Blow-up Phenomena for a Class of Degenerate Parabolic Problems with Multiple Nonlinearities

Yudong Sun and Mingxue Qiu

1School of Business, Guizhou Minzu University, Guiyang 550025, China
2School of Data Science and Information Engineering, Guizhou Minzu University
Guiyang 550025 China
1Corresponding author. email: yudongsun@yeah.net

Received 16 December 2018; accepted 29 December 2018

Abstract. In this paper, we study the blow-up solution to a nonlinear degenerate parabolic equation

\[u_t = \text{div}(\nabla |u|^{p-2} \nabla u) + \alpha_1 |\nabla u|^q - \alpha_2 |\nabla u|^r + \alpha_3 \int_{\partial O} u^s \, d\nu + \alpha_4 u^{\nu(x)} - \alpha_5 u^n \]

under nonlinear boundary condition. By constructing some appropriate auxiliary functions and using first-order differential inequality technique, an explicit formula of lower bound for blow-up time is derived.

Key words: Multiple nonlinearities; nonlinear degenerate parabolic equations; blow-up; nonlinear boundary condition.

AMS Mathematics Subject Classification (2010): 35B40, 35K35

1. Introduction

Lower bounds for blow-up time of solution to degenerate parabolic problem have been extensively studied in the last 10 years [1-6]. Payne and Song in [1] considered an initial-boundary value problem for parabolic equations of the form

\[\frac{\partial u}{\partial t} = \Delta u + u^s - |\nabla u|^k \text{ in } O \times (0,T^*) \]

where

\[u = 0 \text{ on } \partial O \times (0,T^*), \ u(x,0) = u_0(x) \geq 0 \text{ in } O. \]

Here \(O \) is a bounded domain in \(\mathbb{R}^3 \), \(\Delta \) is the Laplace operator, \(\nabla \) is the gradient operator, \(\partial O \) is the boundary of \(O \), and \(T^* \) is the possible blow-up time. A lower
bound for the blow-up time T' was determined under the condition $p \leq q_1$, and the relative result in [7] was extended to the case with nonlinear boundary condition.

In [8] the authors studied the question of blow-up for the solution to the problem

$$u_t = \Delta u + \int_\Omega u' \, dx - \alpha u^q; \quad \text{in } O \times (0, T'),$$

with both homogeneous Dirichlet boundary condition and homogeneous Neumann boundary condition. They obtained the lower bounds for the blow-up time under the above two boundary conditions. Later, others generalized this result to the case of nonlinear boundary condition [9] or Robin condition [2].

In this paper, we consider the following nonlinear parabolic equation generalized from (1) and (2)

$$u_t = \text{div} \left(|\nabla u|^{p-2} \nabla u \right) + \alpha(x) - \alpha'(x) |\nabla u|^q + \alpha_1(x) \int_\Omega u' \, dx + \alpha_2(x) \alpha_3(x) - \alpha_4(x) u^q; \quad \text{in } O \times (0, T'),$$

with the following nonlinear boundary condition

$$\frac{\partial u}{\partial n} = g(u); \quad \text{in } O \times (0, T').$$

and the initial condition

$$u(x, 0) = u_0(x) \geq 0; \quad \text{in } O.$$

Here $p > 2$, \bar{n} is the unit outer normal vector of ∂O, and $\frac{\partial u}{\partial n}$ is outward normal derivative of u on the boundary ∂O which is assumed to be sufficiently smooth. Moreover, we assume that

$$1 < q^- := \inf_{x \in \partial O} q(x) \leq q(x) \leq q^+ := \sup_{x \in \partial O} q(x) < +\infty, \quad 0 < \alpha_i(x) \leq \alpha(x) \leq \alpha_i(x) < +\infty,$$

$$0 < c_i := \inf_{x \in \partial O} \alpha(x) \leq \alpha_i(x) < +\infty, \quad 0 < \alpha_i(x) \leq \alpha_(x) \leq c_i := \sup_{x \in \partial O} \alpha_i(x) < +\infty,$$

$$0 < \alpha_i(x) \leq c_i := \sup_{x \in \partial O} \alpha_i(x) < +\infty, \quad 0 < c_i := \inf_{x \in \partial O} \alpha_i(x) \leq \alpha_i(x) < +\infty.$$

As indicated in [1,7,8,9], we also need $q_i > 1, \quad q_2 > 1$. Reference [7] assumed that $s > q_2 > 1$, here we release this restriction by $s > 0$.

