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Abstract. Double exponential smoothing is an effective tdollenoising used in signals.

In the present work an effort has been put up tockire the formulation of double

exponential smoothing in the form of matrix equatisom which some important

observations can be made which gives an inner gfsae process. In addition to this an
analytic study has been incorporated to identifyetbr there is any change in the
memory of a discrete signal with linear homoscdadaaemory after employing double

exponential smoothing in it. It has been obseryed the memory of a discrete signal
governed by autoregressive method of order 1 besdme¢erogeneous while order 2
autoregressive method probably becomes random plicagon of double exponential

smoothing.

Keywords: Double exponential smoothing, Memory of a signahelar homoscedastic
signal, Autoregressive method.

1. Introduction

The physics behind the business of signal procgssito explore the information about
the physical source from which signal is being gatesl. The study of a signal not only
explores the internal dynamics of the source sd ean predict the future prospects of it.
It provides the validation of theories and modalsvell as their improvements. Analysis
of signals sometimes can give birth to a new theomnodel. Now-a-days it is a burning

deal in statistical signal processing to comprehamd explore the memory, self affinity,

nonlinear and complex phenomena in signals. Bueatity the problem is that any kind

of signal either from an experiment or from a dyi@hsystem, or from any economic,

sociological or biological aspect, usually contagstemic or manual error. This error is
coined as ‘noise’. Noise can be treated as the ntedagpart of a signal. Analysis of such
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signal in presence of noise often leads to a wiatgypretation of it. So we need to
develop an initial platform by denoising the sigfralm which we can start the extensive
study on it. Filtering/smoothing a signal is always indispensable task to deal with in
signal processing.

Double exponential smoothing [1, 2, 3, 4, 5, 6Jaisiseful tool to denoise a
signal. Basically it is very much useful in thosgnals where somehow trend is very
much present. Trend in a signal is a slow, gradbahge in some property of the signal
over the whole interval under investigation. Doublg@onential smoothing can remove
the trend efficiently to give a good platform farrther analysis from the Detrended
signal.

The motto of our work is to represent the procefsdamuble exponential
smoothing in a convenient matrix equation form framich we can explore different
important properties involving the parameters. tdiion to this the present work
focuses on the application of double exponentiabathing on linear homoscedastic
signals (kind of homogeneous discrete signal inctvhiunctional representation of
memory remains the same throughout the signaB,[®, 10, 11, 12]. As autoregressive
model [13] is a very good example of linear homdssticity we have considered
discrete signals governed by autoregressive meathoadderl and2 only in the present
study to understand the influence on the memory.

2. Theory

2.1. Matrix formulation of double exponential smoothing

The method of double exponential smoothing [1, 2435, 6] is governed by the
following system of equations shown below

Xy = X5 1= XX
x® = ax + (1'0!)(Xi-1(p) + biy)
and b = £ (x® - %) + (1-p)bis (1)
i£234,...N

where {x;} ifl is the observed discrete sign%;ki(”)} ifl

{b;} l.fl is the trend traced in the signalandp are the ‘signal smoothing parameter’ and
‘trend smoothing parameter’ respectively. We havea < 1 and0 < < 1.
(1) can be conveniently written in the followingrio
P = x5 by = X%
x® = (1-a)x1® + (L-a)bis + ax

is the smoothed signal and

and b= -apx.® + (1-ap)bis + apx (1A)
(i=234,....,N
(1A) can be suitably written in the following matrecurrence form
Xi=AX 1+ BY, 2
() — —
where X; = (Xti)i ) A= (1_a[g 11_ 0?;3) :B= (0?[3 8) and Y; = (%) (3)
Next, we put
Xi—BY =2 (4)

Using (4) in (2) we get
Z = AX 5
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(5) can be elaborately expressed as below usinan@®)4)

G G AR ) 6)
b; — afx; —af 1-—oap bi—q

We can have the following interesting and importabservations from the
present analysis.

Observation 1: The matrix A’ can be expressed as a linear combination offtheet2X2

matrice{(l) (1)) ; (2 (1)) and(g (1)) [with corresponding scalars as

(1 — @), (—aB)and 1] respectively which are singular as well as lineardependent of
each other although the matrix A is non-singuladet®»=1 — a # 0 (asa < 1).

Observation 2: If we consideM; = ((1) (1)) M, = ((1) 2) andM; = (8 (1)) then we can

haveM,*> = My. M,> = M, andM3® = M3 i.e. all these three matrices are idempotent
matrices.

