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Abstract. Intelligent systems are developed to explain riea¢ tsituations and to model
them from mathematical point of view. Since thegeteams do not obey the principle of
super possession and homogeneity, they are ndarliffidhese systems therefore have
nonlinear dynamical behavior. Along with that, thesystems undergo uncertainty and
there is an amount of probability involved in thehavior. We developed a fuzzy
system based on fuzzy intervals and fuzzy optingmaprocess. The results are
illustrated from standard situations in modelingriam activities.
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1. Introduction

Schalkoff has developed principles, paradigmsudysintelligent systems. In that, he has
modeled Fuzzy Intelligent System using based ortrabsystem results on linguistic
variables [13].

Description-based approaches arer@icplar class of hierarchical recognition
methodologies designed for analysis of high-lewtivaies [2,5,6,7,13]. The motivation
behind description-based approaches is to recodmigen activities by maintaining the
activities’ temporal structure. Using time interwvahnd temporal predicates [7] to
represent the structure of each activity, previapproaches have obtained successful
results on recognizing high-level human activitibg, searching for visual inputs that
satisfies the activities’ structure. Descriptiorséd approaches are able to overcome the
limitations of previous statistical and syntactippeoaches [3,4] on recognizing
concurrently organized activitiedVe present a reliable human activity recognition
methodology which handles the structural variatimfsan activity. When a new
observation (i.e. video) containing an executionanfactivity is provided, our system
measures how semantically similar a given obsemés to the optimal structure of the
activity. This similarity measure is not determiiisbut is designed to consider
uncertainties of the activities’ structures.

Over all process of the system is alfed. At each occurrence of gestures, we
associate a fuzzy [9, 10] time interval. In cortttasa deterministic time interval used by
previous approaches [ 2, 6,7,8], a fuzzy intersalhle to describe a possible range of its
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starting time and that of its ending time as wslltlae confidence value associated with
time frames within the ranges. Once fuzzy intervale calculated, a dynamic
programming algorithm that we have designed andgmted here is applied to measure
the similarity between the detected fuzzy intervalsl the structure of the activity
specified in the representation. Our algorithm clees for the time points in ranges that
satisfy the temporal structure specified in thaviygtrepresentation while maximizing
the fuzzy membership values. A logistic regressemtnique has been used to estimate
the similarity function.

2. Basic concepts and results

2.1. Fundamental fuzzy system conceptsinclude

1. The notion and quantification of fuzzy sets, exsglly the all-important notion of
membership functions for (fuzzy and non fuzzy, iceisp) sets;

2. Linguistic variables, labels, and hedges;

3. The process of fuzzification;

4. The propagation of fuzzy information via fuzzgoguctions (rules) and associated
compositional rules of inference (CRI); and

5. The process of defuzzification.

2.2. Deter mining member ship functions, pi

There are a number of ways to acquire the necegsafgr a fuzzy system. These
include:

1. Subjective evaluation and elicitation (expenecfy membership function curves
appropriate to a given problem).

2. Ad-hoc functional forms ( most actual fuzzy gohbperations draw from a very small
set of different curves).

3. Converted frequencies or probabilities. (Howewer must remember that membership
functions are NOT probabilities.)

4. Physical measurement.

5. Learning and adaptation.

2.3. General fuzzy system structure
1. Major components
A general structure for a system employing fuzzyoepts consists of three entities:
» A fuzzification process that converts non fuzzyigigy inputs into their fuzzy
counterparts;
» A fuzzy computational mechanism (CRI) that mapsjuquantities into fuzzy
guantities; and
» A defuzzification interface that converts the fuzigmain results into nonfuzzy
(crisp) outputs.
Not all three components are required. Only thethafahe system shown, i.e., the fuzzy
computational mechanism, is required. In the cdsa system based upon linguistic
(fuzzy) inputs, fuzzification is not required. Slarly, if a linguistic (fuzzy set) output is
sufficient, defuzzification is not required.
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2. Linguistic variables

Perhaps the most fundamental element in fuzzy swste the notion of a linguistic
variable, i.e., a variable whose values are woather than numbers. For example,
consider the use of the linguistic variable tempgeain the fuzzy expression: "the
temperature is hot," as compared with the crisgrpretation: "the temperature is
56.00108709023degreeC." Linguistic variables alkmwagualifiers on the fuzzy set or
linguistic label/descriptor, for example, valid egpsions are " the temperature is very
hot," " the temperature is NOT hot" and " the terapge is NOT very hot."

