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Abstract. Minimum spanning tree of a connected graph has rmemwus real world
applications. In this paper, we deal with an urcded connected graph whose edge
weights are imprecise. We find its correspondingiimum spanning tree by using
Borivka's algorithm. The imprecise edge weights of ginaph are expressed as type-2
fuzzy values. A numerical example is given wherecsmpare the minimum spanning
trees and their effective weights of two graphse @ith crisp edge weights and other
with imprecise edge weights.
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1. Introduction
Minimum spanning tree is a fundamental problemhim drea of graph theory which has

many applications in different engineering domaiisually, crisp values are generally
used to represent the edge weights of a connecapth.gBut, in many cases of real world
problems we find it difficult to define their exagtige weights. In those cases we can use
type-1 fuzzy values instead of crisp value to esprthe imprecision of the weights.
However, if these inexact or uncertain edge weidbtsary under certain condition such
as time then it becomes unsuitable to express sitigdition using type-1 fuzzy sets. In
those cases we go for type-2 fuzzy sets as theycapable enough to handle such
situations.

This paper deals with an undirected connected grvepbse edge weights are
type-2 fuzzy values. The weights are compared thighhelp of satisfaction function as
proposed by Lee et dl7]. By applying Bofivka’s algorithm we then find the minimum
spanning tree (MST) and its effective weight by iaddall the edge weights of the
resultant MST applying Zadeh’'s extension princighally we defuzzify the type-2
fuzzy weight of the resultant MST using the critivalue reduction methofiLlO] and
compare the result with the equivalent crisp wegftthe same MST.
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The paper is organized as follows:
Section 2 depicts the preliminary concepts of T2dezzy sets, Regular Fuzzy Variable
(RFV), Fuzzy Possibility Space, and addition ofetyd fuzzy sets using extension
principle. Section 3 discusses the Type-2 fuzajatde, their ranking using satisfaction
function and the measures of a Fuzzy variable, Based reduction method of type-2
fuzzy set and finally its defuzzification using temd method. Section 4 describes the
proposed fuzzy approach of Beka’s algorithm with a numerical example to compare
its result with its crisp counterpart. Section Sadiss the results of the previous section.
And finally Section 6 concludes the paper.

2. Preliminary concepts
We recall some basic concepts of Type-2 fuzzyisetlsis section, the concept of which,

was introduced by Lotfi Zadeh (1975) as an extensibordinary fuzzy set(also known
as “type-1 fuzzy set”).

2.1. Definition type-2 fuzzy set

A fuzzy set of type-21, 2, 3, 4,5] denoted bydis characterized by a type-2 membership
gradei;(x. k), wherex € Xandk € ], € [0,1],where0 = j;(x.k) = 1. Every type-2 fuzzy
set has two types of membership grade namely pyimambership grade and secondary

membership grade. The secondary membership gradbeisgrade of its primary
membership grade. According to the above definitibtype-2 fuzzy sek is the primary

membership grade ani}(x, k) is the secondary membership grade of
In continuous domair can be defined ab =/ edkend :0x. &) / (x. k). ] € [0.1].
If X and J, are both discrete then we defindds

A= Z Z dplx, k) (x. 1), ]y € [0.1]

XEXRE]y
From now onwards we consider only discrete typaz2y set since our work is confined
to only on discrete domain of type-2 fuzzy set.

5 ()
1.0 1

05 T

Figure 1. Membership grade of a type-2 fuzzy set
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2.2. Definition convex type-2 fuzzy set [4]

Let

Ju = Ty kg kg o, ke Ysuch that everyk: €

[0.1]

andk, <k, < - < ki_y < k; < Ky . A fuzzy grad®; wslk) /(k;) inJ, is convex if
for any integers i, | and g the following conditimsatisfied:

wslky) = minfuy (k). us (k) vi = g < IDefinition Ample Field: An ample field
A[8]on U is a class of subsets on U that is claseder arbitrary union, intersection
and complementation in U, where U is the univefsdistourse.

