Progress in Nonlinear Dynamics and Chaos
Vol. 1, 2013, 34-38
ISSN: 2321 – 9238 (online)
Published on 31 May 2013
www.researchmathsci.org

Oscillation of Solutions of Certain Nonlinear Difference Equations

B. Selvaraj and S. Kaleeswari

Department of Science and Humanities,
Nehru Institute of Engineering and Technology,
Coimbatore, Tamil Nadu, India – 641 105.
email: professorselvaraj@gmail.com, kaleesdesika@gmail.com

Received 15 May 2013; accepted 24 May 2013

Abstract. In this paper, some sufficient conditions for the oscillation of all solutions of
the nonlinear difference equation of the form
\[\Delta^2 x_n + f(x_n) = 0, \quad n = 0,1,2, \ldots \]
are obtained. Examples are given to illustrate the results.

Keywords: Difference equations, oscillation, nonlinear.

1. Introduction
The notion of nonlinear difference equation was studied intensively by Agarwal [1] and
oscillatory properties were discussed by Agarwal et al. [2]. Recently there has been a lot
of interest in the study of oscillatory behavior of solutions of nonlinear difference
equations. We can see this in [3]-[9].

Szafranski and Szmanda [10] considered the second order nonlinear difference
equation of the form
\[\Delta (r_n \Delta x_n) + q_n f(x_{n-\tau_n}) = 0, \quad n = 0,1,2, \ldots \]
and gave the sufficient conditions for the oscillation of solutions of the equation
considered. Motivated by this article, we consider the nonlinear difference equation of the form
\[\Delta^2 x_n + f(x_n) = 0, \quad n = 0,1,2, \ldots \] (1)
where \(\Delta \) is the forward difference operator defined by \(\Delta x_n = x_{n+1} - x_n \) and \(f : \mathbb{R} \to \mathbb{R} \)
is continuous with \(xf(x) > 0 \) for \(x \neq 0 \). Our aim in this paper is to obtain some new
oscillation criteria for the solution of equation (1).

By a solution of equation (1), we mean a real sequence \(\{x_n\} \) which satisfies
equation (1) for all large \(n \). A solution \(\{x_n\} \) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise it is called non-oscillatory.
2. Main results
In this section, we present some sufficient conditions for the oscillation of all the solutions of the equation (1).

Theorem 2.1. Every solution of equation (1) is oscillatory, if the sufficient condition \(\liminf_{n \to \infty} f(n) > 0 \) holds.

Proof: Assume that equation (1) has non-oscillatory solution \(\{x_n\} \) and we assume that \(\{x_n\} \) is eventually positive.

Then there exists a positive integer \(n_0 \) such that
\[
x_n > 0 \quad \text{for} \quad n \geq n_0.
\] (2)
From (1),
\[
\Delta^2 x_n = -f(x_n) \leq 0, \quad n \geq n_0
\]
Therefore \(\Delta x_n \) is an eventually non-increasing sequence.
We first show that \(\Delta x_n \geq 0 \) for \(n \geq n_0 \).
In fact, if there is an \(n_1 \geq n_0 \) such that \(\Delta x_{n_1} = c < 0 \) and \(\Delta x_n \leq c \) for \(n \geq n_1 \).
Summing the last inequality from \(n_1 \) to \(n-1 \), we get
\[
\sum_{k=n_1}^{n-1} \Delta x_k \leq \sum_{k=n_1}^{n-1} c,
\]
which implies, \(x_n - x_{n_1} \leq (n-n_1)c \).
Therefore, \(x_n \leq x_{n_1} + (n-n_1)c \to -\infty \) as \(n \to \infty \),
which is a contradiction to the fact that \(x_n > 0 \) for \(n \geq n_0 \).
Hence \(\Delta x_n \geq 0 \) for \(n \geq n_0 \).
Therefore we have \(x_n > 0 \), \(\Delta x_n \geq 0 \), \(\Delta^2 x_n \leq 0 \) for \(n \geq n_0 \).

Let \(L = \lim_{n \to \infty} x_n \).
Then \(L > 0 \) is finite or infinite.