3. Fuzzy Antecedents and Rules
The structure of an antecedent in a fuzzy rule is:
uisthe Ve=>  "input temperature is hot"
This leads to the rule form4:
IF (xisA)and (yisB) THEN zis C
where
¢ A and B denote fuzzy sets over the input domairm Y of linguistic variables x and

y.
¢ Cis a fuzzy set over the output domain Z of lisga variable z.

3. Fuzzy optimization

The precise quantification of many system perforceagriteria and parameter and
decision variables is not always possible, not &ways necessary. When the values of
variables cannot be precisely specified, they aid & be uncertain or fuzzy. If the
values are uncertain, probability distributions még used to quantify them.
Alternatively, if they are best described by quiite adjectives, such as dry or wet, hot
or cold, clean or dirty, and high or low, fuzzy mmemship functions can be used to
qguantify them. Both probability distributions anazfy membership functions of these
uncertain or qualitative variables can be includedjuantitative optimization models.
This chapter introduces fuzzy optimization modeliagain for the preliminary screening
of alternative water resources plans and managepadintes.

4. Fuzzy timeintervals
In this section, we introduce the concept of ‘fuZigne intervals’, which is designed to
capture uncertainties and variations in activitg@xions. A time interval is a pair of
starting time and ending time, which describes tthree associated with an occurring
activity or sub-event. Previously, most of apprascthave used deterministic time
intervals with strictly fixed starting and endirigné to describe detected sub-events, and
analyzed their relationships to recognize actisitjg, 2, 6, 7]. Our system associates
‘fuzzy intervals’ for detected actions; we adopt toncept of fuzzy sets, and describes
each starting time or ending time of actions aszzyf range of time rather than a time
point. Each frame (i.e. discrete time points) witllhe range will have corresponding
fuzzy set function value describing how confidem system is on the fuzzy interval.
Fuzzy intervals are not only associated with atamettons, but also associated with high-
level actions and interactions for the hierarchieabgnition.

Fuzzy intervals and possible time intervals desttilby fuzzy intervals. Two
fuzzy intervals whose ranges overlap slightly. Rdegime intervals extracted from the
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fuzzy intervals, which are selected to satisfy tdn@poral relationship meets. A starting
or ending point of each time interval has an asdedifuzzy set value describing how
confident the system is on the time interval.

Clearly illustrates why fuzzy time intervals are maalesirable than traditional
deterministic intervals on handling variations ofactivity. Assume that a structure of an
activity is described as time intervals of two ®uents occurring in a sequence (i.e.
meets). When two overlapped intervals are detgatstead of sequential ones) due to an
execution variation, systems using the determinigthe intervals whose starting times
and ending times are fixed to local maximums faitécognize the activity. On the other
hand, as illustrated, the fuzzy intervals contaimetintervals that meets with a certain
confidence, thereby enabling the recognition.

A fuzzy interval describes a set of possible timterivals. Among sets of possible
time intervals described by fuzzy intervals of auents, there may exist particular
choices that make the temporal constraints of dimitgcto be satisfied. The goal is to
make the system search for such selections whikdni@ng fuzzy values associated
with intervals, so that the overall similarity ugifuzzy intervals can be measured. We
present the detailed algorithm to measure sucHasityiin the following section.

