
Progress in Nonlinear Dynamics and Chaos 
Vol. 2, No. 1, 2014, 23-33 
ISSN:  2321 – 9238 (online) 
Published on 24 December 2014 
www.researchmathsci.org 
 

23 

 

Progress in 

Application of Fuzzy System Rules to Human Activity 
 M. Kiruthiga1 and C. Loganathan2 

1Department of Mathematics, Maharaja Arts and Science College, Coimbatore, India 
Corresponding author. Email: Kiruthi.neha@gmail.com 

2Principal, Maharaja Arts and Science College, Coimbatore, India 
Email: clogu@rediffmail.com 

Received 13 November 2014; accepted 12 december 2014 

 
Abstract. Intelligent systems are developed to explain real time situations and to model 
them from mathematical point of view. Since these systems do not obey the principle of 
super possession and homogeneity, they are not linear. These systems therefore have 
nonlinear dynamical behavior. Along with that, these systems undergo uncertainty and 
there is an amount of probability involved in their behavior.  We developed a fuzzy 
system based on fuzzy intervals and fuzzy optimization process.  The results are 
illustrated from standard situations in modeling human activities. 
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1. Introduction 
Schalkoff has developed principles, paradigms to study intelligent systems. In that, he has 
modeled Fuzzy Intelligent System using based on control system results on linguistic 
variables [13]. 
              Description-based approaches are a particular class of hierarchical recognition 
methodologies designed for analysis of high-level activities [2,5,6,7,13]. The motivation 
behind description-based approaches is to recognize human activities by maintaining the 
activities’ temporal structure. Using time intervals and temporal predicates [7] to 
represent the structure of each activity, previous approaches have obtained successful 
results on recognizing high-level human activities, by searching for visual inputs that 
satisfies the activities’ structure. Description-based approaches are able to overcome the 
limitations of previous statistical and syntactic approaches [3,4] on recognizing 
concurrently organized activities. We present a reliable human activity recognition 
methodology which handles the structural variations of an activity. When a new 
observation (i.e. video) containing an execution of an activity is provided, our system 
measures how semantically similar a given observation is to the optimal structure of the 
activity. This similarity measure is not deterministic but is designed to consider 
uncertainties of the activities’ structures.  
           Over all process of the system is as follows. At each occurrence of gestures, we 
associate a fuzzy [9, 10] time interval. In contrast to a deterministic time interval used by 
previous approaches [ 2, 6,7,8], a fuzzy interval is able to describe a possible range of its 
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starting time and that of its ending time as well as the confidence value associated with 
time frames within the ranges. Once fuzzy intervals are calculated, a dynamic 
programming algorithm that we have designed and presented here is applied to measure 
the similarity between the detected fuzzy intervals and the structure of the activity 
specified in the representation. Our algorithm searches for the time points in ranges that 
satisfy the temporal structure specified in the activity representation while maximizing 
the fuzzy membership values.  A logistic regression technique has been used to estimate 
the similarity function. 
 
2. Basic concepts and results 
2.1. Fundamental fuzzy system concepts include 
1. The notion and quantification of fuzzy sets, especially the all-important notion of 
membership functions for (fuzzy and non fuzzy. i.e., crisp) sets; 
2. Linguistic variables, labels, and hedges; 
3. The process of fuzzification; 
4. The propagation of fuzzy information via fuzzy productions (rules) and associated 
compositional rules of inference (CRI); and 
5. The process of defuzzification. 
 
2.2. Determining membership functions, µ� 
There are a number of ways to acquire the necessary µ� for a fuzzy system. These 
include: 
1. Subjective evaluation and elicitation (experts specify membership function curves 
appropriate to a given problem). 
2. Ad-hoc functional forms ( most actual fuzzy control operations draw from a very small 
set of different curves). 
3. Converted frequencies or probabilities. (However, we must remember that membership 
functions are NOT probabilities.) 
4. Physical measurement. 
5. Learning and adaptation. 
 