Observation 3: We can also obsernd;M, = M;; MMy = My, MoMs = Mg, MsM, = My;

M;M5 = (8 (1)) andM;M; = (8 8) Hence, for the present choice these three matrice

appear to be non-commutative with respect to uswiix multiplication. Moreover the
present set of three singular and linearly indepandhatrices vizM; M, andM; is not
closed with respect to matrix multiplication.

2.2. Impact of double exponential smoothing on discrete signal

The present work focuses on the effect of doubfe&ntial smoothing on the memory
of a linear homoscedastic discrete signal. To sére@resent purpose we have taken into
account discrete signals governed in particulaaltpregressive methods of ordeand

2.

2.2.1. Casestudy on a discrete signal governed by autor egr essive method of order 1
In this section we investigate the effect of douskponential smoothing on the memory
of a signal governed by autoregressive methoddsrdr.

Let the observed discrete signalfsg’., and smoothed signal{bé’ b

As {x;}}', is governed by autoregressive of ortleve have [13]

Xi=W1Xi.1 (7)
fori=2, 3, ...., N
wherew; is the process parameter (ignoring the random $hock

Now by applying double exponential smoothing alinin the present signal we
have by using (7)

by = (w; — Dx;
x5 =wyx, (8)
b, = (wy — 1)xy

xép) =ax3+ (1— a)(xgp) +b,) } 9

3



Shankhachur Mukherjee, Gokul Saha, Koushik GlaoshKripasindhu Chaudhuri
Using (7) and (8) in (9) we get
xép) ={aw; +2(1 -}, — (1 —a)x; (20)

From (10) it is clear thakép) shows a memory of length
Now from (1) we can have

by=p(x — xP) + (1 - B)b, (11)
Using (8), (9), (10) in (11) we get
by = flaw; —2a + 2)x, + {B(a —2wy) + (w; — D}xy (12)

Again using (10) and (12) we can have fromtlig)following
xip) =awxs+ (1 —a)law; + 2 —2a+ affw; —2aB +2B)x, + (1 —a)(a — 2 +
aB —2pwy + wy)x; (13)
SOxff’) shows a memory of length
Again using (10), (12) and (13) we can get fromtlik) following
by = afwixs + (afwy, — 2af + 2B — a?w; — 2a + 2a? — a?Bw; + 2a?f —
2apfx2+1- a(a— 1+af-20wil+wl)x1

(14)
Next using (13) and (14) we get
xép) =awx, + (1 — a)(awyx3) + (1 — a)(awy + 2 — 4a + 2afw; — 6af +
4+4a2—-2aZfwl+4alfx2+1- a2(2a— 3+2af- 4wil+2wl)x1
(15)

SOxép) shows a memory of length

Altogether using the logic of induction it can kencluded that a discrete signal
obeying AR(Q) after smoothing turns out to be a signal withehegjeneous memory in
whichx! will have memory lengt(i-1); i=2,3,4.....N

2.2.2. Casestudy on a discrete signal governed by autor egressive method of order 2
In this section we investigate the effect of dousponential smoothing on the memory
of a signal governed by autoregressive methoddsr@:
As {x;}¥, is governed by AR (2) we can have [13]
Xi=W1Xj—1 + W2Xj_3
fori=3,4,...... N (16)
wherew, and w, are process parameters (ignoring the random shock)
If possible let us assume thaii(f)} is also governed by AR (2).
So we can write
x® = wix® +wix®)
fori=3,4,.....N an
wherew; and w, are the corresponding process parameters (igntréxgandom shock).
Using (1) we have from (17) féor4
Xy = a{wl' -1-a)1+ ﬂ)}x3 + {(2W1, -3+ 2a+ Zaﬁ)(l —a)+ wz'}xz -
(1—a){w; +af +a—2}x, (18)
Asx, is governed by AR we must have
w) + o + o — 2=0
ie.
w;=2—af—a (29)
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Using (1) we have from (17) féor5
axs = a{w; — (1 —a)(L + B}xs + a[(1 — a){(1 + pwy+a + af? —1-28 +
2af}+w2 [x3+(1- a){3- 2a- 2afwl' +2w2 +5a- 4+ 7aff- 2a2—4a2f- 2a2f 2y x2+
(1 —a){wi(af +a—2)—w, —4af —3a + 3 + 2a?f + a? + a?B% + af?}x;

(20)
As by our assumptions also obeys ARZ) coefficients ofr; and x, both will be
separately zero.
Hence we can have
wi(af +a—2)—w, —4af —3a+ 3+ 2a%B + a® + a?p?+ af?} =0
(3 —2a —2aB)w; + 2w, + 5a — 4 + 7af — 2a® — 4a®B — 2a*B? =0 (21)

