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1. Introduction 
Approximate controllability plays a vital role in engineering and science. Many authors 
have studied the problem of controllability for various kinds of differential and impulsive 
differential systems using different approaches, see [4, 5, 13, 16, 26] and the references 
therein. Most of the papers deal the problem with fixed time impulses, but in real time 
situation it need not be at fixed times may be at random time. When the impulses exist at 
random times, then the solutions of the differential equations are a stochastic process. It is 
very different from deterministic impulsive control systems and also it is different from 
impulsive stochastic control systems. Thus the random impulsive equations give more 
realistic than deterministic impulsive actions. There are few publications in this field, Wu 
and Meng first brought forward random impulsive ordinary differential equations and 
investigated boundedness of solutions to these models by Liapunov’s direct function in 
[21]. Wu et al., studied some qualitative properties of random impulses in [22–25]. In [1], 
the author studied the existence and exponential stability for random impulsive semilinear 
functional differential equations through the fixed point technique under non-uniqueness. 
The existence, uniqueness and stability results were discussed in [2] through Banach 
fixed point method for the system of differential equations with random impulsive effect. 
In [3, 17–19] the author studied the existence results for the random impulsive neutral 
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functional differential equations and differential inclusions with delays. In [27], the 
authors generalized the distribution of random impulses with the Erlang distribution. 

Motivated by the above mentioned works, the main purpose of this paper is to 
study the approximate controllability of random impulsive integro semilinear differential 
systems. We relaxed the Lipschitz condition on the impulsive term and under our 
assumption it is enough to be bounded. We extend the results to densely define 
differential systems to fill the gap in the approximate controllability of abstract 
differential systems. To the best of our knowledge, there is no paper which studies the 
random impulsive integro differential systems. We utilize the technique developed in [6, 
7, 8, 11, 13, 14, 15, 20, 23, 26].  

The paper will be organized as follows: In section 2, we recall briefly the 
notations, definitions, preliminary facts which are used throughout this paper. In section 
3, we study the approximate controllability of random impulsive integro semilinear 
differential systems.  
 
2 Preliminaries 
Let X be a real separable Hilbert space and Ω a nonempty set. Assume that �� is a random 
variable defined from Ω to ��= (0, ��) for k = 1, 2, ..., where 0 < �� < +	∞.  
Furthermore, assume that �� follow the Erlang distribution, where k = 1,2,...., and let 
��and �	 are independent with each other as i ≠ j for i, j = 1,2,.., . For the sake of 
simplicity, we denote     �� = ��,+∞), �� = �0,+∞).	  
We consider a semilinear integro differential system with random impulses of the form 

             x′(t) = Ax(t) + (Bu)(t) + � � ��, �, �����)����,�
  t	≠ !�,                      (2.1) 

             x(!�) = "�(!�)x(!�#),   k = 1,2, ....,                                                         (2.2) 

                 ��$ = φ,                                                                                             (2.3) 

where	%: ��%) ⊂ 	X → X  is a closed (not necessarily bounded) linear operator whose 
domain need not be dense in *, that is ��%)+++++++ ≠ *; �: ∆*. → *, �:�� → ��, . =
.��−0, 01, *) is the set of piecewise continuous functions mapping �−0, 01 into * with 
some given 0	 > 0; 	3: �� 	, 41 → 5  is the control function spaces, 6: 7 → 8 is bounded 
linear operator, *� is a function when � is fixed, defined by *���) = *�� + �) for all 
9:	�−0, 01; ! ;		�   and !� = !�#< + �� for = = 1,2, . .. here � ∈ 	�� is arbitrary given 
real number.  The impulse moments {!�} form a strictly increasing sequence, that is 
� =	! <	!<) < 	 !D	) <. . . . . < 	 EFG�→H!�	 = ∞;  "�: �� → *	for each = = 1, 2, . . . . .,
��!�#) 	= 	 EFG�↑JK ���) according to their paths with norm ‖�‖� = 		�3M	|���)|	, � − 0 ≤
� ≤ �.  For each � satisfying t ≥ t ≥ 0, ||.|| is any given norm in �; 	∅ is a function defined 
from �−0, 01 to *, here ∆ denotes the set {��, �):	0 ≤ � ≤ � < ∞}.	
 The simple counting process is denoted as {	Q�	, � ≥ 0} and it is generated by 
{!S}, that is, 	{Q� ≥ T} = {!S ≤ �}, and denote �� the � − UEQV"0U generated by	{	Q� ,� ≥ 0}. Then �W, X, {��}) is a probability space.  Let YD = YD�W, ��, *) denote the Hilbert 
space of all ��-measurable square integrable random variables with values in  *. 