2.3. Definition atom [8]: Let Abe an ample field on U, then an atom containing « is
defined by [u] = [u] 4 2 N{4]x €Al dAisanatomin Aif and only ife = 4 € A, and 4
isindivisiblein A.
2.4. Definition possibility space [9]If Pos. A— [0.1]be a set of functions on A then
Posissaid to be the possibility measure if

i. Pos(gl=0and

Pos() =1, U is the Universe of discourse
ii. For any subclass @#;li € TIof A, where T is the arbitrary index
Seftos(U;.r 4;) = f:ﬁ Pos(A;)
The triplet (U,A, Pos) is the possibility space.
Now we know that a fuzzy variable is well defineite function from Possibility space
to a set of real numbefand the possibility measure of the fuzzy event
{{ e ELE cRis expressed amvs{{ € E} = ™2 us(e).

gEE "

2.5. Definition regular fuzzy variable (RFV) [9, 10: A regular fuzzy variabl@under a
possibility space(UA, Pos) is defined as the measurable map from becpacgn.1],
such thawk € [0.1], {r e U|{(r) = k} € A.

A discrete RFV is expressed as

i~ (B8 ) g e [0 1lamd 0< i <

1vimaxf,u=1 '
2.6. Definition fuzzy possibility space [9]Let Fos: A— ®([0,1]) be a set of function
defined onA such that{Fos(4)] A= Aatom] is a collection of mutually independent
RFVs. Pos is said to be the fuzzy possibility meas[6Eif it satisfies the conditions: (i.)
Fos(p) = 0 (ii.) For any subclas§4;li e T} ofA (finite, countable or uncountable) ,T is

the arbitrary index set.
Pos(Uir 4;) =28 Pos(4;). The triplet (UA, Pas) is called fuzzy possibility space.

2.7. Addition of type-2 fuzzy valuesAddition of type-2 fuzzy numbers is performed by
applying Zadeh'’s extension principle.
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Extension principle: Let X be a Cartesian product of the universe dofcalirse
X=X =X =..xX, and4d,.4,.... 4, be them fuzzy sets in the universal set. Cartesian
product of the fuzzy setsd,4,...4, forms a fuzzy universal set
FiXy=4, x4 x..x4d, whose membership grade is defined as
.“.i,_ni;x...x,-{m(-ri Xxp XX -rrr.J =

minfug, (g, (), oig, Cep)] .

Let g be a mapping function from universal &eto that of another universal siti.e.
gley ®x % xx ) X = W. Then the fuzzy se& inW can be obtained by the functign
and the fuzzy sei, . 4,..... 4, as follows:

a0 =
0 ifg i y) =0
MLy = gy sy iy [mm[.“ A ':xl.l.u.ii (:.I.'::], e u.in(xrr:]]] i

otherwise
where g=*(y)is the inverse image ofyunderg.
Union and intersection of type-2 fuzzy set usaa andmin operators respectively, the

detailed definition of which are given [id].

Addition of discrete type-2 fuzzy Costslet us consider two type-2 fuzzy costs
associated with the adjacent edges of a graph venclexpressed as

A=T%, iz /xanc =T, ds(v)/ysuch thatizx) = I, f(s)/sand

dazlvl = ErE_r}, g(t)/twherer. ¥ are the universe of discourse anfl. = [0.1].Then the
membership grade of + Zis defined as

Vig=ray (BT () =

"‘f11'=.r+_1.' [Esisj_,,r‘,-sjj. {fls)hg (t_i']}r'l{siﬂt_i'}]

whergandj, = [0.1].

Example: Let us consider two type-2 fuzzy values below:
— (02, 08 o6 L 07 _ (e oe 02, oe
i= I:r.\.: + 1.0:]"{2 + {D.B + n.nj"'rg ands = {n.s + D.T:]'H' + {n.s + n.l;:]"'rﬁ
Now, 4 + B=(a;(D)NZ5(4))/6+ (@5(DNT5(4))/ T+ (2D Niz(6))/8+(iz(3)NG5(6))/9
= [EIIEJ'IIJ.Z+UI64"rE|.E+UIBJ'IE|.?_'}":6+[UIE:'IEI.E+UI?J"rEI.?_'}f'r?+
(%302 + "¥0e+ “¥os) 8+ (*¥og+ “Soa+ *T/ns)/s

2.8. Definition centroid of a type-1 fuzzy setCentroid is also known aentre of
gravity or centre of area which is used to obtain the centre of aiggdefined by

) (¥ d .
= 1z e B continuous case and =

T Juldx I, Eal

B Eaxwplx

] .
for discrete case.

