \vee)$ of all ideals in *S* in general. But under the condition of normality of *S* the

poset (Ω, \subseteq) will be sub lattice of $(I(S), \land, \lor)$.Consider the 0-distributive nearlattice $S = \{0, a, b, c, d, e, f, g, h\}$ as shown in Hasse Diagram of Figure 2.

Figure 2:

For the filters F = [a] and G = [b], $[F]^0 \vee [G]^0 = \{0, a, b, c\}$ which is not a 0-ideal of *S*. As join of two 0-ideals of a 0-distributive nearlattice *S* is not a 0-ideal of *S*, the set Ω of all 0-ideals is not the sub-lattice of the lattice $(I(S), \Lambda, \vee)$.

In the following theorems we prove some properties of 0-ideals in a nearlattice.

Theorem 4.1. The poset (Ω, \subseteq) is a sublattice of the lattice I(S) provided *S* is a normal 0-distributive nearlattice.

Proof: For any two filters *F* and *G* of *S*, $(F^0 \wedge G^0) = F^0 \cap G^0 = (F \cap G)^0$. (See Theorem 3.7) $F^0 \cap G^0 \in \Omega$. Now we prove that $F^0 \vee G^0 = (F \vee G)^0$. Obviously, $F^0 \vee G^0 \subseteq (F \vee G)^0$. Let $x \in (F \vee G)^0$. Then $x \wedge t = 0$ for some $t \in F \vee G$. Hence $t \ge f \wedge g$ for some $f \in F$ and $g \in G$. Hence, $x \wedge f \wedge g = 0 \Rightarrow x \in (f \wedge g]^\perp \Rightarrow x \in (f]^\perp \vee (g]^\perp$ (Since *S* is normal) $\Rightarrow x \in F^0 \vee G^0$. Since $(f]^\perp \subseteq F^0$ and $(g]^\perp \subseteq G^0$). Thus, $(F \vee G)^0 \subseteq F^0 \vee G^0$. Combining both the inclusions we get $F^0 \vee G^0 = (F \vee G)^0$. Hence (Ω, Λ, \vee) is a sub lattice of the lattice $(I(S), \Lambda, \vee)$.

Theorem 4.2. Let *S* be a normal lattice. Then for any ideal *I* which contains a 0-ideal *K*, there exist the largest 0-ideal containing *K* and contained in *I*.

Proof: Define $\beta = \{J/J \text{ is an 0-ideal such that } K \subseteq J \subseteq I\}$. Clearly, $K \in \beta$. Let $\{J_i/i \in \Delta\}$ be a chain in β . Then $\cup \{J_i/i \in \Delta\}$ is a 0-ideal and $K \subseteq \cup J_i \subseteq I$. So by Zorn's lemma β contains a maximal element, say M. We now prove that M is unique. Suppose there exists a maximal element $M_1 \neq M$ in β . Then we have $\subseteq M_1 \lor M \subseteq I$. As S is a normal lattice. $M_1 \lor M \in \beta$ (See Theorem 5.1). But, then $M_1 = M_1 \lor M = M$; and hence the uniqueness. Thus in a normal lattice S, for any ideal I which contains a 0-ideal K, there exists a largest 0-ideal containing K and contained in I.

We know that $\{0\}$ is an ideal in a nearlattice *S* with 0, if it contains a dense element. Hence by Theorem 5.2 it follows the following.

Corollary 4.3. In a normal lattice *S* containing dense elements, there exists largest 0-ideals in *S*.

Corollary 4.4. In a normal nearlattice *S*, there exist largest 0-ideal/ideals in *S*.

Theorem 4.5. Let *S* be a normal nearlattice. If $\{I\alpha | \alpha \in \Delta\}$ is a family of 0-ideals in *S*, then $\lor I\alpha$ is a 0 - ideal of *S*.

Proof: As $I\alpha$ is a 0-ideal of S, let $I\alpha = F_{\alpha}^{\ 0}$ for some filter F_{α} of S, for each $\alpha \in \Delta . F_{\alpha}^{\ 0} \subseteq (\vee F_{\alpha})^{0}$ for each $\alpha \in \Delta \Rightarrow \vee F_{\alpha}^{\ 0} \subseteq (\vee F_{\alpha})^{0}$. Conversely, let $x \in (\vee F_{\alpha})^{0}$. Then $x \wedge t = 0$ for some $t \in (\vee F_{\alpha})$. But then $t \ge f_{1} \wedge f_{2} \wedge f_{3} \wedge ... \wedge f_{n}$ for some $f_{i} \in F_{i}(1 \le i \le n)$, n finite. Hence, $x \wedge (f_{1} \wedge f_{2} \wedge f_{3} \wedge ... \wedge f_{n}) = 0 \Rightarrow (x \wedge f_{1}) \wedge (x \wedge f_{2}) \wedge (x \wedge f_{3}) \wedge$

