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Abstract. We report the results of study of the parametric excitation and nonlinear cubic 
characteristics of forced and quadratically damped Mathieu-Duffing oscillator. We 
designed the equivalent circuit of Matheiu-Duffing oscillator in PSpice and observed its 
dynamical behavior under various sets of control parameters. Verification of the results 
obtained from the PSpice circuit has been done by the numerical simulation. 
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1. Introduction 
The study of chaos in complex dynamical systems has been under the constant attention 
of researchers. There has been recent interest to study the nonlinear phenomenon and 
chaos in various physical systems through modelling them via electronic circuits [1, 2]. It 
serves the motives not only to understand the complex dynamics under different 
combination of system parameters, but also to capture the essential mechanism that 
generates chaos. The electronic circuits provide a very strong medium for both modelling 
and experimental studies of nonlinear systems. The real complex physical system can be 
simulated in real-time through an electronic circuit costing very less [3, 4, 5, 6]. Various 
nonlinear electronic circuits have been designed and analyzed to understand the dynamics 
of many complex physical systems of diverse nature under real-time conditions like: 
nonlinear physical pendulum, forced Duffing oscillator, forced van der pol oscillator, 
forced Duffing-van der pol oscillator, parametrically driven Duffing oscillator etc. [7].In 
[8], Sharma et al. have analyzed the dynamical behavior of forced Duffing oscillator 
under the presence of nonlinear damping term analytically as well as computationally.  
They have particularly observed the effect of nonlinear damping on the global dynamical 
behavior of forced Duffing oscillator through Melnikov analysis, characterization of 
parameter space through Lyapunov spectrum calculation, fractalness of basin boundaries 
and fractal dimensions etc. 

In this communication we intend to study the dynamical system i.e., the Mathieu-
Duffing oscillator system under the presence of nonlinear damping experimentally 
through an analog circuit. For this purpose we have designed a circuit and observed its 
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dynamical behavior under various sets of control parameters and also compared the 
PSpice simulation results with the numerical simulation results. In the next paragraph we 
briefly describe the forced and quadratically damped Mathieu-Duffing oscillator system. 

Here we consider the Mathieu-Duffing oscillator which can be described by the 
following equation of  

motion: 
                �� + ��� |�|� ��	 −��


(� + � cos��) � + ��� = 0                                            (1) 
 

where, �� =
��

��
 represents the derivative with respect to time t, �  is the damping 

coefficient, �  and �  are respectively, the amplitude and frequency of the parametric 
excitation, � and � are, respectively, the Mathieu parameter and a stiffness constant. In 
our present work we consider a nonlinear damping term i.e. proportional to the pth power 
of velocity. Here modulus of velocity is taken to consider the sign of velocity. For all 
calculations we have considered ��


 = 1, � = 1  and� = 1 . We have studied the 
dynamics of the system for different value of damping coefficient (�) and the amplitude 
of parametric excitation (�).For our study, we have designed an electronic circuit for the 
model equation (1) and simulated it through the PSpice circuit simulator and numerical 
simulations. In the next section we give the description of the electronic circuit designed 
for our study. In Section 3, we discuss our PSpice circuit simulation results and compare 
them with the numerical simulation results and Section 4 concludes the paper. 

 
2. Description of the circuit 
We have constructed an analog circuit equivalent to eq. (1) using conventional 
operational amplifiers and five quadrant multipliers, which is shown in Figure 1. 

 
Figure 1: Analog circuit for the forced and quadratically damped Mathieu-Duffing 
oscillator, equivalent to eq. (1) 
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The circuit is constructed using conventional operational amplifiers and five 
quadrant multipliers. Here A1 and A2 represent two integrators; A3 and A4 are summing 
amplifiers, A5 is inverter; A6 is an absolute rectifier; and M1, M2, M3, M4 and M5 are 
four quadrant multipliers. The operational amplifiers used in A1, A2, A3, A4, A5 and A6 
are op-amp µA741C and the five multipliers M1, M2, M3, M4 and M5 are Analog 
Devices multiplier AD633 with the inbuilt gain of 0.1. Analog Devices multiplier AD633 
is the low cost chip with 2% error at Full Scale. 
At junction A i.e. at the output of summing amplifier, we obtain the following equation 

�� = −��� |�|� ��	 + ��

(� + � cos��) � − ��� 

where, 	 = 	2	(switch	S1	closed)	or	3	(switch	S2	closed), 

|�-	

| =

(-.	)./

.	-
, � =

./

.0
,						123� =

(-.-	)./

.4
 

The values of various resistors and capacitors used in the circuit are as given below: -  
51 = 1006Ω, 52 = 1006Ω, 53 = 16Ω, 54 = 16Ω, 55 = 16Ω,

