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Abstract. Scholars usually focus on the single valued stdihdgferential equations in
the study of Sobolev space theory. In this papercansider the non-divergence form of
stochastic parabolic systems on arbitrary don@insR®. By localization technique and
continuity method the existence and uniguenesspeseed in the weighted Sobolev
space allowing the derivatives of the solutionbltw up near the boundary. Furthermore,
an a priori estimate of the solution is also olsdin
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1. Introduction
The second order parabolic equations on smooth ideni@ve been almost completely
studied over the last couple of decades. Recesthplars are trying to study the partial
differential problem under the minimal smoothnessuaption of the domains. We only
refer to [1] for a brief survey of recent works nan-smooth domains such as Lipshitz
domains, non-tangentially accessible domains taiktdder domains and John domains.
Inspired by such works on non-smooth domains, i® plaper, the authors consider a
certain type of stochastic partial differential Iplem. At the same time, the authors also
find that more and more scholars who study theigladifferential equation (not
stochastic type) are interested in extending thedories to R“-valued version (see
[2-5]). Hence, we consider the followin®® -valued stochastic parabolic equation
(called stochastic parabolic system)
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1)
u(x,0)=u (¥, xdo,

{duk =(Lu+ D £+ £2)dt+(A, u+ &) dvi, (xH0O x [0, T],
where
Lku = allirDl DJLI + Qr DLEI + gr U’ /\k,mu :Jikr,mDiur +lukr,mu "

Here, the summation convention with respect td =12;-d , r=12.-4d,
andm=1,2,-- is enforced.(Q,F ,P) is a complete probability space aff,t=0} be
a filtration such that, contains all P-null sets of Q. Denote by P the predictable

o -algebra on Qx[0,T] associated wit{F, t=>0} . Let {w{“}:l be one-dimensional
{F} -adapted Wiener processes and independent defined (®F ,P) and
Cy =C;(R?,R*) denote the set of alR, -valued infinitely differentiable functions with
compact support iR°. Denote byp the space ofR® -valued distributions og@; .
Precisely, we define(u,¢)0R® with components (u,¢), = (u‘,¢*), k=1,2,.-,d for
uOD and @OC; . Here, eachu, is a usual R -valued distribution defined

onC”(R%,R). O OR%is arbitrary bounded domain (we do not assumedthatsmooth ).

If d, =1, the system (1) on smooth domains degeneratdsetstochastic parabolic

equation which has been well studied by many ast{s®e [6-10]). AnL’-theory of this
kind of stochastic parabolic equation with spacendim R® was first presented by
Krylov in [7] (cf. see 8] for L>-theory), and since then the results have beemdeatk

which were defined on arbitrarg, -domains Q inR¢ by Krylov and many other

mathematicians (see [11-12])d]f=3, the motion of a random string with a small mass
can be modeled by a stochastic parabolic partifdréntial system (see [13-14]).

The main guidelines we follow are quite commontiggta priori estimates and using
the localization technique and method of continuliye method of continuity requires a
starting point, which in our case is the solvapitif the following single equations

du* =[&, DDU + £+ D { |dt+(d}, DU + d) dW. )

Here, we only use summation notation gnf. Denote x* :ZI;ULk,m(S)dV\Z for each
m=1
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i,k and x=(x*, ¥ .-, x). By using the It6-Wentzell formula (see Lemma ih.77])
toT*(t, x) = U (t, x- X), one gets
du* :([aﬂk —%(dkk,o—ikk),zj DDU + f + D f, - (¢, DG ),ZJdt+ Y, dwW (3)

where f°(t,x)= f2(t,x=X), f (t,x)=fl({t,x=%), Ttx)=d(tx %¥). The Eq.(3)

can be decomposed into two parts(for details, seferBnce [7], Definition 3.1 and
Definition 3.5) . The first part is a set of singl®ochastic parabolic equation whose
theory have already been well studied. The secantdip a deterministic system whose
L” theory can also be found in [12].One of the mafficdlties is that most of the first
derivatives of the solutions in the stochastic [silt exist after using the Ito-Wentzell
formula. With an extra condition imposed on Theo2ior Remark 3.5 we construct an
L"theory of the system by adopting the strategy frgthin which the theory of
stochastic partial differential equations is comstied.