Solving equation (21) we get

wy=o-1+ap? (22)
Comparing (19), (21) and (22) we get
ap? =0 (23)

So at least one @fand f is 0 which is not possible sinee>0 as well a$>0.
So we arrive at a contradiction. Hence our previaasumption thata{f’} is
governed by AR (2) is wrong.
Next, if possible let us assume tlﬁ:ali’} is governed by AR1).
Hence we can takec? =w; x!_;
fori=2,3,4....N (24)
wherew, is the process parameter (ignoring the randomkghoc
Now using (1) in (24) for=4 we get
0Xy = a{wl/ -1-a)+ ﬁ)}xg +(1—a){2w; — (3 — 2a — 2af)}xp-(1 — a){w; +
(af +a—2)}x; (25)
As x, obeys AR 2) we must have
wi+(@f+a—-2)=0
ie.w;=Q—af—0q) (26)
Again using (1) in (24) foi=5 we get
oxg = a{wl' -1-a)1+ ﬂ)}x4 +a(l—a){(1+Bw; — (1 —a+2B —2ap —
af a3+ 1- afwl' 3- 2aff- 2a—(4 5a- 7aff+2a2+4a2f+2a2F2)x2+ 1- afwl aff+a
—2—(4af+3a- 3- a2—-2aZf- alZf2—af2) 1
(27)
As by our assumptionrs obeys AR 2) coefficients of x and x must be
separately zero. So we get
w;(3 — 2af — 20) = 4 — 50— 70p + 2a® + 40P + 2a2p? (28)
Solving (26) and (28) we get1 which gives rise to a contradiction @so<1.
Hence our assumption thatl?{} is governed by AR1() is wrong.
Next if possible let us assume thxf} is governed by AR3).
So we can take

P P v P AP
X, = WXz twyx, twax; (29)
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wherewl'_ w, andws are the corresponding process parameters (igntiimgandom
shock).

Using (1) in (29) we get far4
0Xy = a{wl/ -1-a)+ [?)}x3 +2{(1—a)w; + wy, — (1 — a)(3 — 2a — 2af)}x,-

{ws — (1= a)w; — (1 - a)(aB + a — 2)}x (30)
As x, is governed by AR2) we must have
wy—(1—a)w; =1 —o)(ep+a—2) (31)

Using (1) in (29) we get fdae5
0xXg = a{wl' -1-a0@1+ ﬂ)}x4 +af(1l-a) A +Pwi+w, —(1—a)(1—a+
20~ 2aff- af 2y x3+ {1- a3 2aff- 2awl' +2(1- a)w2'+w3' —(1- @) (4 5a—- 7af+2a2
+4a2f+2aZf2)x2+ 1- afwl' aff+a- 2—w2' —(daff+3a— 3— a2—2a2f- aZf2—af2))}
X1

(32)

As x: is governed by AR2) we must have the coefficients of bothaxd % in

(32) as zero. This gives

wi(af +a—2)—w, =4af +3a —3 —a? —2a%f — a?B? — aff? (33)
and

(1-a)(3-2aBf —2a)w; +2(1 — @)wy+wy =

(1—-a)(4 —5a—7af + 2a? + 4a?pB + 2a?B?) (34)

By applying Cramer’s rule in (31), (33) and (34) amive at an inconsistency.
Hence our assumption thatlﬁ} is governed by ARJ) is wrong.

From the above analysis we can conclude that iserete signal be originally
governed by ARY) after the application of double exponential srhow it possibly
becomes random since it denies to exhibit any tobhceemory with ordef,2 or 3 and as
the original memory length &we cannot expect to have a distant memory lerigl
or more after smoothing.

3. Discussion

The present work furnishes a matrix equation mbadehologous to the original form of
double exponential smoothing. This analysis fetctmwe important observation from
the viewpoint of matrix algebra giving a good irgigof the smoothing process.
Moreover the present study shows that on applyouple exponential smoothing over a
signal governed by AR} we can eventually find a sequential heterogenenesory
while AR(2) possibly transforms to random behaviour. Thisliteseems to be interesting
in view of the earlier conclusion made in [12] thatliscrete signal obeying AB(after
the application of simple exponential smoothingh&uinto a signal governed by AB(
This phenomenon is not observed in the presenticapipin of double exponential
smoothing. In future the present study can be eetgrio have general exclusive solution
of the matrix formulation. Moreover study can bedaao identify the possible change in
memory of a discrete signal with higher linear hgemeous memory lengtB 6r more
than that) after the application of double expoiaismoothing. Future study can also be
performed to understand the influence of doubleoagptial smoothing in discrete
signals having nonlinear homoscedastic memory.
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