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Abstract. In this paper, we give some results concerningilgtabn the Fredholm and
Browder operators, via the concept of measureseafkwioncompactness. Moreover, we
investigate perturbation of left (right) FredholmdaBrowder operators by polynomially
weak compact operators. Finally, we establish thariance, under weakly compact
perturbations, of various essential spectra ofosetl densely defined operators. These
results are exploited to describe the essentiattigpeof a multidimensional neutron
transport operator.
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1. Introduction
Let X and Y be two complex Banach spaces. We denote G{)X,Y) (resp.,
L(X,Y)) the space of all closed densely defined linearators acting fromX into Y

(resp., the space of all bounded linear operatotisgafrom X into Y). The closed
subspace of all compact (resp., weakly compactjabpes of L(X,Y) is designed by

K(X,Y) (resp., W(X,Y)). For TOC(X,Y), we write N(T) I X for the null space,
R(M)OY for the range of T and D(T) for the domain of T . We denote
N*(T)=[JN(") and R*(T)=(R(T"). We set a(T):=dimN(T) and

LB(T):=codimR(T) =dimY/R(T). The sets of upper semi-Fredholm operators and
lower semi-Fredholm operators are respectivelynaeffiby:

@, (X,Y)={TOC(X,Y) suchthat a(T) < wand R(T) closed in Y},
@_(X,Y) ={TOC(X,Y) suchthat S(T) < co(then R(T) closed in Y)}.
O(X,)Y)=d (X,Y)nP_(X,Y) is the set of Fredholm operators @(X,Y) . If
X =Y, the setsL(X,X), C(X,X), K(X,X), W(X,X), ®,(X,X),
®_(X,X) and P(X,X) are replaced respectively bi(X) , C(X), K(X),
W(X), ®,(X), & (X) and d(X). If TOD, (X,Y)ODP_(X,Y), the number
I(T):=a(T)-L(T) iscalled the index off . p(T) is the resolvent setof . Recall
that, for TOC(X), X;:=D(T) (the domain ofT ) endowed with the graph norm
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PP, (i.e., PxP, =PxP +PTxP) is a Banach space and we havélL(X;, X). We
denote T the restriction of T to D(T). Let J be a linear operator onX. If
X; OD(J), then J will be called T -defined. If J is T -defined, we will denote
be J its restriction to X;. Moreover, if :]DL(XT,X), we say thatJ is T -bounded.

Notice that if THOC(X) and J a T -bounded, then we get the obvious
relations:

{a(T) = a(T), B(T) = B(T),R(T) =R(T),

a(T+I)=a(T+J), BT +I) = BT +I),R(T +J) =R(T +J). 1)

Hence, TO®(X) (resp., ®,(X) ) if and only if 'I:DCD(XT,X) (resp.,
P, (X5, X))

Definition 1.1. Let X andY be two Banach space$. Let TL(X,Y). 0.5 cm
(i) T is said to have a left Fredholm inverse if thesests T L(Y,X) and
K OK(X) such thatT T =1, —K . The operatorT, is called left Fredholm inverse of
T. 05 cm (i) T is said to have a right Fredholm inverse if thepasts
T OL(Y, X) such thatl, =TT, OK(Y). The operatorT, is called right Fredholm
inverse of T. (iii) T is said to have a Fredholm inverse if there exigtzap which is
both a left and a right Fredholm inversebf 2. Let TC(X).T is said to have aleft

Fredholm inverse (resp., right Fredholm inversesdRplm inverse) ifT has a left
Fredholm inverse (resp., right Fredholm inversedhRolm inverse). *

The sets of left and right Fredholm inverses aspectively defined by:
@, (X) :={T OC(X)suchthatThasal eftFredholminverse}

