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Abstract. In this article, the Lie group analysis method s&dito study a class of high-
order nonlinear development equations. First gfth# point symmetries of the equation
are obtained by employing the Lie group methodo8dky, the one-dimensional optimal
system and symmetry reductions are constructed.|atieéut not least, a series of new
exact solutions of the fifth-order nonlinear evalnt equation have been obtained by
using auxiliary function expansion methods and hgeneous balance method, including
soliton solutions and trigopnometric function sabms. For some solutions, this article has
made corresponding images, which are of greatfiignce to the study of the properties
of the solutions.
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1. Introduction

In the related fields of mathematics, physics, diigl and engineering, nonlinear
evolution equations are able to describe some fipeximplex phenomena. With the

enhancement of people's cognitive level, we findréasingly more physical and

engineering problems in continuous exploration ature. These reality problems can be
converted into a corresponding problem solving imexar partial differential equations

[1-3]. Therefore, the research on the exact saistiof the PDEs is rather significant.
Nowadays, there are many mature methods for sohimijnear development equations.
For example, classic Lie group method [4-['/G) expansion method [9-12],

homogeneous balance method [13-18], F-expansiomadefl9-22] and hyperbolic
function expansion method [23-26].

There is a long history of the relationship betwdda groups and differential
equations, its founder first proposed the concdpLie group when exploring the
symmetry of differential equations. Nowadays, haw donstruct exact solutions of
equations has become a very significant subjedhénfield of differential equations.
Using the Lie group method, the Lie point symmdRy-29] of the equation can be
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found. Finally, the partial differential equatioase transformed into the mature ordinary
differential equations. In this way, the group-irigat solution of the equation can be
constructed.

In the engineering and design around us, there kiné of important structural
element beams and columns. The related mechanmdepr has always been an
important aspect of solid mechanics research. Simeailtimate bearing capacity of the
beam can be impacted by many factors, as folldvesshape and size of the section, the
mechanical properties of the material, the resicsiedss, the initial bending of the
component, and the initial eccentricity of the Iqgexint. So the corresponding calculation
formulas and methods are often based on the expetai Most of these problems are
simulated by establishing nonlinear evolution eiquest, so it is a great significance for
the exact solutions and optimal systems of nontiegalution equations. This article will
study the fourth-order nonlinear evolution equatibthe following form

u +au’u, +pBuu, +ku, +du_ =0 (1)
u=u(xt), a,B,k,0 are arbitrary constants. Equation (1) contains méamyous
equations, whef =0,0 = 0 equation (1) is a kind of equation used to desctfize

bending condition of the elastic beam and the Ktalif the solution [30]. Article [31]
employs the power series method to find the powees solution. Article [32] combines
the elliptic function expansion method with the movseries expansion method to find
various exact solutions, such as the trigonometriection solution and the elliptic
function expansion solution when=a(t), 8 = 0,0 = 0.This article will study the exact

solution wherx =0,
u +au’u, + Buu, +du, =0. (2)

Compared with the equation in article [27], equa{i®) adds more restrictive terms,
it is transformed into a higher-order physical moéeobably, it is able to simulate the
stability of the real elastic beam more realistisalit is more practically significant.

This article will adopt two auxiliary function expsion methods to construct a new exact
solution of equation (2), the method used have dleen improved. These results
obtained enrich the types of exact solutions of éj@ation, which are quite different
from the previous solutions. These precise solstiwil be helpful in future beam-
column structural problems.

This article consists of the following parts. Thiestf part finds the Lie point
symmetry of the equation. The second part aim®isteuct the optimal system of one-
dimensional Lie algebra. The third part adopts setnis to reduce the original equation
into ODEs. The fourth part, in order to construchew exact solution of equation,
combines the homogeneous balance method and therwciion auxiliary function
expansion method (2). The fifth part summarizesathele context.

2. Symmetry of equation (2)
Suppose the vector field of equation (2) is

et ) 0
V —E(x,t,u)ax+r(x,t,u)at +¢(x,t ’U)E’ 3)

where &(x,t,u),7(X,t,u),@(x t u)are undetermined functions, and the following
equation must be satisfied,
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prV(2) |,,=0, (4)

whereA =u, +au®u, + Buu, +du_,the fifth-order extension of equation (2) can be
obtained as,

priV =g +(au® + fu)g + 3 =0, (5)
the ¢, ¢, @*** are determined by the differential termgfx,t,u),r (x,t,u),@X t u),
¢ =D (p—éu, —1u) +éu, +1u,, (6)
¢" =D, (p-4du, —1u) +{u, +1U,, )
P = Dy (@ §U, = TU) + U+ Tl (8)

here,D,,D,,D,in (6)(7)(8) are the total differential operatortoi.

