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Abstract. Double exponential smoothing is an effective tool of denoising used in signals. 
In the present work an effort has been put up to structure the formulation of double 
exponential smoothing in the form of matrix equation from which some important 
observations can be made which gives an inner vista of the process. In addition to this an 
analytic study has been incorporated to identify whether there is any change in the 
memory of a discrete signal with linear homoscedastic memory after employing double 
exponential smoothing in it. It has been observed that the memory of a discrete signal 
governed by autoregressive method of order 1 becomes heterogeneous while order 2 
autoregressive method probably becomes random on application of double exponential 
smoothing. 

Keywords: Double exponential smoothing, Memory of a signal, Linear homoscedastic 
signal, Autoregressive method.    

1. Introduction 
The physics behind the business of signal processing is to explore the information about 
the physical source from which signal is being generated. The study of a signal not only 
explores the internal dynamics of the source but also can predict the future prospects of it. 
It provides the validation of theories and models as well as their improvements. Analysis 
of signals sometimes can give birth to a new theory or model. Now-a-days it is a burning 
deal in statistical signal processing to comprehend and explore the memory, self affinity, 
nonlinear and complex phenomena in signals. But in reality the problem is that any kind 
of signal either from an experiment or from a dynamical system, or from any economic, 
sociological or biological aspect, usually contains systemic or manual error. This error is 
coined as ‘noise’. Noise can be treated as the unwanted part of a signal. Analysis of such 
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signal in presence of noise often leads to a wrong interpretation of it. So we need to 
develop an initial platform by denoising the signal from which we can start the extensive 
study on it. Filtering/smoothing a signal is always an indispensable task to deal with in 
signal processing.  
 Double exponential smoothing [1, 2, 3, 4, 5, 6] is a useful tool to denoise a 
signal. Basically it is very much useful in those signals where somehow trend is very 
much present. Trend in a signal is a slow, gradual change in some property of the signal 
over the whole interval under investigation. Double exponential smoothing can remove 
the trend efficiently to give a good platform for further analysis from the Detrended 
signal.   

The motto of our work is to represent the process of double exponential 
smoothing in a convenient matrix equation form from which we can explore different 
important properties involving the parameters. In addition to this the present work 
focuses on the application of double exponential smoothing on linear homoscedastic 
signals (kind of homogeneous discrete signal in which functional representation of 
memory remains the same throughout the signal) [7, 8, 9, 10, 11, 12]. As autoregressive 
model [13] is a very good example of linear homoscedasticity we have considered 
discrete signals governed by autoregressive method of order 1 and 2 only in the present 
study to understand the influence on the memory.  

 
2. Theory 
2.1. Matrix formulation of double exponential smoothing 
The method of double exponential smoothing [1, 2, 3, 4, 5, 6] is governed by the 
following system of equations shown below 
                                                 
                                                   x1

(p)  =  x1  ;  b1 = x2-x1 
                                                   xi

(p)  =  αxi + (1-α)(xi-1
(p) + bi-1)  

                                       and       bi  =  β (xi
(p) – xi-1

(p)) + (1-β)bi-1                                         (1) 
                                                                                          (i = 2,3,4,.....,N)                                                                                           

where  ���� �
���  is the observed discrete signal,  ���

(
)� �
���  is the smoothed signal and  

���� �
���  is the trend traced in the signal, α and β are the ‘signal smoothing parameter’ and 

‘trend smoothing parameter’ respectively. We have 0 < α < 1 and 0 < β < 1.   
(1) can be conveniently written in the following form 

                                                     x1
(p)  =  x1  ;  b1 = x2-x1  

                                                    xi
(p)  =  (1-α)xi-1

(p) + (1-α)bi-1 + αxi 
                                       and       bi =  -αβxi-1

(p) + (1-αβ)bi-1 + αβxi                                (1A)                                                                              
(i = 2,3,4,.....,N)  

(1A) can be suitably written in the following matrix recurrence form 
                                                             Xi = AXi –1 + BYi                                     (2) 

where, Xi  = ���
(�)
��

� ;  A = �1 − α 1 − α
−αβ 1 − αβ� ;  B = � α 0

αβ 0� and  Yi = ���� �                       (3)    