2.3. General fuzzy system structure 
1. Major components 
A general structure for a system employing fuzzy concepts consists of three entities: 

• A fuzzification process that converts non fuzzy (crisp) inputs into their fuzzy 
counterparts; 

• A fuzzy computational mechanism (CRI) that maps fuzzy quantities into fuzzy 
quantities; and  

• A defuzzification interface that converts the fuzzy-domain results into nonfuzzy 
(crisp) outputs. 

Not all three components are required. Only the heart of the system shown, i.e., the fuzzy 
computational mechanism, is required. In the case of a system based upon linguistic 
(fuzzy) inputs, fuzzification is not required. Similarly, if a linguistic (fuzzy set) output is 
sufficient, defuzzification is not required. 
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2. Linguistic variables 
Perhaps the most fundamental element in fuzzy systems is the notion of a linguistic 
variable, i.e., a variable whose values are words rather than numbers. For example, 
consider the use of the linguistic variable temperature in the fuzzy expression: "the 
temperature is hot," as compared with the crisp interpretation: "the temperature is 
56.00108709023degreeC." Linguistic variables also allow qualifiers on the fuzzy set or 
linguistic label/descriptor, for example, valid expressions are " the temperature is very 
hot," " the temperature is NOT hot" and " the temperature is NOT very hot." 
 
3. Fuzzy Antecedents and Rules 
The structure of an antecedent in a fuzzy rule is: 
   u is the V            "input temperature is hot" 
This leads to the rule form4: 
   IF (x is A) and (y is B) THEN z is C 
where 
♦ A and B denote fuzzy sets over the input domains X and Y of linguistic variables x and 
y. 
♦ C is a fuzzy set over the output domain Z of linguistic variable z. 

3. Fuzzy optimization 
The precise quantification of many system performance criteria and parameter and 
decision variables is not always possible, nor is it always necessary. When the values of 
variables cannot be precisely specified, they are said to be uncertain or fuzzy. If the 
values are uncertain, probability distributions may be used to quantify them. 
Alternatively, if they are best described by qualitative adjectives, such as dry or wet, hot 
or cold, clean or dirty, and high or low, fuzzy membership functions can be used to 
quantify them. Both probability distributions and fuzzy membership functions of these 
uncertain or qualitative variables can be included in quantitative optimization models. 
This chapter introduces fuzzy optimization modeling, again for the preliminary screening 
of alternative water resources plans and management policies. 
 
4. Fuzzy time intervals 
In this section, we introduce the concept of ‘fuzzy Time intervals’, which is designed to 
capture uncertainties and variations in activity executions. A time interval is a pair of 
starting time and ending time, which describes the time associated with an occurring 
activity or sub-event. Previously, most of approaches have used deterministic time 
intervals with strictly fixed starting and ending time to describe detected sub-events, and 
analyzed their relationships to recognize activities [8, 2, 6, 7]. Our system associates 
‘fuzzy intervals’ for detected actions; we adopt the concept of fuzzy sets, and describes 
each starting time or ending time of actions as a fuzzy range of time rather than a time 
point. Each frame (i.e. discrete time points) within the range will have corresponding 
fuzzy set function value describing how confident the system is on the fuzzy interval. 
Fuzzy intervals are not only associated with atomic actions, but also associated with high-
level actions and interactions for the hierarchical recognition.  

Fuzzy intervals and possible time intervals described by fuzzy intervals. Two 
fuzzy intervals whose ranges overlap slightly. Possible time intervals extracted from the 
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fuzzy intervals, which are selected to satisfy the temporal relationship meets. A starting 
or ending point of each time interval has an associated fuzzy set value describing how 
confident the system is on the time interval.  

Clearly illustrates why fuzzy time intervals are more desirable than traditional 
deterministic intervals on handling variations of an activity. Assume that a structure of an 
activity is described as time intervals of two sub-events occurring in a sequence (i.e. 
meets). When two overlapped intervals are detected (instead of sequential ones) due to an 
execution variation, systems using the deterministic time intervals whose starting times 
and ending times are fixed to local maximums fail to recognize the activity. On the other 
hand, as illustrated, the fuzzy intervals contain time intervals that meets with a certain 
confidence, thereby enabling the recognition. 