Since the initial data $u_0(x)$ in (5) is nonnegative, we have by the parabolic maximum principles [10,11] that u is nonnegative in $O \times (0, T')$. In the next section, we will find a lower bound for the blow-up time when blow-up occurs.
Blow-up Phenomena for a Class of Degenerate Parabolic Problems with Multiple Nonlinearities

2. A lower bound for the blow-up time
In this section we seek the lower bound for the blow-up time T. To this end, we define an auxiliary function of the form

$$E(t) = \int_0^t u^{p_n+s} \, dx \quad \text{with} \quad n > 1, \quad \rho_1 = \min_{\partial_0} |x|, \quad \rho_2 = \min_{\partial_0} |x \cdot n|$$

and make an assumption on $g(z)$

$$g(z) \leq k z^\sigma,$$ \hspace{1cm} (7)

where k is a positive constant. Our assumption is weaker than the one in [10], it requires $0 \leq g(z) \leq k z^\sigma$, and σ depends on the choice of $E(t)$. Here we allow σ to be any positive constant. Furthermore, reference [12] indicated that if $c_0 - 1 - n p s \leq 0$, the solution will not blow-up in finite time. So we consider the case $c_0 - 1 - n p s > 0$.

The main result of this article is formulated in the following theorem:

Theorem 1 Let $u(x,t)$ be the nonnegative classical solution to problem (3)-(5), and g satisfies (7). Then for any

$$\frac{1}{(p-2)s} < n < \frac{c_0 - 1}{p s},$$

the blow-up time T is bounded from below by

$$\int_{E(0)}^{\infty} \frac{d\tau}{A_0 + A_1 \tau^{p_n+s(p+2)/2} + (A_1 + A_0) \tau^2 + (A_1 + A_2) \tau^3 + (A_1 + A_0) \tau},$$

where $A_0, A_1, A_2, A_3, A_4, A_5$ and A_6 are positive constants to be determined later.

Proof: First we compute

$$\frac{d}{dt} E(t) = (p s n + 1) \int_0^t u^{p_n+s} u' \, dx$$

$$= (p s n + 1) \int_0^t u^{p_n+s} \left(|\nabla u|^{p-2} \nabla u + \alpha_0 |\nabla u|^p \right) \, dx$$

$$- (p s n + 1) \int_0^t \alpha_1(x) u^{p_n+s} |\nabla u|^p \, dx + (p s n + 1) \int_0^t \alpha_2(x) u^{p_n+s} \, dx \int_0^t u' \, dx$$

$$+ (p s n + 1) \int_0^t \alpha_3(x) u^{p_n+s} \, dx - (p s n + 1) \int_0^t \alpha_4(x) u^{p_n+s} \, dx$$

$$\leq \frac{(c_0 - 1 - n p s)(p s n + 1)}{(p s n + 1)} \int_0^t |\nabla u|^{p_n+s} \, dx$$

$$- (p s n + 1) \int_0^t \alpha_1(x) u^{p_n+s} |\nabla u|^p \, dx + (p s n + 1) \int_0^t \alpha_2(x) u^{p_n+s} \, dx$$

$$+ (p s n + 1) \int_0^t \alpha_3(x) u^{p_n+s} \, dx - (p s n + 1) \int_0^t \alpha_4(x) u^{p_n+s} \, dx.$$
Yudong Sun and Mingxue Qiu

\[(psn + 1) \int_0^1 \alpha_s(x) u^{psn+q} dx \geq c_1 (psn + 1) \int_0^1 u^{psn+q} dx \geq c_1 (psn + 1) \| \frac{1}{sn+1} E(t) \|^{psn+q}_{sn+1}. \tag{9}\]

For convenience, let \(v = u^\frac{1}{psn+q} \). It follows that

\[(psn + 1) \int_0^1 \alpha_s(x) u^{psn+q} \| \nabla u \|_p dx = (psn + 1) \left(\frac{psn + q}{q_t} \right)^{\frac{1}{p}} \int_0^1 \alpha_s(x) \| \nabla u \|_p dx. \tag{10}\]

