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Abstract: The disjoint total domination number of a graph G is the minimum cardinality 
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1. Introduction 
We consider graphs G = (V, E) with vertex set V and edge set E which are finite, 
undirected without loops and multiple edges. Any undefined term here may be found in 
Kulli [1, 2]. 

For any vertex v ∈ V, the open neighborhood of v is the set N(v) = {u ∈ V: u v ∈ 
E} and the closed neighborhood of v is the set N[v] = N(v) ∪ {v}. For a set  
S ⊆ V, the open neighborhood N(S) of S is defined by ( ) ( )

v S

N S N v
∈

=U , for all v ∈ S and 

the closed neighborhood of S is N[S] = N(S) ∪ S. A set D ⊆ V is a dominating set if every 
vertex in V – D adjacent to a vertex in D, that is N[D] = V. The domination number γ(G) 
of G is the minimum cardinality of a dominating set D of G. A γ-set is a minimum 
dominating set. 

Let D be a minimum dominating set of G. If V – D contains a dominating set D' 
of G, then D' is called an inverse dominating set of G with respect to D. The inverse 
domination number γ–1(G) of G is the minimum cardinality of an inverse dominating set 
of G. This concept was introduced by Kulli and Sigarkanti in [3]. Many other inverse 
domination parameters were studied, for example, in [4, 5, 6, 7, 8, 9, 10, 11, 12, 13 ]. 

The disjoint domination number γγ(G) is defined as follows: γγ(G) = min {|D1|+ 
|D2| : D1 and D2 are disjoint dominating sets of G}. This concept was introduced by 
Hedetniemi et al. in [14]. Many other disjoint domination parameters were studied, for 
example, in [5, 6, 11, 15]. 
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A set D ⊆ V is a total dominating set of G if every vertex in V is adjacent to some 
vertex in D. The total domination number γt(G) of G is the minimum cardinality of a total 
dominating set of G. 

Let D ⊆ V be a minimum total dominating set of G. If V – D contains a total 
dominating set D' of G, then D' is called an inverse total dominating set with respect to D. 
The inverse total domination number γt

–1(G) of G is the minimum cardinality of an 
inverse total dominating set of G. This concept was introduced by Kulli and Iyer in [16] 
and was studied, for example, in [17, 18]. 

Two graphs G1 and G2 have disjoint vertex sets V1, V2 and edge sets E1, E2 
respectively. Their union is denoted by G1 ∪ G2 and it has V = V1 ∪ V2 and E = E1 ∪ E2. 
Their join is denoted by G1 + G2 and it consists of G1 ∪ G2 and all edges joining every 
vertex of V1 with every vertex of V2. The corona of two graphs G1 and G2 is the graph G 
= G1 o G2 formed from one copy of G1 and |V(G1)| copies of G2 where ith vertex of G1 is 
adjacent to every vertex in the ith copy of G2. 

In this paper, we initiate a study of the disjoint total domination number and 
establish some  results of this parameter. 

 
1. Disjoint total domination number 
Definition 1. The disjoint total domination number γt γt(G) of a graph G is defined as 
follows: γtγt(G) = min{|D1|+|D2|: D1, D2 are disjoint total dominating sets of G}, (see [2]). 
 We say that two disjoint total dominating sets, whose union has cardinality 
γtγt(G), is a γtγt-pair of G. 
 Note that not all graphs have disjoint total domination number. For example, 
each cycle C2n+1, n ≥ 1 does not have two disjoint total dominating sets. 
 
Theorem 2. If a graph G has a γt

–1-set, then 
2 γt(G) ≤ γtγt(G) ≤ γt(G) + γt

–1(G) ≤ p. 
 We also consider an invariant the minimum cardinality of a disjoint union of a 
dominating set D and a total dominating set D' and it is denoted by γγt(G). We call such a 
pair of dominating sets (D, D'), a γtγt-pair. A γγt-pair can be found by letting D' be any 
total dominating set, and then noting that the complement V –D' is a dominating set. Thus 
V – D' contains a minimal dominating set D. 
 Note that not all graphs have a γγt-pair. For example, the path P3 does not have a 
γγt-pair. 
 
Proposition 3. If both γγt-pair and γtγt-pair exist, then 

γγ(G) ≤ γγt(G) ≤ γtγt(G). 
 
Proposition 4. If Kp is a complete graph with p ≥ 4 vertices, then  

2γt(Kp) = γtγt(Kp) = 4. 
 
Proposition 5. If  Km,n is a complete bipartite graph with 2 ≤ m ≤ n, then 

2 γt(Km,n) = γtγt(Km,n) = 4. 
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Proposition 6. If C4n is a cycle with 4n vertices, n ≥ 1, then  
2 γt(C4n) = γtγt(C4n) = 4n. 

 
Proposition 7. For the cycle C4, 

γγ(C4) = γtγt(C4). 
 

Proposition 8. If Km,n, is a complete bipartite graph with 2≤ m ≤ n, 
γγ( Km,n) = γtγt(Km,n) = 4. 