A fuzzy interval describes a set of possible time intervals. Among sets of possible 
time intervals described by fuzzy intervals of sub-events, there may exist particular 
choices that make the temporal constraints of an activity to be satisfied. The goal is to 
make the system search for such selections while maximizing fuzzy values associated 
with intervals, so that the overall similarity using fuzzy intervals can be measured. We 
present the detailed algorithm to measure such similarity in the following section. 

In principle, our recognition methodology is able to cope with any function as a 
fuzzy membership function associated with starting or ending point of a time interval. We 
have chosen a triangular function that is commonly used in fuzzy logic to be the fuzzy 
function of starting or ending point of an atomic-level action. Based on the training data, 
a variance of a starting or ending time of each atomic actions has been measured, and the 
height and the width of the triangle function have been empirically decided. The fuzzy 
function of higher-level activities are calculated hierarchically, as a consequence of the 
recognition process. 

 
5. Recognition algorithm 
In this section, we present an algorithm to recognize human activities using fuzzy 
intervals. We first present a methodology to recognize activities by measuring similarities 
between its structure and observations (i.e. detected fuzzy intervals of sub-events). A 
hierarchical similarity measurement is presented next. 

The problem of recognizing an activity based on detection results of sub-events 
can be formulated as follows: Given fuzzy intervals associated with each subevent, the 
goal is to search for a valid combination of time intervals within the ranges of fuzzy 
intervals that maximize the fuzzy values (i.e. confidence) while satisfying the temporal 
constraints of the activity. If the assigned fuzzy values are high enough, the system is 
able to deduce that given fuzzy intervals are similar to the activity’s structure and 
conclude that the activity occurred. In order to integrate fuzzy values associated 

 

Figure 1. An example temporal graph 
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with sub-events to calculate the overall confidence of the occurring activity formally, we 
have used a logistic regression technique. Confidence of the activity is computed as a 
weighted sum of starting and ending times’ fuzzy values fitted into the logistic function. 
Let (v1, …, vn) be time intervals within the ranges of fuzzy intervals of n sub-events, and 
(x1, …, xn) be their fuzzy membership values. Then, overall fuzzy confidence of the 
activity, L, is measured as 

L = max(L(x1, …, xn)) = logit‾1(max(F(x1, …, xn)))               (1) 
where 

F(x1, …, xn) = b + a1 _ (xs
1 + xe

1) + … + an _ (xs
n + xe

n)                       (2) 
where xs

k indicates the fuzzy value of the starting time of vk and xe
k indicates that of 

ending time. The function logit is defined as logit(p) = ln(p/(1 - p)), and a1, ..., an and b 
are constant weight values which need to be trained.  

The system is required to maximize the F(x1 , ..., xn) function while meeting 
temporal constraints posed for (v1, …, vn). There exist various temporal constraints that 
the time intervals have to satisfy depending on the representation of the activity. Most 
trivial constraint is that the starting time of a subevent can not exceed its ending time. 
Representation of the activity also specifies other constraints using temporal predicates. 
For example, if the representation contains before(v1, v2), then the ending time of v1 must 
be strictly less than the starting time of v2. Choosing time point 9 for ve

1 and 5 for vs
2 

leads to a contradiction, regardless their fuzzy values.  
In order to compute max(F(x1, …, xn)) while satisfying the constraints, we have 

developed a dynamic programming algorithm. We first convert temporal representation 
of an activity into an undirected acyclic graph representation (i.e.  tree) where each node 
corresponds to a time interval and each edge specifies that two intervals are required to 
satisfy a particular relationship. An edge is labeled with the relationship that needs to be 
satisfied between the two nodes (e.g. during(v1, v2)). Multiple graphs may be constructed 
from disjunctive normal form (DNF) of the representation. Figure 1 shows an example 
temporal graph of the interaction ‘push’ mentioned. 