 $\dots (x \wedge f_n) = 0. \text{ As } S \text{ is normal lattice } \left((x \wedge f_1) \right]^{\perp} \vee \left((x \wedge f_2) \right]^{\perp} \vee \dots \vee \left((x \wedge f_n) \right]^{\perp} = S. x \in S \Rightarrow x \in \left((x \wedge f_1) \right]^{\perp} \vee \left((x \wedge f_2) \right]^{\perp} \vee \dots \vee \left((x \wedge f_n) \right]^{\perp} \Rightarrow$

 $x \leq a_1 \lor a_2 \lor \dots \lor a_n \text{ where } a_i \in \left((x \land f_i) \right]^{\perp} (1 \leq i \leq n). \text{ Thus } x \land f_i \land a_i = 0.$ ($1 \leq i \leq n$). Hence $x \land (\bigwedge_{i=1}^n f_i) \land a_i = 0$. As *S* is 0-distributive, $x \land (\bigwedge_{i=1}^n f_i) \land (\bigvee_{i=1}^n a_i) = 0$. But then $x \land (\bigwedge_{i=1}^n f_i) = 0$ (as $x \leq (\bigvee_{i=1}^n a_i) \Rightarrow x \in ((\bigwedge_{i=1}^n f_i)]^{\perp} \Rightarrow x \in ((f_1)]^{\perp} \lor ((f_2)]^{\perp} \lor \dots \lor ((f_n)]^{\perp}$ (Since *S* is a normal lattice) $\Rightarrow x \in F_1^{0} \lor F_2^{0} \lor \dots \lor F_n^{0}$ as $(f_i] \subseteq F_i^{0} (1 \leq i \leq n)$. This shows that $(\lor F_{\alpha}) \subseteq \lor (F_{\alpha}^{0})$. Combining both the inclusions we get $\lor I\alpha = \lor F_{\alpha}^{0} = (\lor F_{\alpha})^{0}$, and the result follows.

Though the poset (Ω, \subseteq) need not be a sublattice of I(S), interestingly we prove that the poset (Ω, \subseteq) forms a distributive lattice under the special operations \sqcap and \sqcup defined on it.

Theorem 4.6. Let *S* be a 0-distributive near lattice with 0. The poset (Ω, \subseteq) forms a distributive lattice on its own.

Proof. Let *F* and *G* be any two filters in *S*.

Claim I. The poset (Ω, \subseteq) is a lattice.

(1) $(F \cap G)^0$ is an infimum of F^0 and G^0 in Ω . Let $K^0 \subseteq G^0$ and $K^0 \subseteq F^0$ for some filter K in S. Hence K^0 is in Ω . Let $x \in K^0$. Then $x \in F^0$ and $x \in G^0$ implies $x \wedge y = 0$ for some $y \in F$ and $x \wedge z = 0$ for some $z \in G$. As S is 0-distributive, $x \wedge (y \vee z) = 0$ but then $x \in (F \cap G)^0$ as $(y \vee z) \in F \cap G$. Hence $K^0 \subseteq (F \cap G)^0$. So $(F \cap G)^0$ is infimum of F^0 and G^0 in Ω . If we denote infimum of F^0 and G^0 by $F^0 \sqcap G^0$ then we have $F^0 \sqcap G^0 = (F \cap G)^0$.

(2) $(F \vee G)^0$ is supremum of F^0 and G^0 in Ω . Let $F^0 \subseteq K^0$ and $G^0 \subseteq K^0$ for some filter Kin S. Let $x \in (F \vee G)^0$. $x \wedge f \wedge g = 0$ for some $f \in F$ and $g \in G$. As $x \wedge f \in G^0 \subseteq K^0$, we get $x \wedge k \wedge f = 0$ for some $k \in K$. But then $x \wedge k \in G^0 \subseteq K^0$. Hence $x \wedge k \wedge s = 0$ for some $s \in K$. As $k \wedge s \in K$, we get $x \in K^0$. Therefore $(F \vee G)^0$ is supremum of F^0 and G^0 in Ω . If we denote supremum of F^0 and G^0 in Ω by $F^0 \sqcup G^0$, then we have $F^0 \sqcup G^0 = (F \vee G)^0$ From (1) and (2).

We get the poset (Ω, \subseteq) is a lattice under the binary operations \sqcup, \sqcap defined on it.

Claim II. The lattice(Ω, \Box, \sqcup) is a distributive lattice.

Now $x \in F^0 \cap (K \sqcup G)^0 \Rightarrow x \in F^0 \cap (K \lor G)^0 \Rightarrow x \land f = 0, x \land k = 0$ and $x \land g = 0$ for some $f \in F, k \in K$ and $g \in G \Rightarrow x \land (f \lor k) = 0$ and $x \land (f \lor g) = 0$ (as *S* is 0-

distributive) $\Rightarrow x \in (F^0 \sqcap K^0)$ and $x \in (F^0 \sqcap G^0)$ (as $f \lor k \in (F^0 \sqcap K^0)$ and $f \lor g \in (F^0 \sqcap G^0) \Rightarrow x \in (F^0 \sqcap K^0) \sqcup (F^0 \sqcap G^0)$ (as $x \land (f \lor k \lor g) = 0$) $\Rightarrow F^0 \sqcap (K^0 \sqcup G^0) \subseteq (F^0 \sqcap K^0) \sqcup (F^0 \sqcap G^0)$. As $(F^0 \sqcap K^0) \sqcup (F^0 \sqcap G^0) \subseteq F^0 \sqcap (K^0 \sqcup G^0)$ always, we get $F^0 \sqcap (K^0 \sqcup G^0) = (F^0 \sqcap K^0) \sqcup (F^0 \sqcap G^0)$. Hence (Ω, Π, \sqcup) is a distributive lattice.