56 = 106Ω(:;< = 2);<	1006Ω(:;< = 3), 57 = >1<?1@AB<BC?C�;<;:	1006Ω,

58 = 100Ω, 59 = 106Ω, 510 = 16Ω, 511 = 	16Ω, 512 = 	16Ω, 513 =
	16Ω	,			and	C1	 = 	C2	 = 	0.01µF. 
Here �-	


 = 1, � = 1, � = 1		123J = K.								 
� = 1	is obtained at external frequency f ≈160Hz since here� = 2L ∗ : ∗ (51 ∗ N1);< 
	2L ∗ : ∗ (52 ∗ N2). 
 
3. Results and discussion 
In this section we present the results of experimental study and their comparison with the 
numerical results.  In Figure 2, we show the result for the fixed values of parameters �-	


 
= 1, � = 1,� = 1,� = 1, p= 2(drag like damping), damping coefficient (�)= 0.5 and 
various values of amplitude of parametric excitation (�).  

             
(a)                                                      (b) 

 

            
                                        (c)                                                      (d)  
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                                    (e)                                         (f)                         
 
Figure 2: First and second columns respectively show the computationally obtained 
phase plots (��  vs �) and PSpice simulation results obtained from the circuit shown in 
Figure1. (a) and (b) are obtained at amplitude of parametric excitation (�) = 0.2 V, (c) 
and (d) are obtained at amplitude of parametric excitation (�) = 0.5 V and (e) and (f) 
are obtained at amplitude of parametric excitation (�) = 0.65 V. 
 
In Figure 3, we show the result for the fixed values of parameters �-	


 = 1, � = 1,� = 
1,� = 1, p= 3 (nonlinear third-power damping), damping coefficient (�)= 0.5 and 
various values of amplitude of parametric excitation (�). 
 
 

                       
(a)                                                  (b) 

                      
                      (c)                                             (d) 

                         
                                                       (e)                                                 (f) 
 

Figure 3: First and second columns respectively show the computationally obtained 
phase plots (��  vs �) and PSpice simulation results obtained from the circuit shown in 
Figure1. (a) and (b) are obtained at amplitude of parametric excitation (�) = 0.2 V, (c) 
and (d) are obtained at amplitude of parametric excitation (�) = 0.5 V and (e) and (f) 
are obtained at amplitude of parametric excitation (�) = 0.65 V. 
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In Figure 4, we show the result for the fixed values of parameters �-	

 = 1, � = 

1,� = 1,� = 1, p= 2 (drag like damping), damping coefficient (�)= 0.3and amplitude 
of parametric excitation (�) = 0.65 V. 
 
 

 
(a)                                                       (b)  

 
Figure 4: (a) and (b) respectively show the computationally obtained phase plots (��  
vs �) and PSpice simulation results obtained from the circuit shown in Figure1. 
 

We have obtained various results for drag like damping (p=2) and nonlinear 
third-power damping (p=3). In figure 2 and figure 3, respectively for p=2 and p=3, 
the phase plot obtained for the amplitude of parametric excitation (�) =0.2 V and 0.65 
V are same i.e. periodic signal of period-1 and period-3 respectively. But for the 
amplitude of parametric excitation (�) =0.5 V the result obtained shows the different 
nature for both the types of damping. For drag like damping (p=2) it is chaotic signal 
whereas for nonlinear third-power damping (p=3) it is periodic signal of period-2. 

By changing the damping coefficient (�)  we have found the changes in the 
nature of signals obtained by keeping same values of all other parameters. At 
damping coefficient (�) = 0.3, figure 4 shows the chaotic signals at the amplitude of 
parametric excitation (�) =0.65 V for drag like damping (p=2).  
 
4. Conclusions 
We have designed and implemented an analogue circuit equivalent to a forced and 
quadratically damped Mathieu-Duffing oscillator to study the effect of nonlinear 
damping on the dynamical behavior of the forced oscillator. We have studied the 
designed circuit extensively for various combinations of system parameters and 
observed that the designed circuit is able to produce the correct sequence of the 
dynamical behavior as obtained with the numerical simulation. We have compared 
the result of PSpice simulation and computational result and found good degree of 
agreement. The designed circuit may also be used to study the real time behavior of 
complex systems modeled by forced and quadratically damped Mathieu-Duffing 
differential equation. One can also use this circuit in communication system for 
encryption and decryption of signal by using various combinations of system 
parameters like damping coefficient (�) and amplitude of parametric excitation (�). 
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