We formulate the recursive equation as: 
Gk(t) = ak . (x

s
k + xe

k) +∑ max{t’}Gc(t’)  
           all vc                                                              (3) 

where vc are child nodes of vk, and t’  are time intervals that satisfies temporal relations 
with the interval t. Gk(t) specifies the maximum weighted sum of possible assignments 
for xk and its descendant nodes, if the interval t is assigned for xk. Therefore, the similarity 
measure L(x1, x2, …, xn) are enumerated as follows: 

max(L(x1, …, xn))  = logit‾1 (max(F(x1, …, xn))) 
        (4) 

    = logit‾1(max{t}Gr(t)) 
where node vr is the root node of the tree. 

As a result, by solving the recursive equation using the dynamic programming 
algorithm, we are able to calculate the maximum L, which is the confidence of the 
detection. Furthermore, we are able to calculate the fuzzy interval associated with the 
detection. By calculating the argument maximum while computing the maximum, we 
also are able to compute the exact time intervals of sub-events that make the fuzzy value 
of the activity to be the maximum. This implies that the system is able to calculate the 
starting time and ending time of the special time interval ‘this’, which is always 
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associated with the defining activity itself. Ranges are associated with the detected 
starting and ending time of ‘this’, making the interval to be fuzzy. The overall complexity 
of the algorithm is O(m2), where m is the average number of intervals within ranges per 
node. 

We have developed a hierarchical algorithm which analyzes human activities 
from bottom (i.e. atomic-level actions) to top (i.e. high-level interactions). At the bottom 
level, the system detects atomic-level actions (e.g. arm stretching) using low-level 
recognition techniques such as hidden Markov models (HMMs) from Park and Aggarwal 
[8], and associates fuzzy intervals to describe their starting and ending time. Higher-level 
activities are recognized based on fuzzy intervals associated with their sub-events, which 
are atomic-level actions and/or other activities composed of their own subevents. With 
the fuzzy interval calculation method presented above in this section, fuzzy intervals of 
an activity are computed based on those of sub-events, enabling the recognition of high-
level activities. 

 
6. Experiments and results 
We have evaluated the performance of our system using fuzzy time intervals, while 
comparing it with the previous systems [10, 11] using deterministic intervals. Eight types 
of relatively simple interactions between humans (approach, depart, point, shake-hands, 
hug, punch, kick, and push), as well as complex recursive interactions of fighting and 
greeting have been tested by the systems. We have used the dataset used in [10, 11], 
which contains sequences of continuous executions of activities in 320*240 resolutions at 
15 fps. Complex fighting-related sequences containing a total of 53 simple and recursive 
activities have been newly added. As a result, a total of 161 activity executions have been 
tested for both systems. HMMs for gesture recognition and logistic regression weights, 
a1,…, an and b, have been estimated based on a separate training set. 
 

 

Figure 2. Example experimental results of the recursive activity ‘fighting’, composed of 
three consecutive ‘punching’ interactions. 

The experimental results clearly illustrate that the recognition accuracy of our 
system is better than that of the previous system. Table 1 compares true positive rates 
obtained from two systems whose false positive rates are similar. The result confirms that 
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the use of fuzzy time intervals helps reliable recognition of activities from noisy videos 
with structural execution variations. Figure 2 shows a successful recognition result of our 
system tested on a fighting interaction composed of three punching interactions, which 
the previous deterministic systems failed recognition due to its structural variation. Figure 
3 shows a recognition result of pushing. Even though the structure of the gesture 
recognition results was slightly different from the representation, our system was able to 
recognize the pushing interaction. False positive rates were almost 0 for both systems, 
since the probability of sub-events satisfying particular relations detected ‘by accident’ is 
extremely low. 