3. Type-2 Fuzzy variable
If (U, A, Pas) is a fuzzy possibility space then a type-2 fuzasiabled is defined as a

map from U tdR such that for arye ®, {r e U|{(z) = +} € A

3.1.Ranking of type-2 fuzzy values
To compare the type-2 fuzzy values we use the peghacomparison model by Lee et al.
[7]. This proposed model generally deals with the ephof relative possibility of
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appearance. To understand this concept let us consider tworeliscordinary fuzzy
valuesd == + D—; andg = D—; + D—B_ If we consider thactual value of a fuzzy variable?

thenactual value, av(¥) can have a number of actual values which areiéafly the
possibility distribution off . If we consider our example then;(4) is either2 or éwith
possibility 0.4 and 0.8 respectively. The detail discussion adtual value of a fuzzy
variable is given in next sub sectioBven though we never know whetherdtgd Jis 2

or & but we can surely conclude that the possibilityy$%), Pos(av(4) = 6) = 0.8 is
greater than the possibility @bs(av(4) = 2) = 0.4. Similar assumption can be made for
fuzzy variablé.If we considefav(4) = 6 andav(8) =5 thend will be greater thai# but

if av(4) = 2 andav (&) = 8 thend will be smaller tharf so we cannot conclude whether
A=F ord = B, but we can definitely find the possibility os(4 = E) or Pos(4 = &)

using the membership grade based on the above ptisamf we consider the relative
possibility of a situation®, s(R)} represents theatisfaction degree, i.e. to say if a
proposition 4 = E) exists then its satisfaction degree will be tlegree to which the
proposition is true. In this paper we consider ffa¢isfaction degree only for those
propositions where comparison operafeis. =, =, =} are used. The value of satisfaction
degree always lies betwepnil]. We estimate the measure of this satisfactionegefpr

a given proposition which is termed as taésfaction function, the formal definition of
which is stated in section 3.3.

3.2.Actual value of a fuzzy variable
The actual valuegr (4 )of a fuzzy variabledis the exact valug which is implied by its
possibility distribution ofi and it is expressed ag(4) = v.

Let, the fuzzy value of the height of a 6.2 feadt person is expressed as ‘about 6’ feet
because of observation imprecision. In this cagecan say 6.2 feet is the actual value so
far the height of the person is concerned and ‘abbdieet is considered to be fuzzy
value whose possibility distribution implies thespible location of its actual value i.e.
av{about ) = 6.2. We cannot isolate the actual value from a fuzzye since the fuzzy
value informs about the possible location of amactalue.

Possibility of actual value of type-2 fuzzy set
The possibility distribution of an actual valug of a type-2 fuzzy sef[7]is expressed

as(Poss (av (A) = a;) = T, s Tuyeo(EIWheres and s, ., (s)are the respective primary
and secondary membership grade;ah £ .
3.3. Satisfaction function

As it has already discussed that the possibilisyrifiution of a fuzzy value does not give
the possible location rather than the accuratetimtaf actual value so the satisfaction
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degree can be expressed as the ratio of the cofignired the actual values that satisfies
the mathematical comparison relation to the exaisombination of the actual values.
And this measure is said to be the satisfactiontfan.

Satisfaction function of type-1 fuzzy set [7]The satisfaction function for a satisfaction
degrees(4 = B)is expressed afd = £} and is mathematically defined as

S{H* F} =
E(Irz.}'ﬁEﬂExr:-}';} Pnss{m:{ﬂj = .tk,-“-.m:{g} =¥ ]I

E(xk_}.I}Pnss{m:{H} =:t:k,-“-.m:{§} =¥ }
xy € Acgandy; € Acg
where Aczand Ac; are the set of all actual values &fand £ respectively.= is the
arithmetic comparison relation. Ar&ix; = y;) is the set of all pair of actual values of

and£ that satisfies the relaticfx . = y;). 8(x; = ¥;) is known as theatisfaction set.