In principle, our recognition methodology is abtecope with any function as a
fuzzy membership function associated with startingnding point of a time interval. We
have chosen a triangular function that is commarslgd in fuzzy logic to be the fuzzy
function of starting or ending point of an atomés4| action. Based on the training data,
a variance of a starting or ending time of eacimat@ctions has been measured, and the
height and the width of the triangle function hdeen empirically decided. The fuzzy
function of higher-level activities are calculatei@rarchically, as a consequence of the
recognition process.

5. Recognition algorithm
In this section, we present an algorithm to recogriiuman activities using fuzzy
intervals. We first present a methodology to reéogactivities by measuring similarities
between its structure and observations (i.e. dedeftizzy intervals of sub-events). A
hierarchical similarity measurement is presented.ne

The problem of recognizing an activity based orectinn results of sub-events
can be formulated as follows: Given fuzzy intervassociated with each subevent, the
goal is to search for a valid combination of tinmeervals within the ranges of fuzzy
intervals that maximize the fuzzy values (i.e. aderfice) while satisfying the temporal
constraints of the activity. If the assigned fuamfues are high enough, the system is
able to deduce that given fuzzy intervals are simtb the activity's structure and
conclude that the activity occurred. In order tegnate fuzzy values associated
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Figure 1. An example temporal graph
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with sub-events to calculate the overall confideottthe occurring activity formally, we
have used a logistic regression technique. Confelarf the activity is computed as a
weighted sum of starting and ending times’ fuzzlpega fitted into the logistic function.
Let (v4, ..., V) be time intervals within the ranges of fuzzy mmtds of n sub-events, and

(X, ..., %) be their fuzzy membership values. Then, ovenadiz§ confidence of the
activity, L, is measured as

L = max(L(%, ..., %)) = logitL(max(F(X, ..., %))) (1)
where

FO4, o ®) =b+an _ (R +x%) + ...+ & _ (K +X5) 2

where X% indicates the fuzzy value of the starting timevpfand x° indicates that of
ending time. The functiologit is defined asogit(p) = In(p/(1 - p)) anday, ..., @ and b
are constant weight values which need to be trained

The system is required to maximize th&; , ..., %) function while meeting
temporal constraints posed for,(..., ). There exist various temporal constraints that
the time intervals have to satisfy depending onrdpmresentation of the activity. Most
trivial constraint is that the starting time of @bsvent can not exceed its ending time.
Representation of the activity also specifies ottmrstraints using temporal predicates.
For example, if the representation contdefordv,, ), then the ending time of must
be strictly less than the starting timewf Choosing time point 9 fov®;, and 5 forv®,
leads to a contradiction, regardless their fuzdyes

In order to computenax(F(x, ..., %)) while satisfying the constraints, we have
developed a dynamic programming algorithm. We foativert temporal representation
of an activity into an undirected acyclic graphresgntation (i.e. tree) where each node
corresponds to a time interval and each edge sgediat two intervals are required to
satisfy a particular relationship. An edge is lalelith the relationship that needs to be
satisfied between the two nodes (elgring(w, w)). Multiple graphs may be constructed
from disjunctive normal form (DNF) of the represaiun. Figure 1 shows an example
temporal graph of the interaction ‘push’ mentioned.

We formulate the recursive equation as:

Gu(t) = a . (X + X3) +X max{t}G(t)

all v, (3)
wherev, are child nodes of,, andt’ are time intervals that satisfies temporal refatio
with the intervalt. G(t) specifies the maximum weighted sum of possiblégasgents
for x and its descendant nodes, if the intetvalassigned fox.. Therefore, the similarity
measure_(X;, %, ..., %) are enumerated as follows:

max(L(x, ..., %)) =logit™l (max(F(x, ..., X)) @

4
=logit 1(max{t}G(t))
where node, is the root node of the tree.