System Simple Recursive Total 
Ours 0.920 0.783 0.907 
Previous 0.862 0.522 0.814 

Table 1. Recognition accuracy 
 

 

Figure 3. Example experimental results of the ‘pushing’ interaction 

7. Representation 
The representation for composite actions must consist of two parts: a list of variables 
corresponding to time intervals associated with designated sub-events, and the 
relationships among those variables. The first component can be represented by 
associating one symbol name with one sub-event. The second component, which 
represents necessary conditions for composite actions, is defined through predicates 
mentioned. Variables defined and the special variable ‘this’, representing defining action 
itself, are used in order to specify the relationships. Therefore, we are able to represent a 
composite action in terms of the relationship between ‘this’ and other time interval 
variables ‘t1’, ‘t2’, ..., which are satisfying time intervals of sub-events. 
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As a format of the representation scheme, we use a context-free grammar (CFG). 
CFG naturally leads the representation to use concepts recursively, enabling the action to 
be defined based on sub-events. In our representation, atomic actions serve as terminals. 
On the other hand, composite actions are treated as non-terminals. These non-terminals 
can be converted to terminals recursively, using production rules. 

Our CFG does not generate sequences of poses or gestures directly. Rather, we 
construct a representation of composite actions using the CFG. A representation built 
through the CFG describes all participating sub-events, and their relationships. Sub-
events can either be atomic actions or other already represented composite actions. Even 
though the CFG does not create the sequences of poses or gestures directly, we will be 
able to recognize composite actions through detecting sequences that satisfy the 
representation constructed with our CFG. With our CFG, we are able to represent any 
actions if their relationship can be described in terms of the predicates we have defined. 

Therefore, the general representation of composite actions can be described using 
the following context-free-grammar. Non-terminal Action(i) indicates action of person i. 
Action(i) can be either an atomic action, or a composite action defined with two 
components: Action Defs(i,var) and Action Relationship(var). The first component, 
Action Defs(i,var), defines the variables for corresponding time intervals of sub-events. 
Parameter var is defined to be the list of variables associated with sub-events. Action 
Defs (i,var) is the list of several def(c, Action (i)), and this defines the contents of list var. 
Statement def(c, Action (i)) associates some variable c with the time interval of a denoted 
sub-event. As a result, list var contains a list of variables associated with time intervals of 
corresponding composing events.The second component is Action Relationship(var). 
With temporal and logical predicates, Action Relationship(var) defines the all necessary 
conditions for the action using all variables in var and special variable ‘this’. A 
combination of any temporal predicates presented can be used to define 
ActionRelationship(var). The time interval ‘this’ satisfying all necessary conditions will 
be the corresponding time interval for the action. 
Action(i) 

->(Action Defs(i,var), Action Relationship(var) ) 
-> atomic _action(operation triplet) 

Action Defs (i, var) 
-> list( def(c, Action(i)), Action Defs (i, var-c) ) 
-> def(c, Action(i)) 

Action Relationship(var) 
-> Logical-Predicate( Action Relationship(var), 

Action Relationship(var) ) 
-> Temporal-Predicate( ‘this’, var(a) ) 
-> Temporal-Predicate( var(a), var(b) ) 

For example, let’s look into the composite action ‘shake hands action’ again. As 
we informally defined previously in Figure 4, we associate variable ‘x’, ‘y’, and ‘z’ with 
sub-events ‘Stretch’, ‘Stay_ Stretched’, and ‘Withdraw’. Then, relationships are 
represented in terms of predicates: meets(x, y), meets(y, z), starts(x, this), and finishes(z, 
this). Therefore, formal representation of ‘shake-hands action’ is defined through our 
CFG scheme as follows. 
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Stretch _hand(i)     =   atomic _action(<person I ’s hand, stretch, other person>) 
Stay _Stretched _hand(i)   =   atomi c _action (<person I ’s hand, stay stretched, other 
person’s hand>) 
Withdraw _hand(i) = atomic _action(<person i’s hand, withdraw, null>) 
SH Action Def s ( i,  var ) = list( def(‘x’, Stretch _hand(i)), 

list( def(‘y’, Stay_ Stretched _hand(i)), 
def(‘z’, Withdraw _hand(i)) )) 