Satisfaction function of type-2 fuzzy set [7]:For two discrete type-2 fuzzy set
A=T,pipx)/x and B=X,..d30v)/y such that gzx)/x =X, f(s)/s and
d3(v)/y = Lrey, g(t)/t WhereX,V is the universe of discourse apd, < [0.1]. Now, the
satisfaction degree faw (4) = x andav (£) = y is defined as
({4 =stn(8) =) =B By
fls)x tx g(t) We

now define the satisfaction function fdrand 2 as
S endohy (v (4) = suav ) =)

E[Jk.y;}EwKJ i ('5”“' (‘ﬂ = "‘il‘""”(g] =1 :l
By e (2) = mied) =)

Lo v 5 (@ (4) = s (8) = 1))

Singesde (o0 1) = 50108 )

S yeciy s(av (£) = xhav(8) = y,)

where,y(X = B) is thesatisfaction set consisting of all possible pairs ¢f, . y;) which
satisfiesav(X) = av( B); w(Z = ) is thesatisfaction set consisting of all possible pairs of
(x. y;) Which satisfiesav (?:] = av( B)py(X < ) is thesatisfaction set consisting of all

s(i-8)=

s(i=8)=

5(5::§):

possible pairs ofx, . y;) which satisfiesw (?) = av( B) and

S(A>8)+s(X=8)+s(X<f) =1
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3.4. Measures of a fuzzy event [10, 11]

For a fuzzy variable] having a membership gragg(x) and for any set = ® the

three measures of namely Possibility, Necessity and Credibility maeag7] are
expressed in below:

l. Possibility measure:For a fuzzy ever{  Githe possibility measure of which is
defined asfos{{ € G} = TSiuz(x)

Xeb
Il. Necessity measureFor a fuzzy everi{ € Githe necessity measure of which is
defined aﬁ'ufec{( £ G} =1- Izgxu?{x:]

3.5. Credibility measure: For a fuzzy ever{  Githe credibility measure of which is
defined as

f*r[f E C—} = % [Pus{( E G}-I-

Neﬁ:‘{(e G}]

Critical values of RFVs: In this section three different types of CriticahlMes{CV) as
proposed by Qin et dl10] are considered.

L For a RFVZ, the optimistic CV of , TV[{ ] is expressed as

cv[¢] = 2 [eAPos{{ = al].

g0

1. The pessimistic CV of , cv[Z] is expressed agy[Z] = o _laANec{l > a}]

1. The CV ofg, cV[{], is expressed ag[¢] = ¥ [aACr{{ = al).

Ee[DL]

Example: Let ¢ be a discrete RFV, where {~( 22 28 U2 ) then,

1.0 e < 0.6
Pos({za) = In.w 0.6 <o = 0.8
0.0 ;08<a=1.0
1.0 o= 0.4
Necl = a) = 10.15 04 <o = 0.6
0.0 ;06<a=1.0
1.0 ra < 0.4
r(tsa)=| 0575 :04<a =06

0.235 ;06 e =< 0.8
0.0 :08=a=<1.0
Now, CV|{] = = [u:,-"'-,Pu:us{( = ol

ae[0.1]
- n‘E[DDE\.{n/\ ﬁlUJVEEIDED&{aA N0.4T)
VQE.DQM{QM 0) = (0.6V0.47v0.0) = 0.6
cvlZ] = ::If [a/\Necll > al]

= r:E[nn.:t (el ijcs.mn g (@D 15:]1"'"Infslnﬁ 10":':"'“"0 0) = (0.4V0.15V0.0) = 0.4
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cvie] = [[] 1] [@ACe({ = a})= E‘E[L‘L‘A«.{a/\ ALOV oo Bkl a{“/\ M0.575)
Ve D.-,,, g{m"sﬂ 233V e, Dm {eA0.0) = (0.4v0.575V0.235V0.0) = 0.575

2.5.CV-based reduction method

As proposed by Qin et diL0] CV-based reduction method for a type -2 fuzzy \Heia
is defined as follows:

For a fuzzy possibility space (W, Fos), the secondary membership gratiéx) for a

type -2 fuzzy variable/ can be reduced to a representing value for R, These

representing values are the CV's Bfs{r € U|{(z) = x).

