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Abstract. In this paper the existing fuzzy measure “�”	 is defined in a different manner so 
as to ensure and enhance the effectiveness of fuzzy measure. Some examples relating to 
various contexts where “�”	 describes a fuzzy measure and where “�”	 fails to be a fuzzy 
measure are stated. 
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1. Introduction  
Fuzzy sets are defined as a model, fit for vague concepts and subjective judgment. Such a 
model is used where the deterministic or probabilistic models fail to describe the system.  

Fuzzy set theory is used in various domains as decision making under 
uncertainty, information retrieval, machine fault diagnosis in large scale industries and 
image processing etc. 

Various definitions of fuzzy measure exist.  For the definition the reader is 
directed to refer [1, 4, 5, 6].  
 We use fuzzy measure theory for decision making. Our new fuzzy measure 
increases the efficiency so as to make decision easy. This measure is monotonic. 
 
 2. A new definition of fuzzy measure 
A relation R:A–›B is a subset of A ×B where A and  B are  any two sets. Let A, B be any 
two sets. A relation � ∶ � → B		 is said to be a fuzzy relation if  
 1) D(�) = A where 
��� is the domain of �		 and  
2) there exists  a membership function			
	:		�		–›  �0,1� 

 
Let us consider an example 
Let �	 = 	 ���, ��, ���			�	 = 	 ���, ��� 
Let �	 = 	 ����,���� , �� ,���� , ��!,���".� , ��!,� �".$ % 
Then D(�) = A 
The membership function 
	:	� –›�0,1� is  

����, ���� 	= 	
����, ���� 	= 	1 

����, ���� 	= 	0.3		, 
����, ���� 	= 	0.7 
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Remarks: 
1. For the sake of simplicity 
(���, ��� is simply denoted by	
(��, ��. 
2. If (a,b) ∈ 	�	 we write it as 	���� = 	�. 
3. By
(��, �� = 		*  we mean that x is the membership value (in [0,1]) of the case 
that		���� = �. That is 
����� 	= 	�� 	= 	* is simply denoted by 
(��, �� = *. 
 
The new definition of fuzzy measure 
Suppose X is any set, +		be a class of sub sets of X and �,,+� be a measurable space. A 
fuzzy relation � ∶ + → -	 is said to be a fuzzy measure if the following conditions are 
satisfied 

1) ( ,0) 1m φµ =  

2)  (i) 
( ) ( )

A B Sup x Sup y
m A x m B y

⊆ ⇒ ≤
= =

 

             (ii)A B⊆  ; ( , ) ( , )A A Sup x B Sup ym mφ µ µ≠ ⇒ ≤  

Making use of this definition, various instances where ‘m’ forms a measure are given 
below. 
 
Example 2.1. Let X={1,2,3}and+	= { } { } { } { } { } { } { }{ }( ) 1 , 2 , 3 , 1,2 , 1,3 , 2,3 , 1,2,3 ,P X φ=  

      = {��, ��, ��, �., �/, �0, �$, �1} (say) 
Define a measure :m A R→ as ( )m A Ai i=  

����� 	= 	����� 	= 	����� 	= 	1;    ���.� 	= 	���/� = 	���0� 	= 	2 ; 
���$� 	= 	3,					���1� 	= 	0 
Let the membership function be defined as 

0
( , ) 1

1 0

x
when x

xA xim
when x

µ


≠= +
 =

 

Then the corresponding membership  values  are  

μ4���, 1	� = 	μ4���, 1� = 	μ4���, 1� =
1
2	 ; μ4��., 2� 	= 	 μ4��0, 2� 	= 	 μ4��/, 2� 	=

2
3 

μ4��$, 3� =
3	
4	 	; 		μ4��1, 0� = 1 

Then the following cases arise 

�� ⊆ �. ����� = 1 < ���.� = 2	 and μ4���, 1� = �
� < μ4��., 2� = �

� 
�� ⊆ �/ ����� = 1 < ���/� = 2 and μ4���, 1� = �

� ≤ μ4:�/	,2; = �
� 

�� ⊆ �$ ����� = 1 < ���$� = 3 and μ4���, 1� = �
� ≤ μ4��$, 3� = �

. 
�� ⊂ �. ����� = 1 < ���.� = 2	 and μ4���, 1� = �

� < μ4��., 2� = �
� 

�� ⊂ �0 ����� = 1 < ���0� = 2	 and μ4���, 1� = �
� < μ4��0	,2� = �

� 
�� ⊂ �$ ����� = 1 < ���$� = 3 and μ4���, 1� = �

� < μ4��$, 3� = �
. 