As a result, by solving the recursive equation giglmee dynamic programming
algorithm, we are able to calculate the maximumwhich is the confidence of the
detection. Furthermore, we are able to calculageftizzy interval associated with the
detection. By calculating the argument maximum wlibmputing the maximum, we
also are able to compute the exact time interviatgib-events that make the fuzzy value
of the activity to be the maximum. This implies tiize system is able to calculate the
starting time and ending time of the special timéerival ‘this’, which is always
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associated with the defining activity itself. Rasgare associated with the detected
starting and ending time of ‘this’, making the & to be fuzzy. The overall complexity
of the algorithm i90(nf), where m is the average number of intervals withimges per
node.

We have developed a hierarchical algorithm whichlyaes human activities
from bottom (i.e. atomic-level actions) to top (itegh-level interactions). At the bottom
level, the system detects atomic-level actions. (amn stretching) using low-level
recognition techniques such as hidden Markov mog#igMs) from Park and Aggarwal
[8], and associates fuzzy intervals to describ& #tarting and ending time. Higher-level
activities are recognized based on fuzzy interaalociated with their sub-events, which
are atomic-level actions and/or other activitiesnposed of their own subevents. With
the fuzzy interval calculation method presentedvabia this section, fuzzy intervals of
an activity are computed based on those of subtgvenabling the recognition of high-
level activities.

6. Experimentsand results

We have evaluated the performance of our systemgufsizzy time intervals, while
comparing it with the previous systems [10, 11hgsieterministic intervals. Eight types
of relatively simple interactions between humamspfoach, depart, point, shake-hands,
hug, punch, kick, and pushas well as complex recursive interactionsfighting and
greetinghave been tested by the systems. We have usedhtaset used in [10, 11],
which contains sequences of continuous executibastivities in 320*240 resolutions at
15 fps. Complex fighting-related sequences contgimi total of 53 simple and recursive
activities have been newly added. As a resultfad tf 161 activity executions have been
tested for both systems. HMMs for gesture recogmitind logistic regression weights,
a,,..., & andb, have been estimated based on a separate trawting

Fighting (persaml, perscamaX)

Puschinz (el 22} Punching (22. pl} : Funching (el. p2)

Stretch Gpl) _Withdraw (1) Stretch (p2) _Withdraw (2X Stretch (pl)  Withdmaw 213

InEarcly

Obseryarom: f \ i
WAXpID 32 37 St D2 a3 A = T S p1d s§  WWd kPl g3

12 Scdblins 2

Figure 2. Example experimental results of the recursive dgtifighting’, composed of
three consecutive ‘punching’ interactions.

The experimental results clearly illustrate thag tiecognition accuracy of our
system is better than that of the previous sysfEmble 1 compares true positive rates
obtained from two systems whose false positivesrate similar. The result confirms that
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the use of fuzzy time intervals helps reliable gttion of activities from noisy videos
with structural execution variations. Figure 2 sk@wvsuccessful recognition result of our
system tested on fighting interaction composed of three punching interastiavhich
the previous deterministic systems failed recognitiue to its structural variation. Figure
3 shows a recognition result g@ushing Even though the structure of the gesture
recognition results was slightly different from ttepresentation, our system was able to
recognize thepushinginteraction. False positive rates were almost rObfuth systems,
since the probability of sub-events satisfying ipatér relations detected ‘by accident’ is
extremely low.

Systen Simple Recursivi | Total
Ours 0.92( 0.78: 0.907
Previou: 0.86: 0.527 0.81¢

Table 1. Recognition accuracy

== | ﬁL ,ga-rL 'ﬁ’g
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Representation:
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Stay_Stretched(pl s arm)

Observation:
- Swretchil s amnd >3

% |
Stay_Suetched(pl s ammd
s Touching@l.p2h, =3 artCph>.

Figure 3. Example experimental results of the ‘pushing’ iatsion

7. Representation

The representation for composite actions must sbrudi two parts: a list of variables
corresponding to time intervals associated withigieded sub-events, and the
relationships among those variables. The first comept can be represented by
associating one symbol name with one sub-event. §émond component, which
represents necessary conditions for composite res;tics defined through predicates
mentioned. Variables defined and the special vigidbis’, representing defining action
itself, are used in order to specify the relatiopshTherefore, we are able to represent a
composite action in terms of the relationship betwethis’ and other time interval
variables ‘t1’, 't2’, ..., which are satisfying terintervals of sub-events.