3.6. Defuzzification of type-2 fuzzy set

Once we apply CV-based reduction method on a tyjue2y variable the resultant fuzzy
variable is reduced to type-1 fuzzy variable whichurn is crispified by Appling the
centroid method.

4. Fuzzy minimal spanning tree
The most fundamental concept in classical grapbrthis to find the minimal spanning
tree of an undirected graph since this conceptieasy application in engineering fields.
A spanning tree of a grapfis an acyclic sub-graph dfthat includes every vertex of
zand is connected; every spanning tree has exactlyedges where is the number of
vertices of the graph. A minimum spanning tree (M&Ta spanning tree of minimum
weight which is defined to be the sum of the wesghtt all its edges. Our problem is to
find the MST of G The deterministic case of this concept considezettact weights or
cost associated with the edges of the graph, bptdntical case this may be a serious
restriction as cost of the edges may well be imipecor even the vertex set and/or the
edge set of a graphical structure may also be iciggeThe simplest way to handle these
imprecision is to express the graph as a fuzzytgrap

There are several ways of classifying a fuzzy grapich are:

» Type |— Fuzzy vertex and fuzzy edge sets.

* Type Il — Crisp vertex set and fuzzy edge set.
* Type lll— Fuzzy vertex set and crisp edge set.
* Type IV — Crisp graph with fuzzy weights

In our case, we consider fuzzy graph of Type IWopttie cost of which are expressed as
the type-2 fuzzy value and we use Bd@’s algorithm to find the minimum spanning

tree of a crisp graph and its fuzzy version andlfincompare the length of the spanning
tree for both the fuzzy graph and its crisp version

Type-2 Fuzzy weighted graph

We can express the inexact costs of the graph gyfweights. But there are certain

cases where type-1 fuzzy weights become inefficiétite weights of an edge of a graph

may vary with time, or if we consider the cost bé tedges of a graph according to the
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opinion of different experts, it may happen that texperts opinion about the weight of
an edge differ. A type-2 fuzzy set outperformsetypfuzzy sets as far as modeling of
these scenarios is concerned. In this paper, wes hesed two operators namely
comparison and addition, that are both necessasgrtypare the costs associated with the
edges of the graph and to calculate the effectivbeminimum spanning tree. We will
then crispify the resultant weight of the MST oé thuzzy graph and compare the same
withits crisp counterpart. For simplicity, in ourgposed problem only the discrete
normal or sub-normal convex type-2 fuzzy valueslmanised.

4.1. Bonivka's algorithm [13]
One of the greedy strategies for finding the minimspanning tree of a graph is the
Borivka's algorithm which runs ifmlagn) time;m is the number of edges ands the
number of vertices of the graph. The basic ide8anivka’'s algorithm is to contract
simultaneously the minimum weight edges incidenteach of the vertices in a graph.
This algorithm is suitable for parallel computasosince the algorithm builds the MST
uniformly throughout the graph. We have used thievigng notations in the rest of the
paper:
e A graphs, ¢ = (1%.E.) wherel; is the set of the vertices aFd is the set of the
edges.
s v is thek! vertex ofl;
* gyis the edge connecting the verticgsnd v;
* M is the minimum spanning tree of the gr&&ph
* Mis the minimum spanning tree tfwhere:; c .
* c(ey;) is the deterministic cost associated with the edgd connecting
verticegr andv;
*  E(ey) is the type-2 fuzzy cost associated with the eglgs ¢
e (M) is the deterministic cost ¢f
e Z(M)is the type-2 fuzzy cost @f
An implementation of Baivka's algorithm is as follows:
a.The edges to be contracted are marked first.
b.Determine the connected components formed by thkedadges.
c.Each of the connected components is replaced mgke srertex.
d.Eliminate the self loops and the parallel edgeateby these contractions.
e.lf ¢ is the resultant graph formed from the origialafter a Boiivka’'s
algorithm. The MST of: will be the union of the edges marked for contoact
during the same step with the edges of MSF .of
In our numerical example we discuss the crisp amdpooposed fuzzy approach of
Borivka's algorithm based on which we will compare éfiective cost of the MST’s of
a fuzzy graph and its crisp version in the nextisac
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4.2. Proposed Fuzzy approach of Bavka's algorithm
Input: For any graphG = (V;.Ez) , 6 = (V,.E;)where v, c V;andE, C E;
Output: M, resultant MST

