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1. Introduction
We consider graph& = (V, E) with vertex setV and edge seE which are finite,
undirected without loops and multiple edges. Andefined term here may be found in
Kulli [1, 2].

For any vertex O V, the open neighborhood wis the setN(v) = {u V: uvQ
E} and the closed neighborhood of is the setN[v] = N(v) O {v}. For a set
SOV, the open neighborhodd(S) of Sis defined byN(S)=(J N( V), for allv O Sand

vas
the closed neighborhood 8fis N[S] = N(S) 00 S A setD 0 Vis a dominating set if every
vertex inV — Dadjacent to a vertex iD, that iSN[D] = V. The domination numbeXG)
of G is the minimum cardinality of a dominating detof G. A y-set is a minimum
dominating set.

Let D be a minimum dominating set . If V — D contains a dominating sBt
of G, then D' is called an inverse dominating setCofvith respect taD. The inverse
domination numbey *(G) of G is the minimum cardinality of an inverse dominatsey
of G. This concept was introduced by Kulli and Sigarkamt[3]. Many other inverse
domination parameters were studied, for examplgt,ib, 6, 7, 8, 9, 10, 11, 12, 13 ].

The disjoint domination numbey(G) is defined as followsyy(G) = min {|D,|+
D2 : D; and D, are disjoint dominating sets @}. This concept was introduced by
Hedetniemiet al. in [14]. Many other disjoint domination parametersre studied, for
example, in [5, 6, 11, 15].
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A setD O Vis a total dominating set @ if every vertex inV is adjacent to some
vertex inD. The total domination numbgy(G) of G is the minimum cardinality of a total
dominating set o6.

Let D O V be a minimum total dominating set & If V — D contains a total
dominating seb' of G,thenD' is called an inverse total dominating set wittpess toD.
The inverse total domination number(G) of G is the minimum cardinality of an
inverse total dominating set &. This concept was introduced by Kulli and lyer I6]
and was studied, for example, in [17, 18].

Two graphsG; and G, have disjoint vertex setg;, V, and edge setg;, E,
respectively. Their union is denoted 8y 0 G, and it hasv =V, O V, andE = E; O E,.
Their join is denoted b, + G, and it consists of; [0 G, and all edges joining every
vertex ofV; with every vertex oV,. The corona of two graplts; andG; is the graphG
= G; 0 G, formed from one copy db; and Y(G,)| copies ofG, whereith vertex ofG; is
adjacent to every vertex in tith copy ofG..

In this paper, we initiate a study of the disjoiatal domination number and
establish some results of this parameter.

1. Digjoint total domination number
Definition 1. The disjoint total domination numbgry(G) of a graphG is defined as
follows: yy«(G) = min{|D,|+D,|: D4, D, are disjoint total dominating sets@f, (see [2]).
We say that two disjoint total dominating sets,osdn union has cardinality
viv(G), is ayy-pair of G.
Note that not all graphs have disjoint total daation number. For example,
each cycleC,n.1, N = 1 does not have two disjoint total dominating sets

Theorem 2. If a graphG has ay;-set, then
2 Y(G) < Vin(G) < W(G) + v (G) < p.

We also consider an invariant the minimum cardiypaf a disjoint union of a
dominating seD and a total dominating sBX and it is denoted byy(G). We call such a
pair of dominating setd), D'), awy-pair. A yy-pair can be found by lettinD' be any
total dominating set, and then noting that the dempntV —D' is a dominating set. Thus
V — D contains a minimal dominating set

Note that not all graphs havepg-pair. For example, the paBz does not have a

YVe-pair.

Proposition 3. If both yy-pair andyy.-pair exist, then
W(G) < W(G) < wr(G).

Proposition 4. If K, is a complete graph with> 4 vertices, then
2vi(Kp) = viv(Kp) = 4.

Proposition 5. If Kn»is a complete bipartite graph withre2n < n, then
2Vi(Kmn) = ¥WiKmp) = 4.
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Proposition 6. If C4, is a cycle with A verticesn= 1, then
2 Vi(Can) = YiVi(Can) = 4n.

Proposition 7. For the cycleC,,
W(Cs) = ViV(Ca).

Proposition 8. If K., , is a complete bipartite graph witk 1< n,
W( Kmn) = V(Km) = 4.

