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Abgtract. Our aim is to develop and present a new approxirealigion of motion of
differential equations of nonlinear differentialsggm with damping and external force
.The resonance case is considered and secondtiondedlependent nonlinear differential
system is calculated. Then a new perturbation igdenis developed and applied to find
an approximate solution of nonlinear systems insgmee of an external force. The
process is illustrated by an example. Finally, ootes are discussed and shown
graphically by utilizing MATHEMATICA and MATLAB.
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1. Introduction

Nonlinear problems acquire a gradually increasimgdrtance in various branches of
applied science. Oscillations occur when a systeuisturbed from a position of stable
equilibrium. This displacement from equilibrium daggs periodically over time. Thus,
Oscillations are said to be periodic, and displayiqalic motion. Oscillations are very
common in everyday life with familiar examples lgeite motion of a clock pendulum
or the vibrations of strings on musical instrumer@scillations are also important in
many mechanical systems in the real world such aarasuspension. It is thus very
important to be able to study and understand thesshanical systems in order to control
them in critical situations. Krylov-Bogoliubov-Mdpolskii (KBM) [3,13,18] method is
particularly convenient and is the widely used tégbhe to obtain the approximate
solutions and Meldelson [12] for damped nonlinesciltations. Karim et al. [15] KB
method for obtaining an approximate solution ofadjovarying amplitude and phase of
nonlinear differential systems with varying coeifficts and also widely used to technique
Karim [16] approximate solutions of damped non dinsystem with varying parameter
and damping force. Arya and Bojadziev [1] stud&decond order time dependent
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differential equation with damping, slowly varyimgefficients and small time delay in
which a non-periodic external force acted. Sharfeil has presented a unified method
for solving ann-th order differential equation (autonomous) chemazed by oscillatory,
damped oscillatory and non-oscillatory processésally we obtain an Approximate
solution of motion and damped forced motion offatiéntial equation of nonlinear
differential systems with varying coefficient.

2. Methods and materials

We now consider an important special case of foneedion. That is, we not only
consider the effect of damping upon the mass osjthiag but also the effect upon it of a
periodic external impressed force F defined by Eff coswt for all t = 0, whereF;
ando are constants .Then the basic differential eqoasio

m%+ aa+ kx = Fycoswt (2.1)
Dividing through bym and letting
=2b, =2 and:=E, 2.2)
This takes the more convenient form
F + 2b— + 2% x = Ejcoswt (2.3)

We shall assume that the positive damping constaris small enough so that the
damping is less than critical .In other words wsuase thath < 4 .Hence by Equation
the complementary function of Equation (2.2) barwritten

x, = ce Ptcos(VAZ — b2t +p (2. 4)
We shall now find a particular integral of (2.2) hlge method of undetermined
coefficients. Let

Xp = Acoswt + Bsinwt (2.5)
d .
Then % = —wAsinwt + wBcoswt 6P
d?x
dtzp = —w?Acoswt — w?Bsinwt.

Substituting into Equation (2.2), we have

[-2bhoA+(1%2 — w?)B]sinwt + [(A2 — w?)A + 2bwB]coswt = E;coswt.
Thus, we have the following two equations from vahic determine A and B:
-2bhwA+(1%? — w?)B = 0,

(A — w?)A + 2bwB = E,

Solving these ,we obtain

4= E1(A2-w?)
T (A2-w?)2+4b2 w2
B = 2bwE4

(A2—w?)?+4b2w?
Substituting these values into equation (2.4), bmia a particular integral in the form

—(/12—(02;521+4b2w2 [ (4% — w?)coswt + 2bwsinwt ]

We now put this in the alternative “phase anglefrfpwe write
(2?2 — w?)coswt + 2bwsinwt

_ 2 _ 272 2,2 -w
V2 — w?) +4ba)[W

xp=

coswt + sinwt]

2bw
J(A2=w?2)2+4b2w?



Approximate Solution of Damped Forced and Dampedi@®ry Motion of Differential
Equation of Nonlinear Differential Systems with ryimg Parameter

= (22 — w?)? + 4b2w? [coswtcosd + sinwtsind]

where
A*-w?)
c0s ) = —————
JA2—w2)2+4b2w?
. 2b
sin @ = @

V(A2—w?)24+4b%2w?

Thus the particular integral in the form
5 cos(wt — 0), (2.7)

P T (A%-w?)2+4b%w?
Where 8 is determined from Equations (2.6) . Using (2.3and (2.7) the general
solution of Equation (2.2) is

X =X+ X

= ce Ptcos(VAZ — b2t +0) +#cos(wt - 0), (2.8)

(A2-w?)2+4b2w?