Step 1. Me—EmptyGraph

Step 2; foreachv,inl.do

Step 3: Calculate the satisfaction function between a possible pair of
edges incident on vertex v, i.e.{E{e;l.J.-} = (e, ), where ‘= 'is the arithmetic
comparisonrelationi.e. ("<, '=" and' = .
The cost &(ey; ). is selected as minimum between the two, Z(e;;) and
Eley) if S(&(ey; ) = &(ey)) has the largest value among the three satisfaction
functions:
(5(E( ;) < E(ew)). S(Ee;) =
E(e)) andS (é(eg;) > E(ea))}
Repeat Step-3 among every pair of edges(e;;. e,) incident on
vertex v, and finally select the edge say, e;; having the minimum cost.
Step 4:M«M + { e}
Step Send for
Step 6:6G —Gwithalled ges inMcontracted
Step 7: M —Recursively compute the MST of '
Step 8:returni—M + M

5. Numerical example

In this section we find the MSTs of a crisp anduazly graph and compare the
deterministic costz (M) of M with that of defuzzified type-2 fuzzy cost of MSEa) of
the fuzzy graph and finally calculate the perceatdifference between them.

Let us now consider the crisp graph and we appdydtisp version of the Bdavka's
algorithm to get its corresponding MST. We desctfisesame in detail as follows:

We consider a grapishown in Fig.2:

\ 5 Vs

11

\A 8 Vi

Figure 2: A graph G

After 1 iteration the highlighted edges are addel iwhich is depicted in Fig. 3
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(/ A1 g Va
NE - “
N7 ~ )
11 12
T T~ _-T TN
- ~—— \
\ 8 |
N Vs P Ve /
\\‘// \\\ /I

Figure 3: Edgese,,and ey are selected after” iteration of Bofivka’'s algorithm
After 27 iteration we get the required MST which is showifig. 4:

Figure 4: Edgese,;. #;; ande,are selected aftgrd iteration of Boiivka’'s algorithm

We observe that we get the MST afa%f iteration which is described as
M = {85, 8,2 andes,} aNde (M) = cley,) +cleyn) + cleqy ) = 24

Now we consider the fuzzy approach of Bda@'’s algorithm. In this case, we list
out the cost associated with the edges of the gitapltted in Fig. 5.

0.25 0.63 040 028 069 057
How) =l(gy o3 tool/A+ g toat o5 )%
%oaz * .65 , 062 035 045
F{9193={{U+ Uﬁ ]f'rE' (Ua+n++nﬁjf’1‘}}
N o &P o8 060 0.61 0.59
Eles) = (G5t 0810075 (e Toas T 10/
N 08 08" 05" 093 0.45 0.32
Eleyy) = GatostoaV?t Gzt 07 Toos /1!
v tle)
£ley ) Ele,,)
Va 5{934:] Va

Figure 5: A graph& whose edge costs are type-2 fuzzy values
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Now while applying the fuzzy approach of Beka’s algorithm we calculate the
satisfaction functions for every pair of the edigesdent on each of the vertices®f
We give a sample calculation of the satisfactiarcfion by considering the vertex

We calculate the satisfaction function of the revimgj pair of the edges @fand
tabulated them below:

