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Abstract. The unsteady magneto hydrodynamic flow of an electrically conducting 
viscous incompressible non-Newtonian Casson fluid bounded by two parallel non-
conducting porous plates with porous medium in studied with heat transfer considering 
the Hall effect. An external uniform magnetic field is applied perpendicular to the plates 
and the fluid motion is subjected to a uniform section and injection. The lower plate is 
stationary and the upper plate is suddenly set into motion and simultaneously suddenly 
isothermally heated to a temperature other than the lower plate temperature. At first the 
system of equations have transformed by usual transformation into a non-dimensional 
form. After that, the non-similar partial differential equations have solved numerically by 
Crank-Nicolson implicit finite difference. The results of this study have discussed for the 
different values of the well-known parameters with different time step. 
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1. Introduction 
Casson fluid is a shear thinning liquid which has an infinite viscosity at a zero rate of 
shear, a yield stress below which no flow occurs and a zero viscosity at an infinite rate of 
shear. Casson's constitute equation represents a nonlinear relationship between stress and 
rate of strain and has been found to be accurately applicable to silicon suspensions, 
suspensions of bentonite in water and lithographic varnishes used for printing inks. Attia 
et al. [1] has studied the influence of the Hall current on the velocity and temperature 
fields of an unsteady Hartmann flow of a conducting Newtonian fluid between two 
infinite non-conducting horizontal parallel and porous plates. Several works on MHD are 
in [2-4]. Attia et al. [5] studied the transient MHD Couette flow of a Casson fuuid 
between parallel plates with heat transfer. The extension of such problem to the case of 
Couettee flow of non-Newtonian Casson fluid is done in the present study for porous 
medium. The upper plate is moving with a uniform velocity while the lower plate is 
stationary. The fluid is acted upon by a constant pressure gradient, a uniform suction 
from above, and a uniform injection from below and is subjected to a uniform magnetic 
field perpendicular to the plates. The two plates are kept at two different but constant 
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temperatures. This configuration is a good approximation of some practical situations 
such as heat exchangers, flow meters, and pipes that connect system components. 
 
2. Formulation of the problem 
The fluid is assumed to be laminar, 
incompressible and obeying a Casson model 
and flows between two infinite horizontal 

plates located at the y h   planes. The 

upper plate is suddenly set into motion and 

moves with a uniform velocity 0U  while the 

lower plate is stationary. The upper plate is 
simultaneously subjected to asset change in 

temperature from 1T  to 2T . Then, the upper 

and lower plates are kept constant temperature 2T  and 1T  respectively, with 2 1T T . The 

fluid is acted upon by a constant pressure gradient 
dp

dx  
in the x  -direction and a uniform 

suction from above and injection from below which are applied at 0t  . A uniform 

magnetic field 0B  is applied in the positive y -direction and is assumed undistributed as 

the induced magnetic field is neglected by assuming a very small magnetic Reynolds 
number. 
The flow of the fluid is governed by the momentum equation 

0.( )
Dv

v p J B
Dt

      
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where   is the density of the fluid and   is the apparent viscosity of the model and is 

given by 
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where 2
cK  is the Casson’s coefficient of viscosity and 0  is the yield stress. If the Hall 

term is retained, the current density J  is given by;  0 0J v B J V                        (3) 
where   is the electric conductivity of the fluid and   is the Hall factor. 

Equation (3) may be solved in J  to yield; 

   
2

0
0 21

B
J B u mw i w mu k

m


                                                                               

(4) 

where, m  is the Hall parameter and 0m B  . 