SH  Action Relationship (var) = and( meets(‘x’, ‘y’), and( 
meets(‘y’, ‘z’), and(starts(‘x’, ‘this’), finishes(‘z’, ‘this’)))) 

Shake Hands _action(i) = (SH Action Defs (i, var), SH Action Relationship(var) ) 
 
8. Experimental results 
We recognized the following eight two-person interactions through our system: approach, 
depart, point, shake-hands, hug, punch, kick, and push. Interaction videos taken by Sony 
Handy Cam were converted into sequences of image frames with 320*240 pixel 
resolution, obtained at a rate of 15 frames per sec. Six pairs of persons participated in the 
experiment and 24 sequences were obtained. In each sequence, participants were asked to 
perform a number of above interactions consecutively and continuously. Overall, each 
interaction was performed 12 times total throughout all sequences. 

The representations for the eight interactions were constructed manually using 
our CFG-based representation scheme. Usually, a composite action is first defined in 
order to represent meaningful one-person movement in the interaction. For example, in 
the previous sections, the composite action ‘shake-hands action’ was defined first in 
order to represent interaction ‘shake-hands interaction’. The composite action ‘shake-
hands action’ and the interaction ‘touching’ were sub-events. 

Figure 3 and 4 show the intermediate outputs of each layer. In this experiment, 
two persons performed three interactions consecutively: shake-hands, point, and hug. The 
body-part layer extracts features for each body parts per frame. Figure 3 shows the 
sequences of raw images, and processed images for extracting body-part parameters. 
Once the features for each frame are extracted, the pose layer converts them into discrete 
pose for each body part. The gesture layer converts sequences of poses into sequences of 
gestures. The recognition algorithm provided then used to recognize interactions based on 
information from the gesture layer. Figure 4 shows the result of the pose layer, the 
gesture layer, and the final result of interaction recognitions.  

Table 1 shows the performance of our recognition system. Because of the 
accurate representation on composite actions, the system is superior to all previous 
systems. Moreover, the results are obtained from sequences of consecutive interactions, 
not segmented manually. The system was able to recognize sequences of actions and 
interactions with high degree of accuracy. 

 
9. Conclusion 
We have presented a reliable recognition methodology that is able to handle uncertainties 
in human activities’ structure. We have introduced the concept of ‘fuzzy time intervals’, 
and presented the dynamic programming algorithm to calculate the similarity between the 
activity and the observations. Experimental results suggest that the ability to handle 
structural variations enables better recognition of human activities. 
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We presented the general methodology for automated recognition of complex 
human actions and interactions. The fundamental idea is to use the CFG-based 
representation scheme to represent composite actions and interactions. The CFG-based 
representation scheme provides a formal method to define occurring time intervals of 
composite actions and interactions. The idea of representing complex actions and 
interactions as a composition of simpler actions and interactions was the key. Our 
experiments show that the system can represent and recognize composite actions and 
interactions with high recognition rate.  

The novelty of our work is on the framework to represent and recognize high-
level hierarchical actions from raw image sequence. Our representation explicitly 
captures the hierarchical nature of actions and interactions. Our system has the ability to 
use represented actions as sub-events of higher-level actions, thereby minimizing the 
redundancy. The potential of our work is that our system is able to recognize even higher-
level composite actions and interactions. Our system can recognize any actions and 
interactions if their time intervals can be defined properly through our CFG-based 
representation scheme. Our framework is also able to handle noisy inputs through 
HMMs. However, current framework cannot process large scale errors, such as insertion 
or deletion of sub-events. In the future, we plan to take probabilistic nature of actions into 
consideration. Also, we aim to develop methodology for our system to learn activity 
representations based on large training sets. 

 
Interaction Total Correct Accuracy 

Approach 12 12 1.000 
Depart 12 112 1.000 
Point 12 11 0.917 
Shake hands 12 11 0.917 
Hug 12 10 0.833 
Punch 12 11 0.917 
Kick 12 10 0.833 
Push 12 11 0.917 
Total 96 88 0.917 

Table 2: Recognition accuracy of the system 
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