Next, we put  
                                                             Xi – BYi = Zi                                                         (4) 

Using (4) in (2) we get  
                                                             Zi = AXi-1                                                              (5) 
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(5) can be elaborately expressed as below using (3) and (4)  

 

                               ���
(�) � α��

�� � αβ��
�  =  �1 − α 1 − α

−αβ 1 − αβ�
  

�����
( )

!���
�                                        (6) 

We can have the following interesting and important observations from the 
present analysis. 

 
Observation 1: The matrix ‘A’ can be expressed as a linear combination of the three 2X2 

matrices"1 1
0 0# ; "0 0

1 1# and "0 0
0 1# [with corresponding scalars as                       

(1 − $), (−$&)and 1] respectively which are singular as well as linearly independent of 
each other although the matrix A is non-singular as det A=1 − $ ≠ 0  (as $ < 1). 

 

Observation 2: If we consider M1 = "1 1
0 0#; M2 = "0 0

1 1# and M3 = "0 0
0 1# then we can 

have M1
2 = M1; M2

2 = M2 and M3
2 = M3  i.e. all these three matrices are idempotent 

matrices.  
 

Observation 3: We can also observe M1M2 = M1; M2M1 = M2; M2M3 = M3; M3M2 = M2; 

M1M3 = "0 1
0 0# and M3M1 = "0 0

0 0#. Hence, for the present choice these three matrices 

appear to be non-commutative with respect to usual matrix multiplication. Moreover the 
present set of three singular and linearly independent matrices viz. M1, M2 and M3 is not 
closed with respect to matrix multiplication. 
 
2.2. Impact of double exponential smoothing on discrete signal 
The present work focuses on the effect of double exponential smoothing on the memory 
of a linear homoscedastic discrete signal. To serve the present purpose we have taken into 
account discrete signals governed in particular by autoregressive methods of order 1 and 
2. 

2.2.1. Case study on a discrete signal governed by autoregressive method of order 1 
In this section we investigate the effect of double exponential smoothing on the memory 
of a signal governed by autoregressive method of order 1. 

Let the observed discrete signal be �x.�����    and smoothed signal be���

 }  ����  

As  �x.�����  is governed by autoregressive of order 1 we have [13] 
xi=w1xi-1                                                                                                                                                                           (7) 

for i=2, 3, ...., N 
where w1 is the process parameter (ignoring the random shock). 

Now by applying double exponential smoothing as in (1) in the present signal we 
have by using (7) 
                                                                               �� = (0� − 1)�� 

                                                                     �1
(
)=0���                                                    (8) 

                                                                               �1 = (0� − 1)�� 

                                                            x2
(3) = αx2 + (1 − α)(x1

(3) + b1)                         (9) 
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Using (7) and (8) in (9) we get  

                                                     �2
(
) = �$0� + 2(1 − $)��1 − (1 − $)��                       (10) 

From (10) it is clear that  �2
(
) shows a memory of length 2. 

Now from (1) we can have 

 �2=β(�2
(
) − �1

(
)) + (1 − &)�1                                                           (11) 
Using (8), (9), (10) in (11) we get 

�2 = &($0� − 2$ + 2)�1 + �&($ − 20�) + (0� − 1)���                                           (12) 
    Again using (10) and (12) we can have from (1) the following 

�7
(
) = $0��2 + (1 − $)($0� + 2 − 2$ + $&0� − 2$& + 2&)�1 + (1 − $)($ − 2 +

$& − 2&0� + 0�)��                                                                                                       (13) 

     So �7
(
)  shows a memory of length 3. 