Thus two component of the momentum Equations are: 
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(6) 

The energy equation with viscous and Joule dissipations is given by 
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(7) 

where pC  and k  are respectively the specific heat capacity and the thermal conductivity 

of the field. 
The initial and boundary conditions of the problem are given by 

0u w   at 0,t   and 0w  at y h   and y h for 0t                                                (8)

 0u   at y h  for 0,t u U   at y h for 0,t                                                               (9) 

1T T  at 20,t T T   at hy   and 1T T  at y h   for 0t                                         (10)

 
Introducing the following non-dimensional quantities; 
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Now for equations (5)-(10), we get after dropping hates; 
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(13) 

0 u w  for 0 t  and 0 u w  at 1y -                                                                      (14)
 0 1,w , u   at 1 y  for  0t ,  

0  for 0t  and 0  at 1, 1y    at 1y  for 0t                                          (15) 

                                                      
The shear stress at the two walls is given by   
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   (16)  
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where, 0
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3. Numerical solution 
Equations (11)-(13) represent couple system of non-linear partial differential equations 
which are solved numerically under the initial and boundary conditions (14)-(15) using 
the Crank-Nicolson implicit method [6]. An iterative scheme is used to solve the 
liberalized system of difference equations. The solution at a certain time step is chosen as 
an initial guess for next time step and the iterative are continued till convergence, within 
a prescribed accuracy. Finally, the resulting block tridiagonal system is solved using the 
generalized Thomas-algorithm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The value of the velocity components are substituted in the right hand side of Equation 
(13) which is solved numerically with the initial and boundary conditions (14)-(15) using 
central. Finite difference equation relating the variables are obtained by writing the 
equations the mid-point of the computational  cell and then replacing the different terms 
by their second order central difference approximations in the y -direction. The diffusion 

terms are replaced by the average of the central differences at two successive time-levels. 
The computational domain is divided into meshes each of dimensions  t and y in time 

and space respectively.  
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We define the variables y,  B w ,  y yv u H    and y     to reduce the second 

order differential Equations (11)-(13) to first order differential equations. The finite 
difference representations for the resulting first order differential Equations (11) - (13) 
together the equations defining the new variables take the form; 
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Grid-independence studies show that the computational domain 0 t    and 

1 1y    can be divided into intervals with step sizes 0.001t   and 0.005y   for 

time and space respectively. Smaller step size does not show any significant change in 
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the results. Convergence of the scheme is assumed when all of the unknowns 
, , , ,u v w B   and H  for the last two approximations differ from unity by less than 

610  for all values of y  in 1 1y    at every time step. Less than 7 approximations are 

required to satisfy this convergence criterion for all ranges of the parameters studied here. 
  
4. Results and discussion  

To obtain the solutions, the computations have been carried out up to 20 00τ . . The 

result of the computations show little changes for 0.1   to 5.0   but after 5.0   to 
20.00   the result remain approximately same. Thus the solution for 20.00   are 

essentially steady-state solutions. It has been seen that in case of Couette flow, the 
pressure gradient term must be constant. Though the most important fluids are 

atmospheric air, salt water and water so that results are limited to 0.71rP   (Prandtl 

number for air at 020 c), 1.0rP   (Prandlt number for salt water at 020 c ), 7.0rP   

(Prandtl number for water at 020 c ). In addition, the values of other parameter , , , cm S Ha E

and eR  are chosen arbitrary. From figures (1-24), the flow behaviors in the case of 

coquette flow are represented graphically. Here velocity and temperature distributions 
with respect to Y  are illustrated. Figures (1-3) illustrates that velocity component U ,W

and temperature   increases with the increase of eR . Figure 4 shows that velocity 

component U  decrease with the increase of S . Figure 5 shows that W  decreases with 

the increase of S . Figure 3 exhibits that   decreases as S  increases. Figure 7 shows that 

velocity component U  increases with the increase of aH . Figure 8 shows that W

decreases with the increase of aH . Figure 9 shows that the temperature distribution has a 

minor effect for increasing aH . Figures (10-12) shows that velocity components ,U W  

increase and temperature profiles    has a minor effect for increasing value of m . Figures 
(13-14) represent that both the velocity component U and W  exhibits a little changes. 

On the other hand Figure 15 represents that   decreases with the increases of rP . 

Figures(16-17) shows that the velocity distributions has a minor effect for increasing cE  
Figure 18 shows that   increases with the increase of cE .  
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