@, (X):={T OC(X)suchthatThasarightFredhol minverse}.
It should notice, by the classical theory of Fr@dhoperators (see for example [10]), that
P(X) =P, (X) n D, (X).
In this paper, we are concerned, forl1C(X), with the following essential

spectra:
0,,(T):={A0C suchthat A -T O®(X)},

04(T):=C\{A-TOP(X) suchthati(A-T)=0}=C\ ps(T),
05(T):=C\{A0p(T) suchthat all scalarsnear A arein p(T)} =C\ p,(T),
0,,(T):={A0C; A=TO®(X)}, p(T):=C\a,,(T),
O,.(T)={A0CA-TU®D, (X)}, p.(T):=C\0,(T). The subsetsg,,(.) is the
Wolf essential spectrum [8, 17¢(.) is the Schechter essential spectrum [1at](.)
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denotes the Browder essential spectrum [8] and.) (resp., d,.(.)) is the left (resp.,
right)  essential spectrum [10]. Note that, in geher we have
0,(MUo, (T)=0,(M)0os(T) Dog(T). Let TOL(X) . Recall that a(T)

(resp. d(T)), the ascent (resp. the descent)lof is the smallest non-negative integer

such that N(T™) =N(T™) (resp. R(T")=R(T™)) . If no such n exists, then
a(T) =+oo (resp.d(T) =+0). The set of left (right) Browder operators ardirtk
respectively by:
B, (X) ={T OL(X) suchthat TO®,(X) and a(T) < o},
B, (X) ={T OL(X) suchthat T O®, (X) and d(T) < c}.
The set of Browder operators ad is B(X) =B, (X) n B, (X).

Definition 1.2. A Banach spaceX is said to have the Dunford-Pettis property (foors
property DP) if for each Banach spa¥e every weakly compact operatdr: X - Y
takes weakly compact sets i into norm compact sets of . ¢

It is well known that anyL, -space has the property DP [5]. For further example
we refer to [4].

Definition 1.3. Let X and Y be two complex Banach spaces. An operdtorX — Y
is said to be a Dunford-Pettis operator (for spooperty DP operator) ift maps weakly
compact sets onto compact sets. ¢

An important question is to characterize, for giv€énl®(X), the class of
SOC(X), such thatT +S still belongs to®(X). A lot of work, devoted to this
subject, has been done. We refer, for examplgs, & 3, 8, 9] and the references therein.
The purpose of this work is to pursue the analgssted in [1, 3, 9]. More precisely, in
section 2, by the use of the concept of measures weak afamopactness, we study the
stability problem in Fredholm and semi-Fredholm rapers sets. The sectioB is
devoted to perturbations of left (right) Fredholnda@rowder operators by polynomially
weak compact operators. Moreover, we apply theimddaresults in section 2 to discuss
their incidence on the behavior of essential speofroperators belonging t€(X),
where X has the Dunford-Pettis property. Finally, we gmere precise description of
the essential spectra of multidimensional neutransport equation orh, -spaces.

2. Perturbation results by means measur es of weak noncompactness

The purpose of this section is to establish sorselt®concerning stability in the class of
Fredholm operators via the concept of measureseakvmoncompactness. First, we will
adopt the following definitions:

Definition 2.1. Let X andY be two Banach spaceéx the closure of the unit ball of
X and let 4 be a measure of weak noncompactnesy inVe define the function

@, L(X,Y) = [040] T -, (T)=u(T(Bx)).

83



Boulbeba Abdelmoumen

¢, is called a measure of weak noncompactness ofatyer associated tqu.

¢
In what follows, considerX a Banach spaceM, be the family of all

nonempty and bounded subsets %f, TOL(X), T is its adjoint, 4 (resp., i) a
measure of weak noncompactnessXn (resp., in X ') and W, (resp., ‘Py* ) a measure

of weak noncompactness of operators associated t@esp., to £/ ). We will make the
following assumption: (H) : u(T(A)<W, (T)u(A), for every AOM,. We
begin with the following preparating result whighdrucial for our purposes.

Theorem 2.1. Let X be a complex Banach space. Suppose thaff farl_( X),
* (H) holdstrue,

* lim (w,,(T“))% =0,

n- +oo

» There exists mON " such thatT ™ is DP operator.
Then
[ -TO®P(X) andi(l -T)=0. .