Again using (10), (12) and (13) we can get from (1) the following 
 �7 = $&0��2 + ($&0� − 2$& + 2& − $10� − 2$ + 2$1 − $1&0� + 2$1& −
2$&�2+1−$($−1+$&−2&01+01)�1                                                         

      (14)  
Next using (13) and (14) we get  

     �8
(
) = $0��7 + (1 − $)($0��2) + (1 − $)($0� + 2 − 4$ + 2$&0� − 6$& +

4&+4$2−2$2&01+4$2&�2+1−$2(2$−3+2$&−4&01+201)�1        
      (15)  

So �8
(
) shows a memory of length 4. 

Altogether using the logic of induction it can be concluded that a discrete signal 
obeying AR(1) after smoothing turns out to be a signal with heterogeneous memory in 
which ��


 will have memory length (i-1); i=2,3,4…..N. 
 

2.2.2. Case study on a discrete signal governed by autoregressive method of order 2 
In this section we investigate the effect of double exponential smoothing on the memory 
of a signal governed by autoregressive method of order 2. 

As ��������   is governed by AR (2) we can have [13]                                                   
                          ���0����� + 01���1  
for i=3,4,……N                                                                                                                (16) 
where 0� and 01 are process parameters (ignoring the random shock). 

If possible let us assume that {��
(
)� is also governed by AR (2).  

So we can write  

��
(
) = 0�′ ����

(
) + 01′ ���1
(
)        

for i=3,4,…..N                                                                                                                 (17) 
where 0�′  and 01′  are the corresponding process parameters (ignoring the random shock). 

Using (1) we have from (17) for i=4 
α�7 = $<0�′ − (1 − $)(1 + &)=�2 + <�20�′ − 3 + 2$ + 2$&�(1 − $) + 01′ =�1 −
(1 − $)�0�′ + $& + $ − 2���                                                                                         (18) 

As �7  is governed by AR (2) we must have  
 w�′ + αβ+ α − 2=0 
i.e. 
 w�′ = 2 − αβ− α                                                                                                            (19) 
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Using (1) we have from (17) for i=5 
α�8 = $<0�′ − (1 − $)(1 + &)=�7 + $[(1 − $)�(1 + &)0�′+$ + $&1 − 1 − 2& +
2$&�+02′]�3+(1−$)�3−2$−2$&01′+202′+5$−4+7$&−2$2−4$2&−2$2&2}�2+
(1 − $)�0�′ ($& + $ − 2) − 01′ − 4$& − 3$ + 3 + 2$1& + $1 + $1&1 + $&1���                                                                            

      (20)  
As by our assumption �8 also obeys AR (2) coefficients of �� and �1 both will be 

separately zero. 
Hence we can have 

  0�′ ($& + $ − 2) − 01′ − 4$& − 3$ + 3 + 2$1& + $1 + $1&1 + $&1� = 0               
(3 − 2$ − 2$&)0�′ + 201′ + 5$ − 4 + 7$& − 2$1 − 4$1& − 2$1&1 = 0                 (21)                                                                                        
                                                                                                                        
Solving equation (21) we get 
                               w1′ =α-1+$β1                                                                                     (22) 

Comparing (19), (21) and (22) we get         
                               $β1 =0                                                                                              (23) 
            So at least one of $ and β is 0 which is not possible since α>0 as well as β>0. 

So we arrive at a contradiction. Hence our previous assumption that {��

� is 

governed by AR (2) is wrong. 
Next, if possible let us assume that ���


�   is governed by AR (1).  
   Hence we can take   ��


 = 0�′  ����

      

for i=2,3,4….N                                                                                                                (24) 
where 0�′  is the process parameter (ignoring the random shock). 
Now using (1) in (24) for i=4 we get 

α�7 = $<0�′ − (1 − $)(1 + &)=�2 +(1 − $)�20�′ − (3 − 2$ − 2$&)}�1-(1 − $)�0�′ +
($& + $ − 2)���                                                                                                             (25) 

As x4 obeys AR (2) we must have   
0�′ + ($& + $ − 2) = 0   

                                           i. e.  w�′ = (2 − αβ− α)                                                            (26) 
Again using (1) in (24) for i=5 we get 

