
Progress in Nonlinear Dynamics and Chaos  
Vol. 9, No. 1 & 2, 2021, 1-7 
ISSN:  2321 – 9238 (online) 
Published on 14 March 2021 
www.researchmathsci.org 
DOI: http://dx.doi.org/10.22457/pindac.v9n1a08401 

 

 

1 
 

Approximate Solution of Damped Forced and Damped 
Oscillatory Motion of Differential Equation of Nonlinear 

Differential Systems with Varying Parameter 
Md. Asaduzzaman1,  Rezaul Karim*2 and Pinakee Dey3 

1Department of CSE, Ranada Prasad Shaha University, Narayanganj, Bangladesh   
Email: mdasaduzzaman5566@gmail.com 

2,3 Department of Mathematics, Mawlana Bhashani Science and Technology University 
Tangail-1902, Bangladesh.  email: pinakee_68@yahoo.com 

*Corresponding author. Email: rezaul.math@mbstu.ac.bd 

Received 3 November 2020; accepted 10 March 2021 

Abstract. Our aim is to develop and present a new approximate solution of  motion of  
differential equations of nonlinear differential system with damping and external force 
.The resonance case is considered and second order time dependent nonlinear differential 
system is calculated. Then a new perturbation technique is developed and applied to find 
an approximate solution of nonlinear systems in presence of an external force. The 
process is illustrated by an example. Finally, outcomes are discussed and shown 
graphically by utilizing MATHEMATICA and MATLAB. 
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1. Introduction 
Nonlinear problems acquire a gradually increasing importance in various branches of 
applied science. Oscillations occur when a system is disturbed from a position of stable 
equilibrium. This displacement from equilibrium changes periodically over time. Thus, 
Oscillations are said to be periodic, and display periodic motion. Oscillations are very 
common in everyday life with familiar examples being the motion of a clock pendulum 
or the vibrations of strings on musical instruments. Oscillations are also important in 
many mechanical systems in the real world such as a car suspension. It is thus very 
important to be able to study and understand these mechanical systems in order to control 
them in critical situations. Krylov-Bogoliubov-Mitropolskii (KBM) [3,13,18] method is 
particularly convenient and is the widely used technique to obtain the approximate 
solutions and Meldelson [12] for damped nonlinear oscillations. Karim et al. [15] KB 
method for obtaining an approximate solution of slowly varying amplitude and phase of 
nonlinear differential systems with varying coefficients and also widely used to technique 
Karim [16] approximate solutions of damped non linear system with varying parameter 
and damping force.  Arya and Bojadziev [1] studied a second order time dependent 
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differential equation with damping, slowly varying coefficients and small time delay in 
which a non-periodic external force acted. Shamsul [19] has presented a unified method 
for solving an n-th order differential equation (autonomous) characterized by oscillatory, 
damped oscillatory and non-oscillatory processes. Finally we obtain an Approximate 
solution of motion and  damped forced motion of differential equation of nonlinear 
differential systems with  varying coefficient. 
 
2. Methods and materials 
We now consider an important special case of forced motion. That is, we not only 
consider the effect of damping upon the mass on the spring but also the effect upon it of a 
periodic external impressed force  F defined by F(t) =������� for all � ≥ 0, where �� 
and ω are constants .Then the basic differential equation is  

                    � �
�
��
 + � ��

�� + �� = �������                                                                 (2.1)                                                

Dividing through by � and letting  

                  
�

 � = 2�,   �
� = ��   and  ��

� = ��                                                     (2.2) 

This takes the more convenient form  
�
�
��
 + 2� ��

�� + ��  � = �������                                                          (2.3) 

We shall assume that the positive damping constant �  is small enough so that the 
damping is less than critical .In other words we assume that � < � .Hence by Equation 
the complementary function of Equation (2.2)   can be written  

�! = �"#$�cos (√��  − ���  +∅                                                         ( 2. 4) 
We shall now find a particular integral of (2.2) by the method of undetermined 
coefficients. Let  

x- = Acosωt + Bsinωt                                                                        (2.5) 

Then                             
��4
�� = −�5�67�� + �8�����                                                 (2.6) 

9��:
9�� = −��5����� − ��8�67��. 

Substituting into Equation (2.2), we have  
[-2bhωA+(�� − ��)8]�67�� + [(�� − ��)5 + 2��8]����� = �������. 
Thus, we have the following two equations from which to determine A and B: 
-2bhωA+(�� − ��)8 = 0, 
(�� − ��)5 + 2��8 = ��, 
Solving these ,we obtain  

5 = >�(?
#@
)
(?
#@
)
BC$
@
                                                

8 = �$@>�
(?
#@
)
BC$
@
                                                              

Substituting these values into equation (2.4), we obtain a particular integral in the form  

�: = >�
(?
#@
)
BC$
@
  [  (�� − ��)����� + 2���67�� ] 

We now put this in the alternative “phase angle” form; we write  
          (�� − ��)����� + 2���67��  
= D(�� − ��)� + 4����[

(?
#@
)
D(?
#@
)
BC$
@
 ����� +  

�$@
D(?
#@
)
BC$
@
 �67��] 
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= D(�� − ��)� + 4����  [cosωtcosθ + sinωtsinθ]   
where  

��� G = 
(?
#@
)

D(?
#@
)
BC$
@
  

�67 G = 
�$@

D(?
#@
)
BC$
@
                                             

Thus the particular integral in the form  

�: = >�
(?
#@
)
BC$
@
 cos(�� − G),                                                                    (2.7) 

Where G is determined from Equations (2.6)  . Using (2.3)   and (2.7)  the general 
solution of Equation (2.2)   is 
� = �! + �: 

= �"#$�cos (√��  − ���  +∅ ) + 
>�

(?
#@
)
BC$
@
 cos(�� − G),        (2.8)                                                       

 
3. Example 
The basic differential equation for the motion is 

� �
�
��
 + � ��

�� + �� = �(�)                                                                                                         

(2.9)  

Here � = H
I = �J

K� = �
� (�LMN),   � = 2, � = 10, �79 �(�) = 5���2�. 

