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Abstract. The permutation graph is a very important subatdigstersection graphs. This

graph class is used to solve many real life probldmthis article, an alternative proof is
given to show that every path is a permutation lyréso, it is proved that a lobstar is a
permutation graph.
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1. Introduction
A graphG=(V,E) is called an intersection graph for a finite fanklof a non empty set if
there is a one to one correspondence betweandV such that two sets iR have non
empty intersection if and only if there correspagdivertices inV have non empty
intersection. For the terminologies of the grapes [$,6,18,25].

Any graph can be represented as intersection g@pé.of its classification is
permutation graph.

Let G= (V,E) be a simple and undirected graph with n verticebra edges and
let V={1,2,...,n}. G is said to be a permutation graph if and oifl{there exists a
permutation7 ={ (1), 71(2),...,/71(n)} on {1,2,...,n} such that for all ifjV, (i ,j) OE if
and only if(i — j)(m~1(i) — n~1(j) < 0 for each LIV, denote the position of the no. i in
7T. We assume that the graph is connected. Permutgtaphs can be visualized as a
class of intersection graphs.
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Figure 1: Permutation representation and the correspondaqghg

Even et al. [4,12] showed the permutation grapbsea&actly those comparability graphs
whose complements are also comparability graphsenCéolved the shortest path
problem on bipartite permutation graph. The longegth problem was solved in linear
time. A polynomial time solution for the weightedeflback vertex set problem in
permutation graph is also developed. Permutatiaplgy are similar to interval graphs.
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An O(n’logn) time algorithm was presented for the generalis@S problems in
permutation graphs.

The maximum two chain problem in permutation graphas solved in
@(nlogn) time. The minimum cardinality connected dominats® in a permutation

graph can be solved in @ time when the permutation module is not given.nia
works have been done on permutation graphs [1-4,7,89-24].

1.1. Some important definitions

Circlegraphs

In graph theory, a circle graph is the intersectjcaph of a set of chords of a circle i.e. it
is an undirected graph whose vertices can be adedaith chords of a circle such that
two vertices are adjacent if and only if the copmsding chords cross each other.

A circle graph is also an intersection graph.

Compar ability graphs

A non empty set A together with a relation of rorder < on A is called a poset

(partially ordered set) and is denoted(By<). Let (A,<) be a poset. Two elements a and

b of A are said to be comparable i h or b<a. otherwise a and b are non comparable.
A comparability graph is an undirected graph thmatrects pairs of elements that

are comparable to each other in a partial ordetiosl.

Perfect graph
A perfect graph is a graph in which the chromaticnber of every induced subgraph
equals the size of its largest clique of that saplr

Transitive orientation

A transitive orientation is an orientation suchtttiee resulting directed graph is its own
transitive closure. Given a directed graph find dua vertex j is reachable from the
vertex i for all pair (i,j) in the given graph. Hereachable means a path from i to j. the
reachability matrix is called transitive closureafyraph G and is denoted BYG). its
corresponding diagram contains an edge(u,v) wherikeee exist a path from u to v.

Clique and stable set/ independent set
A clique in an undirected graph is a set of paiseradjacent vertices.
An independent set or a stable set in a graplsét af pair-wise non adjacent vertices.
Let G be a graph of order n. an arrangementjlsy...,v,) of the vertices of G is called a
cohesive vertex set order of G if the following ditions are satisfied:

a) If i<k<j and vivy, wyj LE(G), then w; UE(G).

b) If i<k<j and vv; LIE(G) then wy LIE(G) or wyv; UE(G).

1.2. Some important properties of per mutation graphs

1. A graphG is a permutation graph if and only if it is a ¢érgraph that admits an
equator i.e. an additional chord that represeatyesther chord.

2. A graphG is a permutation graph if and only if boBhand its complements
are comparability graphs.

3. All permutation graphs are perfect graph.

4. A permutation graph is the complement of the comipiéity graphs.
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5. Let 7T be the permutation on N corresponding to the ptatiwn graphG( 77). If
we reverse the sequencee then we obtain a graph which is also a permutation
graph and it is nothing but the complement of ttephG( 77). In other word if
7T be the reverse order af thenG(77') =G'(7).

6. G(/7) is transitively orientable.

7. The decreasing subsequence of and the cliques o& (77) are in one to one
correspondence. The increasing subsequencg ahd the stable sets & (77)
are in one to one correspondence.

8. The depth first tree of a permutation graph candrestructed in Q) time.

9. LetG be a graph. Then the following are equivalent,

a. Gis apermutation graph.

b. G is a permutation graph.

c. Everyinduced subgraph®fis a permutation graph.

d. Every connected componeni®fs a permutation graph.
10. A graplG is a permutation graph if and only if it has aesikie order.

11. LetrUS, .Thenr={71), 71(2),...,71(n)} is a cohesive order of the permutation
graphG,, .

2. Main results
Before going on main results some definitions haviee discussed.

A caterpillar is a tree having the property thahosal of all pendant vertices results in a

oo

Figure 2: Caterpillar
The treeKlvs* is formed by subdividing each edge l¢f ; into two edges.

L

Figure3: K’
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Lobster is a tree having the property that remafabll pendant vertices results a
caterpillar.

Figure4: Lobster

Theorem 1. A lobster is a permutation graph.

Proof: It is proved by the use of following two theorems.

I.  Atreeis a caterpillar if and only if it does ruantain KL; as a subgraph.

II.  Atreeis a permutation graph if and only if igigaterpillar.
So, we can conclude that a tree is a permutatiaphgif and only if it does not contain
K., as a subgraph.

(a) (b)
Figureb5: (a) Permutation graph, (b) not permutation graph
Lobster is a tree. So it is a permutation graphdbes not contairKL; as a subgraph.

And is not a permutation graph when it contai(‘ul%* as a subgraph.

Theorem 2. PathP,is a permutation graph.

Proof: It is proved by finding the permutation for diéat n by the use of mathematical

induction because if we find out the permutatidnN then R is a permutation graphl
N.
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Forn=1, P; is a permutation graph.

1
Its corresponding permutation i{lj'

Figure6: P,
Forn=2, P,is also a permutation graph because its correspgruirmutation is,

12
21)
The corresponding picture is,

lg 2q

2 1

Figure7: P,
Let us assume that it is true form.
We have to prove it fan=m+1.
Let m be odd, them+1 is even.
Then the corresponding permutation is,

21436587........... m-2 m+1
1325476.............. m m-1mf
The figure is,

Figure8: P (M+1 even) and its permutation representation
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When m+1 odd i.e. m even, then the correspondingu@tion becomes,

214365......... m m-1 m+
1325476......... m-2 m+1lpr
The figure is,
ST =
o 0700
2 1 4 36 5 m m-1  m+l
21 4 3 6 3 m m-1  m+l

/N '
/ \X\/
AN

1 i 2 3 4 7 6 m-2 m+1

Figure9: P,.,(m+1 odd) and its permutation representation
The theorem is true for=1,2,...,m+1.
So the theorem is trug n [ N.

3. Conclusion

Graph theory is a most useful tool to solve a loprmblems now a days. Permutation
graph is also very important subclass of intersecraphs. As they are a subclass of
perfect graphs many problem can be solved effigiewhich are NP complete on
arbitrary graphs. Many optimization problem becompealynomial on permutation graphs
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