Assume that 4	 > 	�  is any fixed time to be determined later and let Z denote the 
Banach space 6��� − 0, 41, 	YD), the family of all �� −measurable, .-valued random 
variable c  with norm 
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																									‖c‖d = � 		sup
��$f�fg

h‖c‖�D)	</D  
        
Let	YD �W, 6) denote the family of all 	�  - measurable, 6	– valued random variable φ. 

Definition 2.1. The control system (2.1) is said to be approximately controllable on 

�� , 41	if for any ! > 0, the intial function φ	:	. with φ�� )	:	��%)+++++++ and �<: ��%)+++++++, there 
exists a control u	:	7 such that the integral solution (.) of (2.1) satisfies 

                        h||��4) − �<||D ≤ 	!. 
Let ���φ�� ), 3) denotes the state value of the system �2.1) at time corresponding to the 
control 3	:	7	and the intial value φ�� ). Now we introduce the following set, which is 
called the reachable set of the system (2.1) at terminal time 4 

                         jg��) = {���φ�� ), 3); 3	:	7}. 
A control system is said to be approximately controllable on �� , 41,	if jg��) is dense in 

��%++++++).        i.e.,  jg��)++++++++ = 	��%)+++++++. 
The linear system (2.1∗) is obtained by putting �	 ≡ 	0 in �2.1)	and is denoted by �2.1∗).  
The linear system �2.1∗) is approximately controllable if the reachable sets 	jg��)+++++++++ =
	��%)+++++++. 
Throughout, this work the operator A is assumed to satisfy the following Hille-Yosida 
(HY) condition. 

Definition 2.2.  We say that a linear operator A satisfies the (HY) condition.  If there 
exist constants    M ≥ 1	 and ωm :	�  such that (ωm,+∞) ⊂	n(%)	and 

																							95X{(q −	ωm)Sr|�(q, %)S|rD:	T	:	s	and		q > 	tm } 	≤ u, 

where �(q, %) = (qv − %)#<. 

Theorem 2.1.				The following assertions are equivalent:				
(i) A is the generator of a non-degenerate, locally Lipschitz continuous integrated 

semigroup; 
(ii)  A satisfies condition (HY). 

 
It is well known that above condition is equivalent to the fact that operator A is the 
generator of a locally Lipschitz integrated semigroup ((9(�))�w 	on X see 	[9, 10, 14].  
Let %  be a part of A defined by 

�(% ) = {�:	�(%):%z	:	�(%)+++++++ 
% � = %�, {|0	UEE		� :	D(% ).                                                        (2.3) 
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Then %  generates a . semigroup �S�t − � ))�w�$  on  ��%)+++++++ 
 
Definition 2.3. For a given 4 ∈ �� , +∞),	a stochastic process {���)	:	6, � − 0	 ≤ � ≤
	4	} is said to be an integral solution to the equation �2.1) in 	�W, X, {��}), if 
(i) ���):	6  is ��- adapted for  	� ≥ � 	; 
(ii)  ��� + �) = φ	��)	: YD �W, 6), when 	�	:	�	−0, 01 and 