�� 	⊂ �/ ����� = 1 < ���/� = 2 and μ4���, 1� = �
� < μ4��/, 2� = �

� 
�� 	⊂ �0 ����� = 1 < ���0� = 2 and μ4���, 1� = �

� < μ4��0, 2� = �
� 
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�� 	⊂ �$ ����� = 1 < 	���$� = 3	 and μ4���, 1� = �
� < μ4��$, 3� = �

. 
�. ⊂ �$ ���.�=2<���$�=3                    and       μ4( �., 2) = 

�
�<μ4( �$, 3)  =

�
. 

�/ 	⊂ �$ ���/� = 2<���$)=3   and									μ4	��/	,	2	) = 
�
�<μ4(�$, 3)  =  

�
. 

�0 	⊂ �$ ���0�=2<���$	�=3   and μ4 (�0	 ,2)=
�
�<μ4 (�$ , 3) = 

�
.   

and    m( �1)  =  0  but    μ4( �1,0)  = 1. 
In  all  the  above  cases  “m”  satisfies  the  conditions  laid  down in the definition 2.1  
“m ”  is  a  fuzzy   measure. 
 
Example  2.2.(Definition of atom) If 		+	  is any  non empty class of subsets of sets of		, 
and for any point * ∈ 	,	,		the set ∩ �>|* ∈ > ∈ +	� is called atom of +	`	at			* and is 
denoted  by A�*|+�. X = �x�, x�, x�� 

{ } { } { } { } { } { } { }{ }( ) , , , , , , , , , , , ,1 2 3 1 2 2 3 1 3 1 2 3P X x x x x x x x x x x x x φ=  

          ={		C�, C�, C�, C., C/, C0, C$, C1} (say) 
�:*�/E�,�; denotes the atom of E�,�			�F			*�	 
�:*�/E�,�; 	= 	 C� 	∩ 	C� 	∩ C.	 ∩	C/ =	C/ ;  �:*�/E�,�; 	= 	 C� 	∩ 	C� 	∩ C.	 ∩	C0= C0 
�:*�/E�,�; 	= 	 C$   
Let the measure be defined by � ∶ 	E�,� → -  where 

��CG� = H |��*G	/E�,��|
IJ∈KJ

 

��C�� = 3	; 		��C�� = ��C�� = ��C.� = 2; 	��C/� = ��C0� = ��C$� = 1;��C1� = 0. 
Letμ ∶ � → �0,1�be defined as  

1
0

2( , ) 1
1 0

x
when x

xS xim
when x

µ
− ≠= +

 =

 

μ4�C�, 3� 	= 	0.7	, μ4�C�, 2� 	= 	μ4�C�, 2	� = 		μ4�C., 2� = 	0.6	 
μ4�C/, 1	� = 	μ4�C0, 1� 	= 	μ4�C$, 1� = 0.5		;				μ4�C1, 0� = 1. 
Clearly ‘m’   satisfies  the   conditions   of a fuzzy measure. 
 
Example  2. 3. Let X={a,b,c}   

{ } { } { }{ }, , , , , ,A a b b a b c φ= . Here A is a subclass of P(X). 

= {��, ��, ��, �.}   (say) 

� ∶ � → -	is defined as ���G� 	= 	 |NJ||O|  

Then ����� 	= 	 �� ; ���� 	= 	
�
� ;  ����� 	= 	1	; 	���.� = 	0   

μ ∶ � → �0,1� be defined as 

( )2( , ) 1 1 (1 )x xAimµ = − + ;μ4 P��, ��Q 	= 	 �0�/	 = 0.64;μ4 P��, ��Q 	= 	 $�0	 = 	0.437  ,  

μ4���, 1	� = 	0.75. 
 