Proof. Since Iimnﬂm(él/,,(Tn))% =0, then there existsnODN* such that for all
nxn,, ¢, (T") <1. On the other hand, for

nON', I -T"=R(T)(1 -T),whereR(T):=1 +T +...+T"™". By [13, Lemma 4.3], it
suffice to prove that, for anK OK(X), a(l -—T-K) <. To do so, it suffice to
establish that the sefA:=N(I —T—K)méx is compact. Considerx A, then
R(T)(I =T)(x) = R(T)K(X). Hence, forn=n,, x=T"(x)+R(T)K(X). Obviously

AOT"(A)+R(T)K(A). Applying x(.) and taking account the hypothegisl,), we
infer that

H(A) s u(THA) s W, (THUA).
Since W, (T") <1, then u(A)=0 and thereforeA is relatively weakly compact
including in T"(A) - R(T)K(A). We treat two cases:
Casel: If ny=m, thenT™ is DP operator. Hencél °(A) is compact.
Case 2 If ny<m, then ¢ (T™)<1. Since T™ is DP operator, therT "(A) is
compact. In both cases, we infer that, fo&n,, T"(A) is compact. HenceA is
compact and thereford —TO®_ (X) . Next, note that fort(J[0,1], we have
(z//ﬂ(tT))nO <1 and (tT)™ is DP operator. Then, from the abov@,—tT)O®, (X).
Now, by the continuity of the index o, (X), we geti(l =T) =i(l —tT) =i(l) =0.
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Hence, | =T O®(X), which completes the proof.
The following corollary is an immediate consequeot&heorem 2.1.

Corollary 2.1. Let X be a complex Banach space andTeflL(X) such thatT™ is
weakly compact for somenN". (i) If T™ is DP operator, thed —T O®(X) and
i(1 =T)=0. (if) If X has the property of DP, theh—T O®(X) andi(l —-T) =0.
¢

In the rest of this section, considélJC(X) and S be T -bounded operator.

The main result of this section is the following:

Theorem 2.2, Suppose that¥, satisfies the hypothesi@H) and assume that, foF,
a right Fredholm inverse of ,
« There exists mN’ such that (éTr )™ is DP operatorin L(X)

n 1
) Jirgm(t//y(STr)“)n =0.
Then the following statements hol@) T+ SO®_ (X) andi(T +S) =i(T). (ii) If
a(T)<oo, thenT+SOP(X) and i(T +S)=i(T). *

Proof. (i) Keeping in mind Definition 1.1 and applying Thewre2.1, we infer that
('I: + é.Tr Od(X) and i(('I: + é)Tr) = 0. Hence, T + SO ®, (X;,X). On the other
hand, i((T +S)T.) =i(T,) +i(T +S)=0. Thus, i(T +S)=~i(T.)=i(T). Finally
the result follows from (1)(ii) We have'IA'I'r =1, —KO®(X). Since a(T) < oo,
then the use of [15, Theorem 2.7 p. 171] lead$,ta] (X, X;) . Moreover, the fact that

(T +S)T, O®(X), then, by [15, Theorem 2.5 p.169],+ SO ®(X,, X). Finally the
result follows from (1).
In order to give a similar results to Thear2.2, considens, a measure of weak

noncompactness irX; and lPﬂT the measure of weak noncompactness of operators

associated toy;. Now, arguing as in the proof of Theorem 2.2, wa gaove the
following:

Theorem 2.3. Suppose thaHJﬂT satisfies the hypothesgd1) and assume that, foF,

a left Fredholm inverse of ,
* There exists MmN such that (T, é)”‘is DP operatorinL(X;)

~ \
+ im [, 8} =0
Then the following statements hol@) T + SU®, (X) and i(T+S) =i(T). (ii) If
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L(T) <o, thenT+SODP(X) andi(T +S)=i(T). ¢

As an immediate consequence of theorems 2.2 anwv@.Bave:

Corallary 2.2. Assume thatX has the property DP. Thefi) If there exists a right
Fredholm inverse]I, , of T such that(é“l'r)m is weakly compact irL(X) for some
mON’, then T+SO® (X) and i(T+S)=i(T). Suppose moreover(T) < oo,
then T + SO®(X). (ii) If there exists a left Fredholm invers§,, of T such that
(T, é)m is weakly compact inL(X;) for some mON’, then T+SO®, (X) and
I(T+S)=1i(T). Suppose moreovef3(T) <oo, thenT +SOP(X).