H this=ShakeHands_action(personl) H

= Withdraw(p1l. ar 111?
“—h

Ex= Stretchipl. arm)

-
F—=Stay_Smretched(pl. arm)

Figure 1: Example illustrating the atomiec actions” time intervals
and their relationships mneeded for the composite acrtion.
‘chake-hands action”™.
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As a format of the representation scheme, we wsmtext-free grammar (CFG).
CFG naturally leads the representation to use gascecursively, enabling the action to
be defined based on sub-events. In our represemtatiomic actions serve as terminals.
On the other hand, composite actions are treatetagerminals. These non-terminals
can be converted to terminals recursively, usiroglpction rules.

Our CFG does not generate sequences of posestarggedirectly. Rather, we
construct a representation of composite actionsgugie CFG. A representation built
through the CFG describes all participating sumésjeand their relationships. Sub-
events can either be atomic actions or other ayregppkesented composite actions. Even
though the CFG does not create the sequences e$ pogestures directly, we will be
able to recognize composite actions through detgc8equences that satisfy the
representation constructed with our CFG. With olGCwe are able to represent any
actions if their relationship can be describeceimis of the predicates we have defined.

Therefore, the general representation of compastiens can be described using
the following context-free-grammar. Non-termidadtion(i) indicates action of person i.
Action(i) can be either an atomic action, or a compositeomctlefined with two
components:Action Defs(i,var) and Action Relationship(var) The first component,
Action Defs(i,var,) defines the variables for corresponding timerirgks of sub-events.
Parametewrar is defined to be the list of variables associatéith wub-eventsAction
Defs (i,var)is the list of severalef(c, Action (i)) and this defines the contents of liat.
Statementef(c, Action (i))associates some variable ¢ with the time interfal denoted
sub-event. As a result, lisar contains a list of variables associated with timenvals of
corresponding composing events.The second compdeefittion Relationship(var)
With temporal and logical predicatesction Relationship(varjlefines the all necessary
conditions for the action using all variables var and special variable ‘this’. A
combination of any temporal predicates presentech dm®e used to define
ActionRelationship(var)The time interval ‘this’ satisfying all necessamynditions will
be the corresponding time interval for the action.

Action(i)
->(Action Defs(i,var), Action Relationship(var) )
-> atomic _action(operation triplet)
Action Defs (i, var)
-> list( def(c, Action(i)), Action Defs (i, var-g)
-> def(c, Action(i))
Action Relationship(var)

-> Logical-Predicate( Action Relationship(var),
Action Relationship(var) )

-> Temporal-Predicate( ‘this’, var(a) )

-> Temporal-Predicate( var(a), var(b) )

For example, let’s look into the composite actishake hands action’ again. As
we informally defined previously in Figure 4, wesasiate variable X', 'y, and ‘z’ with
sub-events ‘Stretch’, ‘Stay  Stretched’, and ‘Withd'. Then, relationships are
represented in terms of predicatamets(x, y)meets(y, z)starts(x, this) andfinishes(z,
this). Therefore, formal representation of ‘shake-haadson’ is defined through our
CFG scheme as follows.
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Stretch _hand(i) = atomic _action(<persosmtand, stretch, other person>)
Stay _Stretched hand(i) = atomic _action (sge | 's hand, stay stretched, other
person’s hand>)
Withdraw _hand(i) = atomic _action(<person i's hawithdraw, null>)
SH Action Def s (i, var) = list( def('x’, Stretc_hand(i)),

list( def(‘y’, Stay_ Stretched _hand(i)),

def(‘z’, Withdraw _hand(i)) ))