Table 1: Satisfaction function for different pair of fuzegsts

Ve | Considering | SatisfactionSe: Satisfaction Functior
re | (Eex).2(e))| p (2(eyy) = Eleyy)) 5 (8(er;) = Gei))
v | (Eern), e} | ¥ (Elen) < Be)) = ((4.8) (4.10),(68), 614} | 5 (ECesy) < E(ers)) = 0.6018
w(é{elj—é{elg]):{a} 5 (Eeyy) = E(era) ):03931
¥ (Eery) = &eyy)) = (o) 5(2ery) > 8ey)) = 0
vy | (e E(e2)) | (Eeyy) < Eleny)) = ((4,9), (4,15),(8.9), | 5 (Elesy) < Ele, 41):
v (8ery) = &) = () 5 (Eey) = Eep) ) = 0
¥ (8eyy) = &) = () 5 (#ey) > &, 4:1):
vs [ (&(ess).Eenn)) | (Eeny) < Eley)) = 1(6.8), (6,14), (3,14) s(5<g,43=:c<g,13)=
¥ (8es) = &eay)) = () 5 (ECeay) = Elez) ) = 0
¥ (8(ess) > &(ez,)) = ((9.8)) 5 (#(ess) > &esy) ) = 0.3014
v | (Eesa) E(ean)) | v (Beya) < E(ey)) = 1(6.9),(6,15), (9,15) 5 (E(eyy) < &ey) ) = 0.7
¥ (8eyy) = &(ey)) = ((9.9)) 5 (Eeys) = Eley)) = 02
v (Ees) = 8ey)) = (0 5 (Eeys) > Eey) ) = 0.0

Iteration -2In the second and final iteration, the minimum vistigdge out of each of the tv
remaining components is added.

¥ (8les) = Eer) ) = ((8.9).(8.15), (14| 5 (Eles) < &(ez,)) = 0.8069
(€leys), E(ezs)) t,f:(f'ielg] — 5{924]) - 5(5{9123 — 5{9:4]) 0.0
¥ (Eeys) > &epy) ) = ((14.9)) 5 (Ees) > E(ey)) = 0.1930
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N ~__
Figure 6: Selectecedges aftell® iteration of Borivka’s algorithm (fuzzy approach)

After 1** iteration of Bofivka's algorithm (fuzzy approach) edges, ande;, having
COst$(e,.) and &g, Jrespectively are added i as shown in Fig-6.

S—. - AN

~— R

Figure 7: Edges e,..e,; ande,are selected aftez™ iteration of Bofivka's algorithm
(fuzzy approach)

After 274 jteration of Bofivka’s algorithm (fuzzy approach) edges, e, ande,, having
costs Elg,.), £le,,) and Z(e,,respectively are added ¥ and it becomes a MST for
the fuzzy graph under consideration as depictddgn?.
We observe that by executing the fuzzy approacBafivka's algorithm recursively
minimal spanning treeM exactly matches with that of its crisp version
i.e.M = {e,;. e, ande;,} and
E) = E{FL:] +E{913] + 5{934]
= {(0.25/0.2 + 0.63/0.4 + 0.49/0.5)/18 + (0.23/0.2 + 0.61/0.2 + 0.49/0.5)/21
+00.28/0.3 + 042/0.4 + 0.65/0.5 + 0.37/0.6) /22
+00.25/0.2 + 029/0.3 + 047 /0.4 + 0.24/0.3) /24
+00.20/0.3 + 042/0.4 + 0.61/0.5 + 0.57/0.6)/25
+(0.25/0.2 + 029/0.3 + 0.47/0:4 + 0.44/0.5)/27 + (0.29/0.3+ 0.47/0.4 + 0.44/0.5)/20
1 (0.20/0.3 | 047/0.4 1 0.44/0.5)/31]
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Now we defuzzify#iary using cv-based reduction methd@] for which we calculate the
possibility, necessity and credibility measureg@f
0.63 va = 0.4
0.49:04 <« o =0.5
0.0;05 <a < 1.0
1.0 vee = 0.2
Nec(ipp(18) z a) = ]n.?a 02<a =04
0.37;04 <o = 1.0
0.815 ;e=02
0.69:0.2 < a = 0.4
0.43:04 « &= 0.5

U 185:05 <o =1.0
CV [ (18)] = [U 1] [e/\Pos{i a1, (18) = al]

= E’E[DDA {a"ﬁ":l ﬁEJVEElﬂ'A 5] {u:,-“-.[l 4'9:]\""' E’ElDE-lD {a"ﬁ":l U:]

= (0.4V0.49V0.0) = 0.49

. sup
CV[-'J X {18:]-' =
ce|lLL

Pus{ﬁﬁm{iﬂj = '5‘} =

CT{IJE.:M:.{IE:] = a} =

h:t,-“-..“lecm;.-m (18) = a}]