             ���) = ∑ 		�		∏ "���;< ���)9�� − � )��0)	�	�H�; 		v�JK,JK��)(t)	
														+lim�⇢H 		∑ 	�H�; 	 �∑ ∏ "	��	�� 9�� − �).�q)�63��) + {��, ��)1��	 +J�

J���
�	;���;<

												� 9�� − �).�q)�63��) + {��, ��)1���
JK �	v� J K,JK��)

,									t:�� , 41																									�2.4)										
	where .�q) 	= 	q��q, %);  
∏ �. ) = 1	U�	G > T, ∏ "	����	 =�	;�S	;� "����)"�#<���#<)…"����), UT�	v��. ) is the 

index function, i.e., 

           		v��t) = �1, if	� ∈ A,
0, if	� ∉ A	.		�					 

Define the following functions 

          �: YD�� , 4, .1 		→ 8 

                                   		���)��) 	= 	� ���, �, �����)���; � ∈ YD�� ,4; .1�
   

         Y: 8 → ��%),+++++++ 
                                              Yz = lim�→H � 9�� − �).�q)���)��.g

  
It is clear that Y			is a well defined bounded linear operator and for the well posedness of 
operator 	�  see [12]. 

3.  Main results  
Now we introduce following hypotheses used in our discussion: 

(�<)  The linear system (2.1∗) is approximately controllable up to ��%)+++++++  
(�D)  ���) 	⊆ 	��6)+++++++ 
(��) The function �: �� , 41	*�� 	, 41*	.	 → * is continuous and it satisfies the 

Lipschitz condition with respect to �. 
         ‖F(t, s, �<) − �(�, �, �D)‖D ≤ L(t, s, ‖�<‖D, ‖�D‖D)‖�< − �D‖�D	, (�, �) ∈ ∆,  

�<, �D ∈ *, 
where Y: [� , 4]	*	[� , 4]	*��*�� → �� and is monotonically nondecreasing with 
respect to the second and third arguments, and ||�(�, �, 0)||D ≤ =<, =< ≥ 0. 
(��)		h	 �	max�,�		

	�∏ ‖"	(�	)‖�
	;�  		¡    is uniformly bounded, that is , there is . > 0 such 

that h	 �	max
�,�		

	�∏ ‖"	(�	)‖�
	;�  		¡ ≤ .  	 for all �	 ∈ �	,   ¢ = 1,2, … .. 

 
Theorem 3.1. Let the hypotheses	(�<) 	− 	(��) be hold. Then the system (2.1) is 
approximately controllable. 
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Proof: Let ���) be the integral solution of (2.1∗) corresponding to control u in � ∈
�� , 41, which can be written as 

             ���) = ∑ 			�H�; �∏ "����)9�� − � )��0)					��;<  	v�JK,JK��)��)              											�3.1)            
	                      + lim�→H∑ 				�H�; �∑ ∏ "	��	�� 9�� − �).�q)63��)��J�

J���
�	;� 	��;< � 

                       + �� 9�� − �).�q)63��)���
JK �  v�JK,JK��)��), 

Since �z ∈ ��6) for a given ! > 0 there exists a ¤ ∈ ¥ such that 
                                      ||�z − 6¦|| ≤ !.                                                                      �3.2) 
Now, let §��) be an integral solution of �2.1) corresponding to the control u-w, then 
        ���) 	− 	§��) 
                     = lim�→H∑ 				�∑ ∏ "	��	)�	;� 	� 9�� − �).�q)6¤��)��J�

J��� 	��;< �	�H�;  

                          �+	� 9�� − �).�q)6¤��)���
JK �   v�JK,JK��)��)   

                         −		lim�→H∑ 		�∑ ∏ "	��	�� 9�� − �).�q)��̈ ��)1��J�
J���

�	;� 	��;< �			�H�;     

                         �+ � 9�� − �).�q)�̈ ��)1���
JK �  	v�JK,JK��)��) 