Corollary 4.7. If a 0-distributive lattice *S* contains dense elements, then the lattice (Ω, \Box, \Box) is a bounded, complete distributive lattice.

Proof. The lattice (Ω, \Box, \Box) is a distributive lattice (by Theorem 4.6). Clearly, $\{0\}$ and *S* are bounds of the poset (Ω, \subseteq) . Let $\{F_i/i \in \Delta\}$ be any family of filters of *S*. Then $(\cap Fi)^0 = \cap (F_i^0)$. (See corollary 3.8). Hence the poset (Ω, \subseteq) is a complete lattice. Thus it follows that the lattice (Ω, \Box, \Box) is a bounded, complete distributive lattice.

Corollary 4.8. For a 0-distributive lattice *S*, the lattice (Ω, \Box, \sqcup) is bounded complete distributive lattice.

Any two distinct 0 – ideals *I* and *J* are said to be \sqcup co-maximal if $I \sqcup J = S$.

Lemma 4.9. Let *S* be a 0-distributive lattice. $x \land y = 0 \Rightarrow (x]^{\perp} \sqcup (y]^{\perp} = S$ for $x, y \in S$. i.e $(x]^{\perp}, (y]^{\perp}$ are \sqcup co-maximal.

Proof.As $(x]^{\perp} = ([x))^0$ and $(y]^{\perp} = ([y))^0$, we get $(x]^{\perp}, (y]^{\perp} \in \Omega$. Now $(x]^{\perp} \sqcup (y]^{\perp} = ([x))^0 \sqcup ([y))^0 = ([x) \lor [y))^0 = (x \land y)^0 = (x \land y])^{\perp} = (0]^{\perp} = S$. In the following theorem we show that any two distinct prime 0-idealsof a 0-distributive lattice *S* are \sqcup co-maximal.

Theorem 4.10. Any two prime 0-ideals *P* and *Q* of a 0-distributive nearlattice *S* are \Box co-maximal.

Proof. Let *P* and *Q* be two distinct prime 0-ideals of a nearlattice $S \Rightarrow P$ and *Q* be two distinct minimal prime 0-ideals of *S*. Select $a \in P \setminus Q$ and $b \in Q \setminus P$. As $a \in P$ and *P* is minimal there exists $x \notin P$ such that $x \wedge a = 0$. Similarly for $b \in Q \setminus P$ and there exists $y \notin Q$ such that $y \wedge b = 0$. Now *P* being a prime ideal, $x \notin P$ and $b \notin P \Rightarrow x \wedge b \notin P$. Similarly, $y \notin Q$ and $a \notin Q \Rightarrow y \wedge a \notin Q$. But then $(x \wedge b]^{\perp} \subseteq P$ and $(y \wedge a]^{\perp} \subseteq Q$. Again $(x \wedge b) \wedge (y \wedge a) = (x \wedge a) \wedge (y \wedge b) = 0 \Rightarrow (x \wedge b]^{\perp} \sqcup (y \wedge a]^{\perp} = S$ by Lemma 3.12. As $S = (x \wedge b]^{\perp} \sqcup (y \wedge a]^{\perp} \subseteq P \sqcup Q$, we get $P \sqcup Q = S$.

Acknowledgements: The authors gratefully acknowledge referee's valuable comments.

REFERENCES

- 1. W.H.Cornish,0-ideals, congruence, sheaf representation of distributive lattices, *Rev. Roum. Math. Pure Set. Appl.*, 22(8) (1977) 1059-1067.
- 2. M.Rahman and A.S.A.Noor, Finitely generated n-ideals of a nearlattice, *Annals of Pure and Applied Mathematics*, 2(1) (2012) 40-44.
- 3. Y.S.Pawar, 0-ideals of a 0-distributive lattice, *Annals of Pure and Applied Mathematics*, 7(2) (2014) 6-17.
- 4. J.C.Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37 (1968) 149-158.

- 5. Md.Z.Rahman, M.D.B.Rahman and A.S.A.Noor, 0-distributive nearlattice, *Annals of Pure and App. Math.*, 2(2) (2012) 177-184.
- 6. Md.Z.Rahman, M.D.B.Rahman and A.S.A.Noor, Some properties of 0-distributive Nearlattice, *Annals of Pure and App. Math.*, 2(2) (2012) 185-193.
- 7. Md.Z.Rahman and A.S.A.Noor, α –ideals in a 0-distributive nearlattice, *Annals of Pure and App. Math.*, 3(2) (2013) 113-118.
- 8. Md.Z.Rahman, M.D.B.Rahman and A.S.A.Noor, On semi-prime ideals in Nearlattices, *Annals of Pure and App. Math.*, 3(1) (2013) 1-9.