Using the Sobolev inequality derived in [14] (see 2.10) or [15] (see (4.10)), we have

\[\chi \int_0^1 \| \nabla u \|_p dx \geq \int_0^1 \| v \|_p dx, \tag{11}\]

where \(\chi \) is a positive constant to be determined later. Therefore, combining (11) and Holder inequality we get

\[(psn + 1) \int_0^1 \alpha_s(x) u^{psn+q} \| \nabla u \|_p dx \geq \chi c_1 (psn + 1) \left(\frac{psn + q}{q_t} \right)^{\frac{1}{p}} \| \frac{1}{sn+1} E(t) \|^{psn+q}_{sn+1}. \tag{12}\]

Further, using (9) and (12), we replace (8) by

\[\frac{d}{dt} E(t) \leq - \frac{(\alpha_s - 1 - nps)(psn + 1)}{(sn + 1)^r} \int_0^1 \| \nabla u \|_p dx \]

\[\quad - c_1 \chi (psn + 1) \left(\frac{psn + q}{q_t} \right)^{\frac{1}{p}} \| \frac{1}{sn+1} E(t) \|^{psn+q}_{sn+1}\]

\[\quad + (psn+1) \| \int_0^1 \alpha_s(x) u^{psn+q} dx + (psn + 1) \| \int_0^1 \alpha_s(x) u^{psn+q} dx \]

\[\quad \leq c_1 (psn + 1) \| \frac{1}{sn+1} E(t) \|^{psn+q}_{sn+1} + (psn + 1) \int_0^1 u^{psn+q} \| \nabla u \|_p ^2 \frac{du}{dn} dx. \tag{13}\]

Now, we focus on the term \((psn + 1) \| \int_0^1 \alpha_s(x) u^{psn+q} dx \) in (13). Using Holder and Young inequalities twice, we have

\[\int_0^1 u^{psn+q} dx \leq \| \int_0^1 u^{psn+q} dx \|^{psn+q}_{psn+1} \]

\[\leq \frac{1}{psn+s+1} \| + \frac{psn+s}{psn+s+1} \int_0^1 u^{psn+q} dx \]

\[\leq \frac{1}{psn+s+1} \| + \frac{psn+s}{psn+s+1} \left(\int_0^1 u^{\frac{1}{psn+1}} dx \right)^{\frac{2s}{psn+1} + \frac{psn+1-2s}{psn+1}} \]

\[\leq \frac{1}{psn+s+1} \| + \frac{psn+s}{psn+s+1} \left(\int_0^1 u^{\frac{1}{psn+1}} dx \right)^{\frac{2s}{psn+1} + \frac{psn+1-2s}{psn+1}} \]

and
Blow-up Phenomena for a Class of Degenerate Parabolic Problems with Multiple Nonlinearities

\[
\int_0^1 \left| \nabla u^{\frac{1}{2}} (x) \right|^2 \, dx \leq \frac{(psn+1)^2}{4(ns+1)^2} \left(\int_0^1 \left| \nabla v^{\frac{1}{2}} \right|^2 \, dx \right)^{\frac{p+1}{p}} \left(\int_0^1 \left| v^{\frac{1}{2}} (psn+1)^{2-2} \right|^2 \, dx \right)^{\frac{p-2}{p}} \leq \frac{(psn+1)^2}{2p(ns+1)^2} \int_0^1 \left| \nabla v^{\frac{1}{2}} \right|^2 \, dx + \frac{p-2}{p} \frac{(psn+1)^2}{4(ns+1)^2} \int_0^1 v^{\frac{1}{2}} \, dx \leq \frac{(psn+1)^2}{2p(ns+1)^2} \int_0^1 \left| \nabla u^{1^{\frac{1}{2}}} \right|^2 \, dx + \frac{p-2}{p} \frac{(psn+1)^2}{4(ns+1)^2} E(t) \frac{(psn+2-2m+1)}{psn+1} \tag{15}
\]

where \(v = u^{1^{\frac{1}{2}}} \). Then, we connect (14) and (16) by using the integral inequality derived in [6] (see (2.16)), namely