                = lim�→H∑ 				�∑ ∏ "	��	)�	;� 	� 9�� − �).�q)�6¤ − ��1��)��J�
J��� 	��;< �	�H�;  

                       	+	 �� 9�� − �).�q)�6¤ − ��1��)���
JK �  v�JK,JK��)��) 

                        + lim�→H∑ 		�∑ ∏ "	��	�� 9�� − �).�q)��� − �§1��)��J�
J���

�	;� 	��;< �			�H�;  

                        + �� 9�� − �).�q)��� − �§1��)���
JK � 	v�JK,JK��)��) 

Since 

             ‖.�q)‖D ≤ �©
�#ŵ → u,	as q → ∞ 

Then, we have 

 ‖���) − §��)‖D ≤ 2	 �∑ 				�∑ ∏ ‖"	��	)‖�	;� 	��;< � � ‖9�� − �)‖‖.�q)‖‖�6¤ −J�
J���

�H�; 
��1��)‖���                          
 ��+ � ‖9�� − �)‖‖.�q)‖‖�6¤ − ��1��)‖���

JK �		v�JK,JK��)��)�
D
 	  

 +2	�∑ 		�∑ ∏ ‖"	��	)‖�	;� 	��;< �		�H�; � � ‖9�� − �)‖‖.�q)‖‖��� − �§1��)‖��J�
J���  

                              ��+ � ‖9�� − �)‖‖.�q)‖‖��� − �§1��)‖���
JK �	v�JK,JK��)��)�

D	  
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  ≤ 2�u«u D �	max�,� �1,∏ ‖"	��	)‖�	;�  �D* 

¬� ‖�6¤ − ��1�
�$ ��)‖��v�JK,JK��)��)­

D
                           

+	2�u«u D �	max�,� �1,∏ ‖"	��	)‖�	;�  �D* ¬� ‖��� − �§1�
�$ ��)‖��v�JK,JK��)��)­

D
 

h‖� − §‖�D ≤ 2�u«u Dmax{1, ®D} �� − � ) � h‖�6¤ − ��1��)�
�$ ‖D��   

                   +	2�u«u Dmax{1, ®D} �� − � ) � h‖��� − �§1��)�
�$ ‖D��                      

																						≤ 2�u«u Dmax{1, ®D} �4 − � )D ! 
                    +	2�u«u Dmax{1, ®D} �4 − � )D � Y��, �, h‖�‖D�

�$ , h‖§‖D, )h‖� − §‖�D�� 
Taking supremum over �, and by Grownwall’s inequality we get, 

    ‖� − §‖dD ≤ 	2�u«u Dmax{1, ®D} �4 − � )D!	exp�2{ūM}Dmax{1. .D}�4 − � )D 

                         								� Y��, �, h‖�‖D�
�$ , h‖§‖D�� 

From the above inequality, it is clear that   ‖� − §‖dD  can be made arbitrarily small by 
choosing suitable w.  It follows that reachable set of the system (2.1) is dense in the 

reachable set (2.1∗)	 whichis dense in D�A)	+++++++ due to condition (�<).  Hence the theorem is 
proved. 
 
Theorem 3.2. Under assumption of the above theorem, system (2.1) – (2.3) is 
approximately controllable if its corresponding linear system is approximately 
controllable. 
Proof: The proof is a particular case of Theorem 3.1 at ∝= 4. 
 
Remark 3.1. If  D�A)	+++++++ = *, then the operator A generates a .  semigroup, then by taking 
mild solutions instead of integral solutions same proof leads us to the approximate 
controllability of the system (2.1) in the full space *.  Hence the above theorem 3.1 is an 
extension of the results for densely defined control systems. 
 

Remark 3.2. If the impulses are exist at fixed times in the system �2.1)	–	�2.3), then by 

the similar argument as in the Theorem 3.2, the system �2.1)	–	�2.3) is approximately 
controllable. 
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