  
 A graph G is called γtγt -minimum if γtγt(G) = 2γt(G). Similarly, a graph G is 
called γtγt-maximum if γtγt(G) = p. 
 One can see that the complete graph K4 and the cycle C4 are γtγt-maximum. 
 The following classes of graphs are γtγt-minimum. 

(i) The complete graphs Kp, p≥4, are γtγt-minimum. 
(ii)  The complete bipartite graphs Km, n, 2 ≤ m ≤ n are γtγt-minimum. 
(iii)   All cycles C4n, n≥1, are γtγt -minimum. 

 
Theorem 9. A nontrivial tree does not contain two disjoint total dominating sets. 
Proof: Suppose T = P2. Clearly it does not contain two disjoint total dominating sets. 
 Suppose T is a tree with p ≥ 3 vertices. Let u be an end vertex and v be the 
support of u. Then there exists a vertex w such that w is adjacent to v. Let D be a 
γt-set of T. We consider the following two cases. 
 
Case 1. Suppose u, v ∈ D. Since w is not adjacent to u, it implies that V – D does not 
contain another γt-set. 
Case 2. Suppose v, w ∈ D. The vertex u is not adjacent to any vertex of V – D. Thus V – 
D does not contain another γt-set. 
 From the above two cases, we conclude that T does not contain two disjoint γt-
sets. 
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Figure 1: 
 

Theorem 10. For each integer n ≥ 1, there exists a connected graph G such that  
γt

–1 (G) – γt(G) = 2n and |V(G)|= γt(G) + γt
–1(G). 

Proof: Let n ≥ 1. Consider the graph G with 2n+4 vertices as in Figure 1. Then D = {x1, 
y1} is a total dominating set in G, which is minimum. Therefore γt(G) = 2. Since ui, vi are 
adjacent in G for i = 1, 2,…, n+1, it implies that D = V (G) – {x1, y1} is the unique 
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minimum total dominating set in G. Therefore γt
–1(G) ≤ |D| = 2n+2. Since NG[S] ≠ V(G) 

for all proper subsets of S of D, it implies that γt
–1(G) = |D| = 2n+2. Hence γt

–1(G) – γt(G) 
= 2n and also |V(G)| = γt(G) + γt

–1(G). 
 
Theorem 11. For each integer n ≥ 1, there exists a connected graph G such that γt(G) + γt

–

1(G) – γtγt(G) = 2n. 
Proof: Consider the graph G as in Figure 2 obtained by adding to the corona C4oC4 2n 
vertices x1, y1, x2, y2, ..., xn, yn and the edges xiuj, yiuj, xiyi, i = 1,2, …, n, j = 1, 2, 3, 4. Then 
{ u1, u2, u3, u4} is the unique minimum total dominating set in G and 
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Figure 2: Graph G 
 

{ v1, v2, v3, v4, v5, v6, v7, v8} U {  x1, y1, x2, y2,…, xn, yn} is a γt
–1-set in G. Thus γt(G) = 4 and 

γt
–1(G) = 8 + 2n. Also the sets D1 = {u1, u2, v5, v6, v7, v8} and D2 = { u3, u4, v1, v2, v3, v4} 

constitute a γtγt-pair in G. Hence γtγt(G) = |D1|+|D2| = 12. Therefore γt(G) + γt
–1(G) – 

γtγt(G) = 2n. 
 
Corollary 12. The difference γt(G) + γt

–1(G) – γtγt(G) can be made arbitrarily large. 
 We consider pair of disjoint total dominating sets in the join graphs. 
 
Proposition 13. If a γt

–1-set exists in a graph G, then  
γtγt(G+K2) = 2 + γt(G) = 2 + γt

–1(G + K2). 
 
Proposition 14. Let G and H be nontrivial graphs. If a γt

–1(G+H) exists, then γtγt(G+H) 
=4. 
Proof: In G + H, each vertex of G is adjacent to every vertex of H and vice versa. Thus 
pick u ∈ G, v ∈ H and choose x ∈ V(G) – {u} and y ∈ V(H) – {v}. Then D = {u, v} and S 
= {x, y} are disjoint γt-sets in G + H. Thus γt

–1(G+H)=2 and γt(G+H)=2. Thus 
2γt(G+H) = γtγt(G+H) = γt(G + H) + γt

–1(G+H) = 4. 
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Corollary 15. Let G and H be nontrivial graphs and p be the number of vertices of G + 
H. Then γt(G+H) + γt

–1(G+H) = p if and only if G = K2 and H = K2. 
 
Some open problems 
 
Problem 1. Characterize the class of γtγt- minimum graphs. 
Problem 2. Characterize the class of γtγt-maximum graphs. 
Problem 3. Under what conditions does γtγt(G) exist? 
Problem 4. When is γγ(G) = γtγt(G)? 
Problem 5. When is γγ(G) = γγt(G)? 
Problem 6. When is γγt(G) = γtγt(G) ? 

Problem 7. Obtain an upper bound for γtγt(G) + γtγt(G ). 
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