\[
\int_0^1 u^{\frac{1}{2}} \, dx \leq \frac{3}{2} \left(E(t)^2 + \frac{\sqrt{2}}{3} \left(\frac{\rho}{\rho_0} + 1 \right) \right)^{\frac{1}{2}} \frac{E(t)^{\frac{3}{2}}}{4X_2} \left(\int_0^1 \left| \nabla u^{\frac{1}{2}} \right|^2 \, dx \right) \tag{16}
\]

to obtain

\[
(psn+1)\frac{\partial}{\partial t}(x)u^{psn+1} \leq \frac{c_2}{psn+s+1} \frac{(psn+1)}{\rho} \left(\frac{\rho}{\rho_0} + 1 \right)^{\frac{1}{2}} \frac{E(t)^{\frac{3}{2}}}{4X_2} \left(\int_0^1 \left| \nabla u^{\frac{1}{2}} \right|^2 \, dx \right) + A_1 \frac{1}{\rho^2} \left(p + 1 \right) \frac{(psn+1)}{psn+s+1} \tag{17}
\]

where \(X_2 \) is another positive constant to be determined later,

\[
A_1 = 3^3 c_2 \rho_0 \left(psn+1 \right) \frac{s}{psn+s+1}, \quad A_2 = \frac{\sqrt{2}}{3} \left(\frac{3}{3} \frac{s}{psn+s+1} \right)^{\frac{1}{2}} \left(\frac{\rho}{\rho_0} + 1 \right)^{\frac{1}{2}},
\]

\[
A_3 = \frac{1}{2\sqrt{2}} \left(\frac{1}{psn+s+1} \left(\frac{\rho}{\rho_0} + 1 \right)^{\frac{1}{2}} \right) \frac{(psn+1)^{2}}{\rho ns+1}.
\]

Next we give a bound for the term \((psn+1)\frac{\partial}{\partial t}(x)u^{psn+1}\)dx in (13). For each \(t > 0 \), we divide \(O \) into two sets,

\[
O_h = \{ x \in O | u(x,t) < 1 \}, \quad O_c = \{ x \in O | u(x,t) \geq 1 \}.
\]

It follows that
Here we have used the Holder and Young inequalities. Furthermore, using (15) and (16) to $\int_0^{\frac{2}{\alpha}} u_t^{(m+\rho_1)} \, dx$, then $\int_0^{\frac{2}{\alpha}} u_t^{(m+\rho_1)} \, dx$ can be estimated by

$$\int_0^{\frac{2}{\alpha}} u_t^{(m+\rho_1)} \, dx \leq c_1 \left(\frac{u_{m+\rho_1}}{psn+p^*+1} \right)^\frac{1}{\alpha} \left[\frac{2p^-}{psn+p^*+1} + \frac{psn+p^*}{psn+p^*+1} \int_0^{\frac{2}{\alpha}} u_t^{(m+\rho_1)} \, dx \right] \left[\frac{2p^*}{psn+p^*+1} \right] \left[\frac{2p^*}{psn+p^*+1} \right] E(t).$$

(18)

where

$$A_0 = \frac{1}{2} c_{\rho_0}^{\frac{3}{2}} \frac{p-2}{p} \left(\frac{\rho_1}{\rho_0} \right)^{\frac{3}{2}} \left(\frac{1}{psn+p^*+1} \right)^{\frac{2p^-}{psn+p^*+1} + \frac{psn+p^*}{psn+p^*+1} \int_0^{\frac{2}{\alpha}} u_t^{(m+\rho_1)} \, dx \right] \left[\frac{2p^*}{psn+p^*+1} \right] \left[\frac{2p^*}{psn+p^*+1} \right] E(t).$$

(19)
Blow-up Phenomena for a Class of Degenerate Parabolic Problems with Multiple Nonlinearities

Next, we pay our attention to the term \((psn+1)\int_0 u^{psn}u|\nabla u|^{p-2} \frac{\partial u}{\partial n} \, dx\) in (13). Making use of the nonlinear boundary condition, it follows from (4) that

\[
(psн+1)\int_0 u^{psн}u|\nabla u|^{p-2} \frac{\partial u}{\partial n} \, dx \\
\leq k(psн+1)\left(\int_0 u^{2psн} \, dx\right)^{p-2}
\leq k(psн+1)\int_0 u^{2psн} \, dx \\
\leq k(psн+1)\int_0 u^{2psн} \, dx \\
\leq k(psн+1)\int_0 u^{2psн} \, dx
\]