Thus Equation (2.9) becomes 
1
2

9��
9�� + 2 9�

9� + 10� = 5���2� 
Or 
�
�
��
 + 4 ��

�� + 20� = 10���2�                                                                                      (2.10) 

The initial conditions are 
�(0) = 0 

                                                   �Q(0) = 0.                                                       (2.11)                          
The auxiliary equation of the homogeneous equation corresponding to  (3.10) is 
R� + 4R + 20 = 0; its root are −2 ± 46.Thus the complementary function of Equation 
(3.10)  is �! = "#��(���674� + �����4�). 
where  �� and  �� are arbitrary constants .Using the method of undetermined coefficients 
to obtain a particular integral ,we let ,�: = 5���2� + 8�672�. 
Upon differentiating and substituting into 2.10, we find the following equation for the 
determination of A and B  
−85 + 168 = 0, 
165 + 88 = 10.Solving these , we find 5 = �

�     , 8 = �
C 

Thus a particular integral is  

�: = �
�cos2t+ �

C �672� 

And the general solution of 2.10 is  
    � = �! + �: 

= "#��(���674� + �����4�) + �
�cos2t+ �

C �672�                                                  (2.12.)                
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Differentiating (2.12) with respect to t, we obtain  
��
�� = "#��[(−2�� − 4��)�674� + (−2�� + 4��)���4� − �672� + �

� ���2�          ( 2.13) 

 
Applying the initial conditions (2.11) to Equations  (2.12) and (2.13),we see that 

�� + 1
2 = 0, 

4��-2��+
�
� = 0 

 

From those equations we find that�� = − K
W  ,                          �� = − �

� 

Hence the solution is  

� = "#�� X− K
W �674� − �

� ���4�Y + �
�cos2t+ �

C �672�                                       (2.14) 

 
Let us write this in the “phase angle” form. We have first  

3�674� + 4���4� = 5 XK
[ �674� + C

[ ���4�Y    = 5cos (4� − ∅), 
where  

���∅ =   4/5   ,            �67∅ = 3/5                                                                 (2.15) 
 

2���2� + �672� = √5 (
�

√[ ���2� + �
√[ �672�) = √5cos (2� − G) 

where 

���G = �
√[ ,         �67G = �

√[                                                                                           (2.16)  

 
Thus we may write the solution (3.14) as  

� = − []^
_

W cos( � − ∅) +√[
C cos(2� − G),                                                        (2.17) 

where are determined by Equations, respectively. We find that ∅ ≈ 0.65  (rad) and 
G ≈ 0.46 (rad). 
Thus the solution (2.17) is given a approximately by  

� = −0.63"#�� cos(4� − 0.64) + 0.56 cos(2� − 0.46) 

4. Program 
Figure under damped and undamped 
t=[0:0.001:15]; 
x=exp(-.15*t)*5.*cos(t)*(.45^2-.2^2)^(1/2);  
y=exp(-.15*t)*3.*sin(t)*(.45^2-.2^2)^(1/2); 
plot(t,x,'r-',t,y,'g-'); 
 
Figure 1 
t=[0:0.001:10]; 
A=1; 
f=4; 
f1=2; 
y1= -0.63 * exp(-2*t).*cos((f*t)-0.64); 
plot(t,y1); 
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Figure 2 
t=[0:0.001:10]; 
A=1; 
f=4; 
f1=2; 
y2= -0.63 * exp(-2*A)*cos((f*t)-0.64) + 0.56*cos((f1*t)-0.46) ; 
plot(t,y2); 
 
Figure 3 
t=[0:0.001:10]; 
A=1; 
f=4; 
f1=2; 
y3= -0.63 * exp(-2*t).*cos((f*t)-0.64) + 0.56*cos((f1*t)-0.46) ; 
plot (t,y3); 

5. Results and discussion 
In order to test the accuracy of an approximate solution obtained by a certain perturbation 
method, one can easily compare the approximate solution to the numerical solution 

(considered to be exact). The term − []^
_

W cos(4� − ∅) ≈ −0.63"#�� cos(4� − 0.64) is 

the transient term, representing a damped oscillatory motion. It becomes negligible in a 
sort time ;for example, for t > 3, its numerical value is less than 0.002. The 

term√[
C cos(2� − G) ≈  0.56 cos(2� − 0.46).Is the steady-state term, representing a 

simple harmonic motion of amplitude  √[
C ≈ 0.56  and period a. Its graph appears in the 

following fig. 1. The graph in fig. 2 is that of the complete solution (2.17). It is clear from 
this that the effect of the transient term soon becomes negligible, and that after a short 
time the contribution of the steady-state term is essentially all that remains. 

 

Figure 1: Damped oscillatory motion 
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Figure 2: Simple Harmonic motion 

 

 

Figure 3: Complete solution of (2.17) 

5. Conclusion 
In this Chapter a technique is developed for obtaining the solution of nonlinear 
differential systems under the action of external force. In general, the variational 
equations for the amplitudes and phase are solved by numerically. In this case, the 
perturbation method facilitates the numerical method. The method is applied to nonlinear 
differential systems in presence of external forces. Applying this method in an example 
and we find a solution. The solutions are obtained for initial conditions. Figures are 
plotted. 
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