X

3. Example
The basic differential equation for the motion is
d?x dx

mﬁ+aa+kx =F(t)
(2.9)
Herem =~ = = =2(slug), a=2k =10,and F(t) = 5cos2t.
Thus Equation (2.9) becomes
L% 2% | o = scosat
2dt2 T dt X = oeos
Or

2
&+ 4%+ 20x = 10cos2t (2.10)
The initial conditions are

x(0)=0
x'(0) = 0. (2.12)

The auxiliary equation of the homogeneous equatiresponding to (3.10) is
r2 4+ 4r + 20 = 0; its root are—2 + 4i.Thus the complementary function of Equation
(3.10) isx, = e 2t (cysin4t + cycos4t).
where ¢, and ¢, are arbitrary constants .Using the method of werd@hed coefficients
to obtain a particular integral ,we let,,= Acos2t + Bsin2t.
Upon differentiating and substituting into 2.10, ¥fied the following equation for the
determination of A and B
—8A+16B =0,
16A + 8B = 10.Solving these , we find = % ,B =%
Thus a particular integral is
Xp = %COSZI-I— %sinZt
And the general solution of 2.10 is
X =Xc+ Xy
= e~ 2t(cysin4t + c,cos4t) + %COSZH—%sinZt 2.12.)
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Differentiating (2.12) with respect to t, we obtain

% = e 2 [(=2cq — 4cy)sindt + (—2¢ + 4c,)cosdt — sin2t + %cosZt (2.13)

Applying the initial conditions (2.11) to Equatior{2.12) and (2.13),we see that
1
+-=0,
Cy 2

4c;-2c,4+5 =0

From those equations we find tha —% , Cy = —%
Hence the solution is
x=e% (—Esin4t — lcos41:) + lcos2t L sin2t (2.14)
8 2 2 4 )

Let us write this in the “phase angle” form. We &divst
3sin4t + 4cos4t = 5 (%sinélt + %cos4t) = 5cos(4t — @),

where

cos@ = 4/5 , sin® = 3/5 (2.15)

. 2 1,

2cos2t + sin2t = V5 (ﬁ cos2t + \/—gstt) = +/5cos(2t — )
where

2 a1
cosf = Nl sinf = NG (2.16)
Thus we may write the solution (3.14) as

-2t
x = —%cos( t—0) +\/T§cos(2t - 0), (2.17)

where are determined by Equations, respectively. fiNg that @ = 0.65 (rad) and
6 = 0.46 (rad).
Thus the solution (2.17) is given a approximatsly b

x = —0.63e %t cos(4t — 0.64) + 0.56 cos(2t — 0.46)

4. Program

Figure under damped and undamped
t=[0:0.001:15];
x=exp(-.15*t)*5.*cos(t)*(.45"2-.2"2)(1/2);
y=exp(-.15*t)*3.*sin(t)*(.45"2-.2"2)\(1/2);
plot(t,x,r-'t,y,'g-);

Figurel

t=[0:0.001:10];

A=1;

f=4;

f1=2;

y1=-0.63 * exp(-2*t).*cos((f*t)-0.64);
plot(t,y1);
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Figure2

t=[0:0.001:10];

A=1,

f=4;

f1=2;

y2=-0.63 * exp(-2*A)*cos((f*t)-0.64) + 0.56*cos((ft)-0.46) ;
plot(t,y2);

Figure3

t=[0:0.001:10];

A=1;

f=4;

f1=2;

y3=-0.63 * exp(-2*t).*cos((f*t)-0.64) + 0.56*cod((*t)-0.46) ;
plot (t,y3);

5. Resultsand discussion
In order to test the accuracy of an approximateti&nl obtained by a certain perturbation
method, one can easily compare the approximatei@olto the numerical solution

-2t
(considered to be exact). The teFmseg—cos(llt — @) ~ —0.63e %t cos(4t — 0.64) is

the transient term, representing a damped osailatetion. It becomes negligible in a
sort time ;for example, for t > 3, its numericallua is less than 0.002. The
term‘i—gcos(Zt—H)z 0.56 cos(2t — 0.46).Is the steady-state term, representing a

simple harmonic motion of amplitudg ~ 0.56 and periodr. Its graph appears in the

following fig. 1. The graph in fig. 2 is that ofdlcomplete solution (2.17). It is clear from
this that the effect of the transient term soonobees negligible, and that after a short
time the contribution of the steady-state termsiseatially all that remains.

Figure 1. Damped oscillatory motion
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Figure 2: Simple Harmonic motion

Figure 3: Complete solution of (2.17)

5. Conclusion

In this Chapter a technique is developed for obiginthe solution of nonlinear
differential systems under the action of externaicé. In general, the variational
equations for the amplitudes and phase are solyedulnerically. In this case, the
perturbation method facilitates the numerical mdthiche method is applied to nonlinear
differential systems in presence of external forégsplying this method in an example
and we find a solution. The solutions are obtaif@dinitial conditions. Figures are
plotted.
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