Since \(p \geq 2\), we can apply Holder and Young inequalities to get

\[
(psн+1)\int_0 u^{psн}u|\nabla u|^{p-2} \frac{\partial u}{\partial n} \, dx \\
\leq k(psн+1)(\int_0 u^{psн+1} \, dx)^{p-2}
\leq k(p-2)(psн+1)\int_0 u^{psн+1} \, dx
\]

By taking (17), (19) and (20) into (13), we have

\[
\frac{d}{dt}E(t) \leq c(psn+1)\frac{\|u\|^{psn+p+1}}{psn+p+1} + \frac{c(psn+1)}{psn+p+1}||\partial u||^{psn+p+1} + \frac{c(psn+1)}{psн+1}||\nabla u||^{psн+1}
\]

\[
+ \frac{2}{p}(\int_0 u^{psн+1} \, dx)^{p-2} + \frac{c(psn+1)}{(sn+1)^p} \int_0 \nabla u^{psн+1} \, dx
\]

(21)

Here we have used the conditions that \(n > \frac{1}{(p-2)s}\) and \(p > 2\). In order to remove the terms which contain the unknown constants \(\chi_1\) and \(\chi_2\) and the negative terms, we present the following three inequalities obtained by Young inequality

\[
E(t) \leq \frac{psn+1}{psn+1-2(ns+1)} E(t) + \frac{psn+1}{2(ns+1)}
\]
Yudong Sun and Mingxue Qiu

\[E(t) \leq \frac{psn + 1}{psn + q_1} \left(\frac{psn + q_1}{psn + q_1} \right)^{\frac{psn + q_1}{psn + q_1}} + \frac{q_1 + 1}{psn + q_1}, \quad E(t) \leq \frac{psn + 1}{psn + q_2} \left(\frac{psn + q_2}{psn + q_2} \right)^{\frac{psn + q_2}{psn + q_2}} + \frac{q_2 - 1}{psn + q_2} \]

and insert them into (21), we have

\[
\frac{d}{dt} E(t) \leq A_1 \int_0^t \left[\nabla u^{1+q} \right] \, dx + A_3 E(t) + A_{10} + A_1 \left(\frac{psn + q_1}{psn + q_1} \right)^{\frac{1}{q_1}} E(t)^{\frac{1}{q_1}} + (A_1 + A_3) E(t)^3 + (A_4 + A_5) E(t),
\]

where

\[
A_0 = \frac{c_1 (psn + 1)}{psn + p^{-1} + 1} |O| + \frac{c_1 (psn + 1)}{psn + p^{-1} + 1} |O| + \frac{c_2 (psn + 1)}{psn + s + 1} |O| + \frac{c_2 (psn + 1)}{psn + s + 1} |O|^{\frac{s}{psn + s + 1}}
\]

\[
+ (A_1 + A_3) X_2 \frac{psn + 1}{2(n+1)} + c_3 (psn + 1) \frac{q_1 + 1}{psn + 1} \left| O \right|^{\frac{1-a}{psn + 1}} \frac{psn + q_1}{q_1} X_1.
\]

\[
A_1 = \frac{2k}{p} \left| O \right|^{\frac{a p n / 2 + 1}{p s n + 1}} \left(\frac{psn + 1}{psn + p^{-1} + 1} \right)^{\frac{1}{q_1}}, \quad A_2 = k \frac{p - 2}{p} \left(\frac{psn + 1}{psn + p^{-1} + 1} \right)^{\frac{1}{q_1}} + (A_1 + A_3) X_2 - \frac{(c_0 - 1 - nps)(psn + 1)}{(sn + 1)^{\frac{1}{q_1}}},
\]

\[
A_3 = (A_1 + A_3) X_3 \frac{psn + 1}{psn + 1 - 2(n+1)} - c_1 (psn + 1) \left| O \right|^{\frac{1-a}{psn + 1}} \frac{psn + q_1}{psn + 1}
\]

\[
- c_3 \left| O \right|^{\frac{1-a}{psn + 1}} (psn + 1) \frac{psn + q_1}{q_1} \left(\frac{psn + q_1}{q_1} \right)^{\frac{1}{q_1}} X_1.
\]