3. Applications
3.1. Perturbation by polynomially weak compact operators
In this section, X designs a Banach space. Consider

P(W (X)) ={SOL(X); CPOC[X]\{0}, P(S)OW(X)}. The purpose of this
subsection is to prove an important result aboutupgeation by polynomially weak
compact operators. Recall that f&CP(W (X)), there exists a unique nonzero complex

polynomial mg with leading coefficientl and of the minimal degree such that
mg OW(X) . In this text, mg will be said the minimal polynomial 0S.

Definition 3.1. Let SOP(W (X)), mg be the minimal polynomial oS and let

T OL(X) . We say thatT is in communication withS if there exists a continuous map
¢:[0,1] - C for which ¢(0)=0, ¢(1)=1 and

for all A zeroof mg, for all tJ[0,1], ¢(t)A U gy, (T). 2
If (2) holds for g, .(T) (0,.(T)) instead ofg,, (T), then we shall say thaf is in left
(right) communication withS. ¢

The main result of this section is the following:

Theorem 3.1. Let T,SOL(X) such that the commutatdS,T] is weakly compact
and DP operator. Suppose th&JP(W (X)) and m(S) is DP operator. (i) If,

OA00,(T) , mg(A)#0 , then T-SO®,(X). If moreover T is in left

communication withS, then TO®, (X) and i(T —=S) =i(T). (ii) If, ODA00(T),

mg(A) 20, then T -SO® (X). If moreoverT is in right communication withS,

then TO®, (X) and i(T-S)=i(T). (iii) If, 0AO0g,(T), mg(A)#0, then
T-SO®P(X). If moreover T is in communication withS, then T O®(X) and
i(T-=S)=i(T). .

Proof. (i) Since mg(A)#0 forall AOog,(T), then we can write
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m(T) = Hi“il(T—/]i), where, 0i O{1,...,N}, A O (T). Thus, my(T)O®,(X).
On the other handn,(S) is weakly compact and DP operator, then, by Thed2e3,

mg(T) —mg(S) 0P, (X). Since the commutatofS,T] is weakly compact and DP
operator, we can write

ms(T) —mg(S) = (T -SL+W, = L(T -5 +W,,
with LOL(X) and W,,W, are two weakly compact and DP operators. Therefoye
Theorem 2.3, T-SO®,(X). Now, consider Q(2z)= Hll(z—ﬁﬁ(t)), then

Q (#(1)S) = (P(1))" M (S). Thus, Q (4(t)S) is weakly compact and DP operator.
Moreover, for all Ao, (T),Q,(A) #0. This yields
T-¢(t)SOP, (X), forall tO[0,1]. (3)
By the continuity of the index function o, (X), we geti(T —¢(t)S) is constant for
all t[J[0,1]. In particular,i(T —=S) =i(T). (ii) Can be checked in the same way(gs
. (iii) Follows immediately from(i) and (ii) .
Remark that if, for soma [N, mg(z) = 2", then, for all TO®,(X) (resp.,

TO®, (X)), T isin left (resp., right) communication wit. Thus, we obtain the
following:

Corallary 3.1. Let T,SOL(X) such that the commutat¢S,T] is weakly compact
and DP operator. Suppose that, for somiéN’, S" is weakly compact and DP operator.
() f TU®D,(X), thenT-SO®P,(X) and i(T-5)=i(T). (ii) If TOD, (X),
then T-SO® (X) and i(T-S)=i(T). (ii) If TOP(X), then T-SOP(X)
and i(T =S) =i(T). ¢