Case (i): \(L > 0 \) is finite.
Since \(f \) is continuous function, we have
\[
\lim_{n \to \infty} f(x_n) = f(L) > 0. \quad \text{(A)}
\]
This implies we can choose a positive integer \(n_2 \geq n_0 \) such that
\[
f(x_n) > \frac{1}{2} f(L), \quad n \geq n_2 \quad \text{(3)}
\]
Substituting (3) in (1), we get
B. Selvaraj and S. Kaleeswari

\[\Delta^2 x_n = -f(x_n) \]

\[\leq -\frac{1}{2} f(L), \]

which implies,

\[\Delta^2 x_n + \frac{1}{2} f(L) \leq 0, \quad n \geq n_2. \] (4)

Summing up both sides of (4) from \(n_2 \) to \(n \), we obtain

\[\sum_{i=n_2}^n \Delta(\Delta x_i) + \frac{1}{2} f(L) \sum_{i=n_2}^n 1 \leq 0. \]

This implies,

\[\Delta x_{n+1} - \Delta x_{n_2} + \frac{1}{2} f(L)(n+1-n_2) \leq 0. \]

Hence

\[\frac{1}{2} f(L) \leq \frac{1}{(n+1-n_2)} \Delta x_{n_2}, \quad n \geq n_2. \]

That is,

\[f(L) \leq 0 \quad \text{as} \quad n \to \infty, \]

which is a contradiction to (A).

Case (ii): \(L = \infty \)

Since \(\liminf_{n \to \infty} f(x_n) > 0 \), we may choose a positive constant \(c \) and a positive integer \(n_3 \) such that

\[f(x_n) \geq c \quad \text{for} \quad n \geq n_3. \] (5)

Substituting (5) in (1), we get

\[\Delta^2 x_n = -f(x_n) \leq -c. \]

This implies,

\[\Delta^2 x_n + c \leq 0, \quad n \geq n_3. \]

Summing the last inequality from \(n_3 \) to \(n \), we get

\[\Delta x_{n+1} - \Delta x_{n_3} + c(n+1-n_3) \leq 0. \]

So,

\[\Delta x_{n+1} - \Delta x_{n_3} \leq -c(n+1-n_3). \]

Therefore, \(\Delta x_n \to -\infty \quad \text{as} \quad n \to \infty, \)

which is a contradiction to the fact that \(\Delta x_n > 0 \) and hence the proof.

Corollary 2.2. With the assumption of the above theorem, every bounded solution of equation (1) is oscillatory.

Proof: Proceeding as in the proof of Theorem 2.1 with assumption that \(\{x_n\} \) is bounded non-oscillatory solution of (1), we get the inequality (4)
Oscillation of Solutions of Certain Nonlinear Difference Equations

\[\Delta^2 x_n + \frac{1}{2} f(L) \leq 0, \quad n \geq n_2. \]

Now,

\[\Delta^2 x_n \geq \Delta^2 x_n - \Delta x_n. \quad (6) \]

From (4) and (6),

\[\Delta^2 x_n - \Delta x_n + \frac{1}{2} f(L) \leq 0. \]

Summing the last inequality from \(n_2 \) to \(n \), we get

\[\sum_{i=n_2}^{n} \Delta^2 x_i - \sum_{i=n_2}^{n} \Delta x_i + \frac{1}{2} f(L) \sum_{i=n_2}^{n} 1 \leq 0. \]

That is,

\[\Delta x_{n+1} - \Delta x_{n_2} - x_{n+1} + x_{n_2} + \frac{1}{2} f(L)(n+1-n_2) \leq 0. \]

This implies,

\[\frac{1}{2} f(L)(n+1-n_2) \leq x_{n+1} + \Delta x_{n_2} - x_{n_2}. \]

Since \(\{x_n\} \) is bounded, we may choose a positive constant \(c \) such that

\[\frac{1}{2} f(L)(n+1-n_2) \leq c, \quad (7) \]

which implies,

\[\frac{1}{2} f(L) \leq \frac{1}{(n+1-n_2)} c. \]

So,

\[f(L) \leq 0 \quad \text{as} \quad n \to \infty, \]

which contradicts (A). Hence the proof is complete.

Example 2.1. Consider the difference equation \(\Delta^2 x_n + 4x_{n+1} = 0 \). The condition of Theorem 2.1 is satisfied. Hence all solutions of equation (1) are oscillatory. One of the solutions is \((-1)^n \) which is oscillatory. The condition of corollary is also satisfied and the above solution is bounded one.

REFERENCES