= EE[DD {u:_,n“n,j_ U:]VEE [0.2.0.4] {m“-.[l TSJVEEDA lﬂ'{a"ﬁ'n 3?:]
= (0.2V0.4V0.37) = n 4
CV [ (18)] = [aCrif g, (18) = o]

r:E[DE' (@0 ElSst (0.3,041 (/0. MWEE (040,51 (hDA3)V
= (0.20.4V0.43Y0.185) = 0.43
Similarly we get,
Wity (20)] = 048, CV[my (20)] = 04 CV [yl 91] 0.4, ¥ iarn 220] = 0.57, (Vi (22)’
= 0.3, (V[ (22)] = 05, TV [y (24)] = 044, €7 [ 24)] = 0.53, W]y (24)]
= 0485, (V] (25)] =057, C"[Iuls._m{EEJ] = 05,0V [0 29)] = 05, OV [ 200 (27)]
— 044, V]2, 7)) - 0.53, 0V g (27)] - 0485, Ty (28)] - 044, €V [, (28)]
=033 CV[{ 200 28)] = 0,485, TV [y 3] = 2.4, CV]iigep (31)] = 033, €V [0 (30)]
= 0485

[n f
@/\0.185)

RE| IZ'E-iD (

Now when we have gd7[¢],cv[#] andcvi] forZar) we have three different type-1
fuzzy sets derived fror#garjwhich are as follows:

Optimisticgyy = (0.49/18 +0.49/21 + 0.57/22 + 0.44/24 +0.57/25 + 0.44/27 4 0.44/28
+ 0:44/31) Pessimist ic gy

= (0.4/18 +0.4/20 +0.5/22 + 0.53/24 + 0.5/25 + 0.53/27 + 0.53/28 + 053/31)
Moderatsyyy = (0.43/18 1 0.44/21 | 0.5/22 1 0.485/24 | 05/25 | 0.485/27 | 0.485/28 | 0.185/31)

Calculating centroid of each of the above typeZizjusets we get:
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CEM gptimistic oy,
{(18%049) + (20 % 049 + (22 % 0.27) + (24 £ 0.44) + (23 % 07) + (27 x 0:44) + (28 x 0.4 + (31 % 0.44)}
(0.4 + 049 4 057+ 0.44 + 057 + 044 4 0.44 + 0.44)

B 043 _
T8
CEMNpgzzim Ll pgy

If we consider the value &fnyggerge ., We can conclude that the cost of the MST of the

= 24.84 andeenogerate, ,,, = 24.62

|'-' Ehmoderateg, . ~F :-:'I:'|

fuzzy graph is more than its crisp version-by

— x 100 = 2.58%

6. Results and discussions

In the above example we have find the MSTs of spcaind a fuzzy graph respectively.
We observe that in both the cases the correspoMdBifis constitute the same arcs i.e.
M = {e,;. ,; andes, 2. Henceforth, we compare the deterministic ce&t) with that of
defuzzified type-2 imprecise cost of MS#M] of the fuzzy graph and observe that
crispified (m) is more thas(M) by 2.58%. In the above example, while constructing
£(M) we have used the concept satisfaction functiocotapare the associated type-2
fuzzy costs of the edges. After the completion &Twe calculate (M) by finding its
possibility, necessity and credibility measures éindlly used the cv-based reduction
method to crispify® (7).

This work of implementing Baivka's algorithm on a type-2 fuzzy weighted graph is
unique in the literature hence numerical comparisfothis work with other works could
not be done.

6. Conclusion
In this paper, a modified Bavka’s algorithm on a type-2 fuzzy weighted grapk baen

explained. The proposed method is based on thebgigstheory for type-2 fuzzy
weighted graph. We have consider a simple grapBigalience to explain our proposed
method, since at present the most serious conealing with possibility based approach
of type-2 fuzzy sets is the computational compilexas we have to calculate the
satisfaction function of every possible pair of esigncident on a particular vertex of a
fuzzy graph. For graphs with larger size and ordersputer programs can be written for
the proposed method. But as we increase the sizk omder of the graph the
computational complexity also increases rapidlyckigventually makes this problem of
NP class.
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