SH Action Relationship (var) = and( meets(‘x’,),yand(

meets(‘y’, ‘z'), and(starts(‘X’, ‘this"), finishe&’, ‘this"))))
Shake Hands _action(i) = (SH Action Defs (i, v&# Action Relationship(var) )

8. Experimental results

We recognized the following eight two-person inti@ns through our system: approach,
depart, point, shake-hands, hug, punch, kick, arsth.pinteraction videos taken by Sony
Handy Cam were converted into sequences of imagmefs with 320*240 pixel
resolution, obtained at a rate of 15 frames perSkcpairs of persons patrticipated in the
experiment and 24 sequences were obtained. Inseaglence, participants were asked to
perform a number of above interactions consecytiaeld continuously. Overall, each
interaction was performed 12 times total througtadiusequences.

The representations for the eight interactions wemstructed manually using
our CFG-based representation scheme. Usually, gasite action is first defined in
order to represent meaningful one-person movenmetité interaction. For example, in
the previous sections, the composite action ‘shededs action’ was defined first in
order to represent interaction ‘shake-hands intiem@c The composite action ‘shake-
hands action’ and the interaction ‘touching’ weub-gvents.

Figure 3 and 4 show the intermediate outputs of éager. In this experiment,
two persons performed three interactions conseslytighake-hands, point, and hug. The
body-part layer extracts features for each bodyspper frame. Figure 3 shows the
sequences of raw images, and processed imagestfacteng body-part parameters.
Once the features for each frame are extractedqyake layer converts them into discrete
pose for each body part. The gesture layer congegaences of poses into sequences of
gestures. The recognition algorithm provided thesduto recognize interactions based on
information from the gesture layer. Figure 4 shaiws result of the pose layer, the
gesture layer, and the final result of interactiecognitions.

Table 1 shows the performance of our recognitiogtesy. Because of the
accurate representation on composite actions, yegera is superior to all previous
systems. Moreover, the results are obtained fragesgces of consecutive interactions,
not segmented manually. The system was able tgném® sequences of actions and
interactions with high degree of accuracy.

9. Conclusion

We have presented a reliable recognition methogdiogt is able to handle uncertainties
in human activities’ structure. We have introdutieel concept of ‘fuzzy time intervals’,
and presented the dynamic programming algorithoatculate the similarity between the
activity and the observations. Experimental ressliggest that the ability to handle
structural variations enables better recognitiohwrhan activities.
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We presented the general methodology for automigedgnition of complex
human actions and interactions. The fundamentah ide to use the CFG-based
representation scheme to represent composite aciiod interactions. The CFG-based
representation scheme provides a formal methodefimal occurring time intervals of
composite actions and interactions. The idea ofessmting complex actions and
interactions as a composition of simpler actionsl @mteractions was the key. Our
experiments show that the system can representreatdjnize composite actions and
interactions with high recognition rate.

The novelty of our work is on the framework to megent and recognize high-
level hierarchical actions from raw image sequen©er representation explicitly
captures the hierarchical nature of actions anerations. Our system has the ability to
use represented actions as sub-events of higher-detions, thereby minimizing the
redundancy. The potential of our work is that orgtem is able to recognize even higher-
level composite actions and interactions. Our systan recognize any actions and
interactions if their time intervals can be definpbperly through our CFG-based
representation scheme. Our framework is also abléandle noisy inputs through
HMMs. However, current framework cannot procesgdascale errors, such as insertion
or deletion of sub-events. In the future, we platake probabilistic nature of actions into
consideration. Also, we aim to develop methodolégy our system to learn activity
representations based on large training sets.

Interactior Total Correc Accurac)
Approact 12 12 1.00(¢
Depar 12 112 1.00(

Poini 12 11 0.915
Shake hanc 12 11 0.91;
Hug 12 10 0.83:
Punct 12 11 0.917
Kick 12 10 0.83:
Pust 12 11 0.917
Total 96 88 0.917

Table 2: Recognition accuracy of the system
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