Substituting (6) (7) (8) into (5). Let the coeftaits of all derivatives containingpe
equal to zero. Determining equations can be obdadmethef, 7,@. After solving the
equations, the Lie point symmetry of equation @) be obtained

= _G(au+p) | =Ct +c2,g:%_%
S5a 5 X
whereC,,C,,C,are non-zero arbitrary constant. These results vélidiscussed in the

following categories,
(@)WhenC, =1,C,=C, =0,

+C;, (9)

2 B 1.5
=——u-—,7=t,{ ==x——Tt. 10
="V, '3 =X e (10)
Substituting (10) into (3), get
2
Vlz(it—ix)iﬂiﬂ—zu—ﬁ i (11)
50 5 "ox ot 5 Srou
(b) WhenC, =1,C, =C, =0,
p=0,r=1¢6=0. (12)
Substituting (12) into (3), get
0
V, =—. 13
2= 5 (13)
(c) WhenC, =1,C, =C, =0,
p=0r=0¢=1 (14)
Substituting (14) into (3), get
0
=—. 15
°ox 13)

In summary, the three Lie point symmetries of eiguaf2) are obtained. In the next
part, the one-dimensional optimal system of equaii®) will be constructed with
symmetry. In the next part, the three symmetrigmiobd in the first part will also be
used to transform equation (2) into an ordinarfedéntial equation.
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3. Lie Algebra and Optimal System
In the second part, the Lie point symmetry vedldfof equation (2) has been obtained,

2
Vl:(it—ix)i-}-ti-}-(—_zu—ﬁ i’ Z:i’ S:i. (16)

56 5 "0dx ot 5 HSmou ot 0x

Next, we will use the conclusions of the first pertcalculate the optimal system.
Before that, we obtain the Lie algebra commutadbtet 2. 1 and the Lie algebra adjoint

function table 2. 2 from the definition of Lie bkat operatiofV,,V,] =V\V, =V,V,and

the adjoint expressiold,,., V; =V, —£[V,,V|] +§[Vi,[\/i, V|]] —--as follows,

Table 2.1: Lie algebra commutator

Vl VZ V3
1
A 0 -hV; -V, =V,
5
) hV, +V, 0 0
1
Table 2.2: Lie Algebra adjoint action
Vl VZ V3
4
1 V1 2\/2 + th gvs
2 Vi- th -V, Vv, \A
V, A +év3 Vv, V,
2
Note, h= ﬂ
Sa

According to the method of finding the one-dimensiboptimal system. Set up a
non-zeroV UL, L;is composed Lie algebra.

V=aV,+tayV,+ay,
a,a,,a,are constant.

(a)\71 = Ad(exp(EVz )(V) =e “Ve? =V - &V, V] +%£2[V2![V2 V] -
= a1V1+a2V2+ asvs_ E[a{Vzvl + aLV QV]Z + a[3V, V]]a *ee
=aV,tay,tay;—aghV—agv,
=aV, t(a,~ag)V,+(a;-agh)V,
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Whena, =a¢, V, =aV, +(a,-agh)V,
Whena, =a.gh, V, =aV, +(a,—-ag)V,
~ _ 1
(b)Vz = Ad(&xp(f\/3 )(V) =e Ve =V —5[\/3,V] +5£2[V3’[V3 V]] o
=aV,tay,+ay;-galV,V] +afV V] +alV, V]} +--

= aivl + a2V2+a3V3_éaIfV:
1
= a‘lvl + a2V2+ (a3—ga§)V3

When a, =%a1£, V,=aV,+ay,

In summary, the one-dimensional optimal systemgoféon (2) is obtained as
{V17V2 7V3’V1+/]1V2’V1+/1 }/} ’

note, A, A, are arbitrary constants.

4. Symmetry reduction

Symmetry reduction is one of the commonly used egdn methods when dealing with
nonlinear development equations. The vector figliimed in the first part can be used to
symmetrically reduce the equation (2), so thatetipeation (2) can be transformed into an
ordinary differential equation. Next, equation (@)l be symmetrically reduced based on
equations (11) (13) (15) in the first part.