Then by the definition �		 exhibits all the properties of fuzzy  measure  and  hence  it   is 
a  fuzzy measure. 
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Example  2.4. Let A be a R-algebra given by 
X={a,b,c} ; { } { } { }{ }, , , , , ,A a b c a b c φ=  

           ={��, ��, ��, �.}     (say) 
Define  measure :m A R→ as   m(�G)=|�G | 
Then����� = 1; ����� = 2 ; ����� = 3	; 				���.� = 0  
μ ∶ 	� → �0,1� be defined as 

2 2( , ) ( 1) 1x x x xAimµ = − + + ;  
���, 1� 	= 	 ��	 	,			
���, 2� 	= 	
�
/,				
���, 3� 	= 	

$
�" 

Then			�			is a fuzzy measure. 
 
Example  2.5. Let X={1,2,3,4,5}, { } { } { }{ }1,2 , 3,4 , 5A =  

The  R-algebra   generated   by  A is denoted by  R��� and is given by 

{ } { } { } { } { } { } { }{ }( ) 1,2 , 3,4,5 , 3,4 , 1,2,5 , 5 , 1,2,3,4 , 1,2,3,4,5 ,Aσ φ=  

         ={ }, , , , , , ,1 2 3 4 5 6 7 8A A A A A A A A (say) 

Let : ( )m A Rσ → be defined  as ���G� = 	 |�G| 
Then ����� 	= 	2	; 		����� = 3	; 		����� 	= 	2	; 				���.� = 3; 			���/� 	= 1	; 
���0� = 4	and ���$� 	= 5 and    ���1� 	= 0 

The membership function    [ ]: 0,1mµ → is defined as 

( , ) 1
21

x
xAim

x
µ = −

+
 

3( ,2)1 5Amµ =  ; 7( ,3) ( ,3)2 4 10A Am mµ µ= =  ; 3
( ,2)3 5
Amµ = ; 1( ,1)5 2Amµ = ;  13( ,4)6 17Amµ =  ;

21( ,5)7 26Amµ =  ;  ( ,0) 18Amµ =  

Then �		is a fuzzy measure. 
 
Example  2.6. Let X ={1,2,3} 
P(X) is ordered in descending order of cardinalities. 

{ } { } { } { } { } { } { }{ }( ) 1,2,3 , 1,2 , 1,3 , 2,3 , 1 , 2 , 3 ,P X φ=  

{ }, , , , , , ,1 2 3 4 5 6 7 8A A A A A A A A= (say) 

Let : ( )m P X R→ be defined as ��G� = |NJ|
G  .     Then 

����� = 3   ; ����� = 1		; 						����� = �
� 				 ; 				���.� =

�
.  

���/� = �
/  ; ���0� = �

0  ; ���$� = �
$ 							; 					���1� = 0   

	μ ∶ � → �0,1	�is defined as 

2

2( , ) 1

1

x
Ai

x xAim

Ai

φ
µ

φ


≠= +


=

 

μ4���, 3� = S
�"   ;μ4���, 1� =

�
�;μ4 P��, ��Q =

.
��;μ4 P�., �.Q =

�
/;μ4 P�/, �/Q =

�
�0 

μ4 P�0, �0Q =
�
�$  ;   μ4 P�$, �$Q =

�
/" ;  μ4��1, 0� = 1 

Then	�	is a fuzzy measure. 
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Example 2.7. Consider  X, P(X) and the measure ‘m’ be  as in Example 2.6.  If the 

membership function be defined as 2( , ) 1 (1 ) .x xA Ai imµ = − +   We see that 

2 5A A⊂ and 1( )2 5m A = < ( ) 12m A = but 

1 1
( , )5 5 26
Amµ = >0  = ( ,1)2Amµ  

Therefore �	is not a fuzzy measure. 
 
3. Conclusion 
We have given different contexts where ‘m’has proved to be a fuzzy measure by means 
of examples. The domain of the measure ‘m’ has been the ordinary power set, the 
subclass of the power set, the  sigma-algebra, and the sigma algebra generated by the 
subclass of the power set. Measure ‘m’ is also defined in a variety of ways and is proved 
to be a fuzzy measure according to the new definition. 
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