Theorem 3.2. Let T,S[OL(X) such thatST =TS. Suppose thaSTOP(W (X)) and
m(S) is DP operator. (i) If T is in left communication withS and a(T) < +oo,
then T and T-S are in B,(X) and i(T-S)=i(T). (i) If T is in right
communication withS and d(T)<+oe , then T and T-S are in B,(X) and
i(T-S)=i(T). (iii) If T is in communication withS , a(T)<+c and
d(T)<+oo,thenT and T-S areinB(X) andi(T —S) =i(T).
Proof. (i) According to hypothesis and by the proof Theoreb{i3, we get:
T-¢@{)SO®P,(X) and i(T-S)=i(T). Since ST =TS, then according to
[7, Theorem 3],N”(T —¢(t)S) n R*(T —¢(t)S) is locally constant function on the set
[0,1] and therefore this function is constant [fh1]. Since a(T) <o, then from [16,

Proposition 1.6(i)] :N“(T) n R*(T) =N*(T) nR”(T) ={0} and hence,
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N*(T-S)nR*(T-S)={0}. Thus, N°(T-S)nR”*(T-S)={0}, and again by
[16, Proposition 1.6(i)],a(T —=S) <. (ii) Since g (T )0 0o (T), then T is in
left communication withS". Thus, applying(i), we getd(T-S)=a(T - S’) <.
(iii) Follows immediately from(i) and (ii) .

3.2. Invariance of essential spectra on spaceswith the Dunford-Pettis property
Consider X a Banach space which has the property DP]C(X) and assume that

satisfies the hypothesiA), that is:
(i) For all T—bounded operator K, thereexists A [JR such that

A) JA,+eo[ O o(T + K).

(i) ps(T) isaconnected set of C.

In order to study the invariance of the essemsfictra of T JC(X), we need first to
establish the following useful lemma:

Lemma3.1. Let TOC(X) satisfying the hypothesi§A) and letS be aT -bounded
operator on X. Then the following assertions hold.(i) o(T) is a connected set of
C. (ii) Assume thatpo(T +S) is a connected set df. Then

[SA-T)]"OW(X),0A0p(T) = [SA-T-9)]"OW(X),0A00(T +S).+
Proof. (i) Since p5(T) is a connected set, then from [9, Lemma 3.1],
0,(T) =04(T) and the result follows from the following identity
(M) =p,(M\{A00(T); A isanisolated eigenvalueof finite algebraic multiplicity}.
(i) SinceT satisfies the hypothesi€A), there existsA,, A, JR such that
1A, +oo[0 p(T) and ]A,, +oo[d o(T +S). If we take A = max A, A}, we have
necessarily]1+oo[D P(T+S)n p(T). Hence, the sepp(T +S) n p(T) has a point
of accumulation. For alld > A, we have
[1+SA-T-9™M[I -SUA-T)']=[1-SUA-T)'J[1 +SUA-T-9) ™" =1.
Hence,[| —S(A-T)™] is invertible. Moreover, for ald O p(T +S) n p(T):
[str-T-97] =[str-T)* [ -spr-T) "
Thus, for all A D]j, + oo,
[SA-T-9™"OW(X) = [SA-T)"OW(X).

Finally, the result follows from [3, Lemma 4.2, Rak 4.3].
Now, we are ready to state and prove the meginlt of this subsection.

Theorem 3.3. Let S be T -bounded such thap(T +S) is a connected set o .
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Suppose that there exists(IN" such that, for allA 0 p(T), [S()I —T)'l]n is weakly
compact operator. Then the following assertionslh@l) If o, .(T) and o (T +S)
are connected sets &, then g, (T +S) =0, (T). (ii) If p.(T) and p (T +9S)
are connected sets &, then g, (T +S) =g, (T). (iii) If p,(T) and g, (T +9S)
are connected sets &, then g, (T +S) = g, (T). (iv) If ps(T +S) is aconnected
set of C, then
0s(T+S)=0,(T) and g (T +S) =gy (T). *

Proof. (i) Let F, :{/1 [0 p,.(T) such that[é(/] —T)r]n DW(X)}. Clearly we have
p(MOF,0Op.(T). From Lemma 3.1i)), p(T) has a point of accumulation. If
P..(T) is a connected set, then by [3, Lemma 4.2, Re#&k F, = p,.(T) . Now, If
we translate Theorems Zi2 in terms of essential spectra, we get(T +S) U o, (T).
Conversely, by Lemma 3(di), [SA-T-S)7"]"OW(X),0A0p(T +9S). Since
P.(T+S) is a connected set, then a similar reasoning asveabeads to
0,.(T)0o,(T+S). This proves(i). With the same argument we pro(e) —(iv) if
we consider respectively:

G, = {/1 0 p,.(T) such that[é()l -T), ] DW(X)},

H, =4 0,(T) suchthat[S(1 -T)*] DW(X)} and

Q, =110 ps(T) suchthat[s(A-T) ow(x)}

Remark 3.1. (i) It should be observed that The results of Thederemaind valid if
we suppose that, for all 0 o(T),[(A-T)™S]" is weakly compact for somalN'".
(ii) If we suppose that there exists] o(T) such thatS(g-T)OW(X) then, for

all A0P(T), S(A-T)'OW(X) and therefore the results of Theorem 3.3 remaind
valid. *

3.3. Application to transport equation

In this section, we shall apply the results of thst subsection to give more precise
description of the essential spectra to the muttégfisional neutron transport equation
which governs the time evolution of the distribatimf neutrons in a nuclear reactor (cf., [6,
12)):
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a—[/j (x,v,1) = —va—[/j (x,v,t) —a(VY(x,v,t) + Lk(x,v, VY (x, V', t)dv'
ot ~ 0X A

= T (X, v, 1) + Ry (x,v,t)

z//"__ =0 and Y(x,v,0) =, (x,V),

where T, is the streaming operator arfél denotes the integral part o4, (the collision

operator), (x,v)OODxV , where D= DORM and V=V OR" (N=1). The
unbounded operato, is studied in the Banach spac€, =L (DxV,dxdv) . Its
domain is

oy

D(A) =D(T,) = {z// [0 X,, suchthat v& OX,, z//"__ = O},

where
I ={(xv)JoD xV suchthat visingoing at x[10D}.
The function g(.) is called the collision frequency. The scattekeegnel «(.,.,.) define

a linear operatolR by : R: X; - X,¢ - Lk(x,v,\/)lﬂ(x,\/’)d\/’. Observe that the

operator R acts only on the variableg. So, X may be viewed merely as a parameter
in D. Hence, we may consideR as a functionR(.): xOD - R(x)JZ, where

Z =L(L,(V,dv)) denotes the set of all bounded linear operatord. @ ,dv). In the
following we will make the assumptions

—the function R(.) is strongly measurable,

—there exists a compact subset C 0 L(L,(V,dv)) such that :
R(x)JC aeonD,

-R(x) OK(L,(V,dv)) ae.onD,

(H,)

where K(L,(V,dv)) denotes the set of all compact operatorsLofy/;dv).

Definition 3.2. A collision operatorR is said to be regular if it satisfigdH, ) .+
Notice that the spectrum of the operaiigr was analyzed in [12]. In particular

we have, gy, (T,) = 0(T,) = 05(T,) = o(T,) ={A OCsuchthat Red < -1},
where A" := liminf g00($).

Lemma3.2. ([12, Lemma 2.1]) LetK and H be two regular collision operators aX,
and ReA >7, where 7y is the type of theC,-semigroup generated bfj,.

90



Some Results Concerning Stability Problem in Frédhtheory and Applications

(i) K(A-T,)™"H is weakly compact onX,. If g(x,v)=a(v) and if D is
convex thenK (A =T,) ™ H is compact onX; .

(i) I a>n then limym.+wPKA=-T)*HP=0 uniformly in
{10C; Red 2 u}. .

The following theorem provides an extension andiraprovement of some
results (see for examples [3, 11]).

Theorem 3.4. Let R be a regular operator oX,. (i) If p.(T,+R) is a connected
set of C, then g,.(T, +R) = g,.(T,). (ii) If p.(T,+R) is a connected set o,
then o (T,+R)=0,(T,). (ii) If g,(T,+R) is a connected set o€ , then
o, ([T, +R) =0, (T,). (iv) If ps(T,+R) is aconnected set d, then

as(To + R) = 05(T,) and g (T, + R) = g (T,). ¢
Proof. The results are consequence of Lemma 3.2 and Re3i4fi) .
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