£ 1.0 9. ,2 p

(a) For the vector field, = (=—t-=X) —+t—+(-—u ——)i,
50 5 "dx ot 5 Srou
the corresponding characteristic equation is,
ZL = E = L’ (17)
S50 5 5 5
the invarian€, is obtained from the characteristic equation (&R the group-invariant
2
+
solution(18)ofV, is derived fromd—t = du = pL+dax
t _2 B 2
——u-— 4at®
5 &
u -_B +—]c (51), (18)
2a 5
Substituting (18) into (2), the reduced equatioolitained as,
5a f/f? - f,6,+55f," -2f,=0 (19)
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(b) For the vector field/, :%, ¢, = xthe corresponding group invariant solution is

u=f(s), (20)
substituting (20) into (2), the reduced equatiooktained as,
af22f2'+,6’f2f;+5f2'"":0 (21)

(c) For the vector field/, :ai, ¢, =t the corresponding group invariant solution is
X

u=f(s), (22)
substituting (22) into (2), the reduced equatiooktained as,
fy= (23)
So far, the symmetry reduction of equation (2) @ésnpleted and three different
forms of reduced equations are obtained, succégsfiansformed complex partial

differential equations into ordinary differentiadjieations are relatively easy to study.
Therefore, the results obtained are of great s@anite for the in-depth study of equation

).

5. Exact solutions of equation (2)

In this part, we will use the results of the redéretn the fourth part to construct a variety
of exact solutions to equation (2). Equation (2 haen successfully transformed into the
form of ODEs in the previous section, and we chdbeecase of (21) but it may lead to
the lack of comprehensiveness of the original égonatSo we will choose the case of
C, =0 in the second part, constructing new exact saistiof equation (2) by using

homogeneous balance method and two different amxifunction expansion methods.
Let u(x,t) =u(@),¢@ =x—qt, whereq is an arbitrary constant. Substitute the
transformation into (2) get

—qu' +auu’ + Suu’ +ou""" =0, (24)
integrate (24) to get
C-qu +:—§au3+%,ﬁu2+5u”” =0. (25)
(a) Suppose equation (25) has a solution of tHeviishg form,
uw) =, a,(@" (26)
m=—oo

wherew = (/) and satisfies the equation,
o —a+u=0, (27)
whereq,,, ( are arbitrary constant.

From the principle of homogeneous balarg®m = m+ 4,m= 2 then the equation
has a solution of the form,
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a,
af )
substituting(27)(28)into(25)to get a formula thedract the coefficients ab"to get the
overdetermined equations,

%aaf +12000,= 0

a
uw)=a,+aw+a,w+—=+ (28)
w

aa,as +240a,=0

aa,al+aala,+2400ua ,+ % Bai=0
aa_ai+2a0.040, +%aaf +40ua + fa g ,= 0

1200u°a +%aa_32 =0
1360u°a, +aa_a’ + a_a o ,+aa’y .+
aaa; +ﬁaoaz+%lgal_qa2=0

2aa. ,0,0,+200_aq,+aa_@i+aaia, +
16qu°a, + fa_a,+ fa@,—qa,= 0
200 0 0,+200_ aa . +aa’p raa_gi+
16qu°a, + Ba_a,+ fa_a,-qa_,= 0
136q°a, +aa’a,+ a_p_ g, +aa_ g3+

0’0’_210’0+,30'_20'0+%,30'_21—qa’_2:0

400la  +aa’a, + 200 0 @+ % aa’ +pa_a =0
24uta  +aa’a =0

240 a, +aa’a,+aa_ ot + % Ba?,=0

160°a, + 20a_aa,+aa g +aa’ g .+

+pa,a, +,5’0’_10’1+%,50’3 —qa,t

2aa a0, + +%aa§ +16Jua_,= 0

15



Yan-xin Hu, Zeng-xin Guo and Xiang-peng Xin

2
when the coefficientr = - B > of the restriction equation (2), we can find the
2561
valuesof a_,,a_,,a,,a,,0 ,,q, Select one set of solutions as,
960.° 192@y° 960y
q=256" a., = ¥ a,=0a,= ,B'u a, = Oa’2=7'u (29)

Substituting (29) into (28), whem > O the exact solution is

9603/” tanC, Ju +yfp §+ 19201 ta,Ju+yJu oG

= pranCJu+y iy o)
Wheny <0, the exact solution is
W) = 96001/ tancﬁﬁ +J-u ¥ .\
i BranCu-p +yJ-u ¥
1920 tancﬁﬁ +-u §+ 96013 (31)

BtanCy - +-u ¥
note, { = Xx—(2560u% X ,C,,C,are arbitrary constants.