Now we show the proof that from (22) we can get

\[
\frac{d}{dt} E(t) \leq A_1 + A_3 E(t)^{\frac{psn + q_1}{psn + q_1}} + (A_1 + A_3) E(t)^3 + (A_4 + A_5) E(t).
\]

Indeed, when

\[
\frac{(c_0 - 1 - nps)(psn + 1)}{(sn + 1)^{\frac{1}{q_1}}} \leq k \frac{p - 2}{p} \left(\frac{psn + 1}{psn + p^{-1} + 1} \right)^{\frac{1}{q_1}},
\]

we choose \(\chi_2 > 0 \) such that \(A_2 \leq 0 \) and \(A_3 \leq 0 \). Then a direct calculation tells us that (23) holds by removing all the negative terms. When

\[
\frac{(c_0 - 1 - nps)(psn + 1)}{(sn + 1)^{\frac{1}{q_1}}} > k \frac{p - 2}{p} \left(\frac{psn + 1}{psn + p^{-1} + 1} \right)^{\frac{1}{q_1}},
\]

we can fix \(\chi_2 > 0 \) to make \(A_2 = 0 \). For this case, if

\[
(A_1 + A_3) X_2 \leq c_3 (psn + 1) \left| O \right|^{\frac{1-a}{psn + 1}} \frac{psn + q_1}{psn + 1},
\]

then we choose \(\chi_1 = 0 \) such that \(A_3 \leq 0 \). We can remove the negative terms \(A_3 E(t) \) to obtain (23); If not, we choose a suitable \(\chi_1 > 0 \) to make \(A_3 = 0 \). This indicates that (23) always holds whether (24) or (25) holds or not.

From (22), we obtain
Blow-up Phenomena for a Class of Degenerate Parabolic Problems with Multiple Nonlinearities

\[\frac{d}{dt} E(t) \leq A_i + A_j E(t)^{\frac{m+1}{m+\delta}} + (A_k + A_l) E(t)^{\delta} + (A_m + A_n) E(t) \cdot \]

An integration leads to

\[T^* \geq \int_{E(0)}^{\infty} \frac{d\tau}{A_i + A_j \tau^{\frac{m+1}{m+\delta}} + (A_k + A_l) \tau^{\delta} + (A_m + A_n) \tau} \cdot \]

The proof of Theorem 1 is achieved. □

3. Discussion

This work can be extended to the more general case, that is

\[u_t = \text{div} \left(\left| \nabla u \right|^{p-2} \nabla u \right) + \alpha_t(x) \left| \nabla u \right|^p + \alpha(x) \int_0^t u^r \, dx + \alpha(x) u^{p(t)} - f(x,u,\nabla u) \quad (26) \]

with the following nonlinear boundary condition (4) and the initial condition (5). Here \(f \) is a positive function belonging to \(L(\Omega \times \mathbb{R}^+ \times \mathbb{R}^+). \) Indeed, using (9), and removing the negative term generated from \(f(x,u,\nabla u), \) we have

\[\frac{d}{dt} E(t) \leq - \left(\alpha_t - 1 - nps \right)(psn + 1) \int_0^\alpha \left| \nabla u \right|^{p+1} \, dx + (psn + 1) \int_0^{psn+1} u^{pm} \left| \nabla u \right|^{p+1} \frac{\partial u}{\partial n} \, dx \]

\[+ (psn + 1) \int_0^{psn+1} \alpha_t(x) u^{p(t)} \, dx + (psn + 1) \int_0^{psn+1} \alpha_t(x) u^{p(t)} \cdot (27) \]

For this, we can derive a lower bound of blow-up time \(T^* \) for problem (26) by inserting (17), (19) and (20) into (27) and choosing a suitable \(\chi^* \). But the lower bound of blow-up time \(T^* \) obtained here is smaller than the one in Theorem 1.

Acknowledgement. This work was supported by the Science and Technology Foundation of Guizhou province (Grant No.[2015][2076]) and . The authors are sincerely grateful to the reference and the Associate Editor handling the paper for their valuable comments.

REFERENCES

6. L.E.Payne and J.C.Song, Lower bounds for the blow-up time in a temperature

113
Yudong Sun and Mingxue Qiu