α�8 = $<0�′ − (1 − $)(1 + &)=�7 +$(1 − $)�(1 + &)0�′ − (1 − $ + 2& − 2$& −
$&2}�3+1−$�01′3−2$&−2$−(4−5$−7$&+2$2+4$2&+2$2&2��2+1−$�01′$&+$
−2−(4$&+3$−3−$2−2$2&−$2&2−$&2)��1                                                                                                                          
(27) 

As by our assumption �8 obeys AR (2) coefficients of x2 and x1 must be 
separately zero. So we get 
w�′ (3 − 2αβ− 2α) = 4 − 5α− 7αβ+ 2α1 + 4α1β+ 2α1β1                                        (28)    

Solving (26) and (28) we get α=1 which gives rise to a contradiction as 0<α<1. 
Hence our assumption that {��


� is governed by AR (1) is wrong. 
Next if possible let us assume that {��


� is governed by AR (3). 
So we can take  
�7


 = 0�′ �2

+01′ �1


+02′ ��

                                                                                (29) 
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where 0�,′   01   ′  and 02   ′ are the corresponding process parameters (ignoring the random 
shock). 

Using (1) in (29) we get for i=4 
α�7 = $<0�′ − (1 − $)(1 + &)=�2 +2�(1 − $)0�′ + 01 − (1 − $)(3 − 2$ − 2$&)}�1-
�02′ − (1 − $)0�′ − (1 − $)($& + $ − 2)���                                                               (30) 

As �7 is governed by AR (2) we must have 
 w2′ − (1 − α)w�′ = (1 − α)(αβ+ α − 2)                                                                          (31) 

Using (1) in (29) we get for i=5 
α�8 = $<0�′ − (1 − $)(1 + &)=�7 +$�(1 − $)(1 + &)0�′ + 01′ − (1 − $)(1 − $ +
2&−2$&−$&2}�3+�1−$3−2$&−2$01′+2(1−$)02′+03′−(1−$)(4−5$−7$&+2$2
+4$2&+2$2&2��2+1−$�01′$&+$−2−02′−(4$&+3$−3−$2−2$2&−$2&2−$&2)�
��                                                                                                                   
                                                                                                                                         (32) 

As �8 is governed by AR (2) we must have the coefficients of both x1 and x2 in 
(32) as zero. This gives  
0�′ ($& + $ − 2) − 01′ = 4$& + 3$ − 3 − $1 − 2$1& − $1&1 − $&1                       (33) 
and 
 (1 − $)(3 − 2$& − 2$)0�′ + 2(1 − $)01′ +02′ =    
(1 − $)(4 − 5$ − 7$& + 2$1 + 4$1& + 2$1&1)                                                               (34) 

By applying Cramer’s rule in (31), (33) and (34) we arrive at an inconsistency. 
Hence our assumption that {��


� is governed by AR (3) is wrong. 
From the above analysis we can conclude that if a discrete signal be originally 

governed by AR(2) after the application of double exponential smoothing it possibly 
becomes random since it denies to exhibit any trace of memory with order 1,2 or 3 and as 
the original memory length is 2 we cannot expect to have a distant memory length like 4 
or more after smoothing.  

 
3. Discussion 
The present work furnishes a matrix equation model homologous to the original form of 
double exponential smoothing. This analysis fetches some important observation from 
the viewpoint of matrix algebra giving a good insight of the smoothing process. 
Moreover the present study shows that on applying double exponential smoothing over a 
signal governed by AR(1) we can eventually find a sequential heterogeneous memory 
while AR(2) possibly transforms to random behaviour. This result seems to be interesting 
in view of the earlier conclusion made in [12] that a discrete signal obeying AR(2) after 
the application of simple exponential smoothing turns into a signal governed by AR(3). 
This phenomenon is not observed in the present application of double exponential 
smoothing. In future the present study can be extended to have general exclusive solution 
of the matrix formulation. Moreover study can be made to identify the possible change in 
memory of a discrete signal with higher linear homogeneous memory length (3 or more 
than that) after the application of double exponential smoothing. Future study can also be 
performed to understand the influence of double exponential smoothing in discrete 
signals having nonlinear homoscedastic memory. 
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