0.005 G.timgmns

Figure 1: Wave profile of the solution for (30), whem=2,0=9606= 2C, = 1
xJ[~0.001,0.00[Lt,0[~ 0.01,0.p
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0010

0005

-0.010 -0 0 0.003 0.010
X

Figure 2: Density plot of the solution for(30), wheuf)[-0.01,0.0} t O[- 0.01,0.0
_B(99+2)
8192°*

values ofa_,,a_,,a,,a,, ,,q. Select one set of solutions as,

q=1284°0-2)a, = 192,;”3 a,=a,=0,

2
a, = 128u° (D +Z ),0'2 _ 192/,1.
B B

WhereZ is the real root of the following equationZ > + 525 — 2052 = 0.
Substituting (32) into (28), whem > 0 the exact solution is

192247 tanC,\ u +y\fu §+ 19Z 1 .
BtanC,Ju +w ¥
1288 -2 ) tanC,\u + @it §
panCJu+yJuf

Whenu <0, the exact solution is
o) = 1927 1/ tancxﬁ +J-u §+ 192 1 s
‘ BtanC, - +y-u ¥
128(8 - Z )tanC,-u +@+/-1 3 (34)
BtanC,J-p+yJ-uf

note,y = x—(128j* - 12§,°2 ) C,,C, are arbitrary constants.

When the coefficientr = of the restriction equation (2), can find the

(32)

U (@) =
(33)
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Figure 3: Wave profile of the solution for (33), whem=10",0=18= C, =01
x,t0[-1]

s
-1 =03 0 03 1
X

Figure 4: Density plot of the solution for (33), Whm’ﬂ[—l,]] B D[— 1,21
(b) Suppose equation (24) has a solution of tHevahg form ,

00 a} m
u@) =2 an(=)" (35)
m=0 CL)
wherew = (/) and satisfies the equation,
o +yad + pw=0, (36)

whereq,,, ¥, p are arbitrary constant.

From the principle of homogeneous balar@®=m+ 4,m= 2then the equation has a

solution of the form,

20¥

U(l//) :0'0+a'1£+0'2(—) (37)
w w

Substituting (36) (37) into (25) to get a formufeem extract the coefficients (e{(é)mto
w

get the overdetermined equations,
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o'a, +300/°a, + 2Dy’ pa,+ 12@yp’a,+aala .+ 160 + Pa g, —qa = |
Ba,a, +4400pa, + 13@)°a, +5@)°a, +40pa , %aaf +@aga,= 0
aata,+aa @i+ fagq,+2320)%pa ,+ 6Qppa + 1@y ‘a ,+ 18y%a ~da #+
oy’ pa, +149y°p*a, + yp’a, + 165,0302%003 - qao+%,6’a§ =0

aa,ai+aa’a,+3300)%a ,+6@ya, +2400a , % Ba’,=

13600°a, +% Bai=0
aa,a5+3360y, +24a,= 0

1200a, %0/0/3 =0

When the coefficierty = —

36090° p=- 6@y’ p— 24@0°3
2 P

a
0 0
(2) can find the values af,,a,,q, Select one set of solutions as,

q:5y4—85y2p+165p2,al—% a, —;0 (38)

substituting (38) into (37), wherf — 40 > 0,the exact solution is
e"”C Cwyza

of the restriction equation

-4e"C,Ca,

1 I '
(C 2(y\/y24)t// Cez(y\/yz4p)t//),_

[4

U (l//) == (39)

Wheny? —4p < 0,the exact solution is

e”C.Cya,
‘”yz -4e"C.C a,

Ug (41/ ) == (40)

1 1 :
7(—y+\/—y2+4p)z// =S (-y+ -y +ap W
(C.e? +C,e? ¥

Note, ¢/ = x— (d)* -8dy*p +16dp*} ,C,,C, are arbitrary constants.
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Figure 5. Wave profile of the solution for (39), when
y=0.1p=-0.39= 10g,= 1C,=C,=1x0[-114 t0[-1}

3

Figure 7: Contour plot of the solution for (380[-1,1] tO[-1,]
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6. Conclusion

This paper employs the Lie group method to studgless of fifth-order nonlinear
evolution equations. The symmetries of the equatiom obtained, in the meantime,
according to the symmetries, the optimal systenomé-dimensional Lie algebra is
constructed. Furthermore, symmetry is adopted tahgesimplified equation. And, more
importantly, two auxiliary function expansion metisoare employed to get a series of
new exact solutions of equation (2). In the studybeam-column structures, these
extraordinary solutions will be of great practis@gnificance. For the time to come, the
equation will be further studied, as well as higbeder and time coefficients will be
considered. As a result, this kind of researchfigeat physical significance. Such
results will be reported in following publicatiorisis hoped that the results in this article
can be helpful for the future research of the fidltheam-column structural stability.
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