A graph G is calledyy: -minimum if vy(G) = 2w(G). Similarly, a graphG is
calledyyy:-maximum ifyy(G) = p.
One can see that the complete grpland the cycl€, areyy:-maximum.
The following classes of graphs gg-minimum.
(i) The complete graphs,, p=4, areyy:-minimum.
(i) The complete bipartite grapks, , 2< m< n areyy:-minimum.
(i) All cyclesCy,, n=1, areyy; -minimum.

Theorem 9. A nontrivial tree does not contain two disjointaiodominating sets.

Proof: Supposd =P,. Clearly it does not contain two disjoint totalndinating sets.
SupposeT is a tree withp = 3 vertices. Letu be an end vertex andbe the

support ofu. Then there exists a vertex such thatw is adjacent tov. Let D be a

vi-set of . We consider the following two cases.

Case 1. Supposay, v [0 D. Sincew is not adjacent ta, it implies thatvV — D does not
contain anothey-set.
Case 2. Supposer, w [1 D. The vertexu is not adjacent to any vertex \6f— D. ThusV —
D does not contain anothegrset.

From the above two cases, we conclude Thdbes not contain two disjoit
sets.

1

Figure 1:

Theorem 10. For each integen = 1, there exists a connected graBhsuch that
¥ (G) —W(G) = 2n and V(G)|= (G) + v (G).

Proof: Letn = 1. Consider the grapB with 2n+4 vertices as in Figure 1. Th&nh= {x,

y4} is a total dominating set i, which is minimum. Thereforg(G) = 2. Sinceu;, v; are
adjacent inG for i = 1, 2,.., ntl, it implies thatD = V (G) — {X;, yi} is the unique
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minimum total dominating set iG. Thereforey (G) < [D| = 2+2. SinceNg[S] # V(G)
for all proper subsets &of D, it implies thaty(G) = P| = n+2. Hencey (G) — w(G)
= 2n and also\{(G)| =y(G) + i (G).

Theorem 11. For each integan = 1, there exists a connected gr&phuch thaiy(G) + v
(G) —viy(G) = n.

Proof: Consider the grapts as in Figure 2 obtained by adding to the corGpaC, 2n
verticesxy, Y1, Xz, ¥, ..., %, Yo @nd the edgesu;, yiu;, xy;, i = 1,2, ...,n,j =1, 2, 3, 4. Then
{u1, U, U, Ug} is the unique minimum total dominating setGrand

\ V,

1 8

u u

2 3

Figure2: GraphG

{ V1, V2, V3, V4, Vs, Vs, V7, Vg} U { Xq, V1, X2, Y2,.+y Xn, Y} IS ay{l—set inG. Thusy(G) = 4 and
yt‘l(G) =8 + 4. Also the set®; = {uy, Uy, Vs, Ve, V7, Vg} and Dy = { Us, Ua, V4, Va2, V3, Va}

constitute ayyr-pair in G. Henceyy(G) = Di1|+D2| = 12. Thereforex(G) + v {(G) —
Yv(G) = 2n.

Corollary 12. The differencex(G) + v (G) —yiy(G) can be made arbitrarily large.
We consider pair of disjoint total dominating siet¢he join graphs.

Proposition 13. If a y*-set exists in a grapB, then
YV(GHKy) =2 +y(G) = 2 +yt‘1(G +K)).

Proposition 14. Let G andH be nontrivial graphs. If & (G+H) exists, theryy(G+H)
=4.
Proof: In G + H, each vertex o6 is adjacent to every vertex bff and vice versa. Thus
picku O G, v H and choose [0 V(G) — {u} andy O V(H) — {v}. ThenD = {u, v} and S
= {x, y} are disjointy;-sets inG + H. Thusy; (G+H)=2 andy(G+H)=2. Thus

2y(G+H) = yi(G+H) = (G + H) +y(G+H) = 4.
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Corollary 15. Let G andH be nontrivial graphs arlbe the number of vertices Gf+
H. Theny(G+H) + vy (G+H) = p if and only ifG = K, andH =K.

Some open problems

Problem 1. Characterize the classwf,- minimum graphs.
Problem 2. Characterize the class wfi-maximum graphs.
Problem 3. Under what conditions doggi(G) exist?
Problem 4. When isyy(G) = yi\(G)?

Problem 5. When isyy(G) = y(G)?

Problem 6. When isyy(G) = yy(G) ?

Problem 7. Obtain an upper bound fg(G) + yiy( G ).
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