2. Main results

Throughout the article the coefficieafStw), a,(tw), b, (tw), 0. (@), ¢, (tw)
and 4, .(t;w) are assumed to be measurable with respecP to~ (R"), where

.~(R%) is the Borelo-field on R*. And R* is a Banach space with the norm
) 1

ul, :(i(uk)"}p which satisfies
k=1

4 4
N, ()Y [ <]y, < N(D)Y ] d]. )
k=1 k=1
To be more specific we will introduce some notasion (R*,R*)denotes the space of

all R*-valued functionsu which satisfies

[
p _ p —
"u"Lp(Rd,Rdl) _|||u|0||Lp(JR") - ;

Foryd(-e,»),1< p<w, We set

1 oy <o

Lp(RY)

HY o =HY ®GRY) ={u@-ay2u0 LR R* )}, Jull,,, =|@-a)y"2y| (5)

. .
Lo (R RY)
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H’ , is the Bessel potential Space. Al , equipped with the norn E]|Hqu is a Banach
space ( see [7]). For a non-negative integer0,1,2;--, we also have
HY o =Wy (R R®) ={u| D uD L,(R*;R%),00al < }} . (6)
By ¢, we denote the set of all real-valued sequeneege, g,---) with the inner product

(e f), =iqn f and |e|/ =(e e)f. If g=(¢', ¢, dg") and g“0¢,, we define
m=1

lall, ) =[|L-2)" "
Y (42)

Denote p(x) =dist(x00) and fix a bounded infinitely differentiable furmti ¢
defined in O such that (see (2.6) in [15])

PO Np()< No(¥, p"[D,|< N(m) <oo. )

l d. )
2llL, (R R%)

Let ¢OC;(R,) be anonnegative function satisfying
2c(e”“)>c>0, OtOR. (8)
Note that any nonnegative smoothIC;’(R,) so that ¢ >00n [e*, d satisfying (8). For
x0O and n0Z={0,+1+2;-}, we define
6.0 =¢(ew(R).
Then supp;, O{x00 " <p (x)< €"*} =:G for some integerk, >0,
3 6,(028>0, ¢,0C(G,),[|D",(0]< N(¢, m €.

n=-oo

For p=1 and yOR. By H/§(©) we denote the set of all distributions on O

such that

lulliys o) = 22 € le-n (€D &)
We also use the above notation foy-valued functionsg =(g,, g,,---)that is

oy 0. = 22 € (€D D)

Also if y=nis a nonnegative integer then

p
, <00,
HP‘dl

p

HY (1)

16



A Weighted Sobolev Space Theory of Parabolic Steth®artial Differential System on
Non-Smooth Domains

L, R*)=H}4 (©)=L,(0,R* 0" ),

Hp6 ©) 1:{U|u,pDu,...,pn D'u0 L,,© R* )} ,

d
P 33
' k=1|al<ng

Denote po(x,y) = p(X0p(y). For vO(0,1] and k=0,1,2;--as in [16], we define
[F1 =[ f1{3 =sup p*(9|D F(¥)],
pae)
A=k

D7 f(x)- D’ f
[f1i =sup p (x,y)| ™ ; (y)|,
s %=

6K

k k
17 =200 L f2, =201 [ 119
0 0

i= i=

p\a\ Dauk‘ P ,Og_ddX.

k+v

The above notations are used also fof valued functions = (u', v*,---, ") and ¢,

valued functiong = (g', ¢°,---). For instance,

[, =supp* ()| D u(¥), . [a1” =supp* 0D g(¥), -
A% 8%

Here are some other properties of the spéigg (O) taken from [17].
Lemma21l. (i) The spaceC;(O,R*) isdenseim3©).

(i) Assume thaty-d/p=m+vfor somem=0,1..- andvO(0,1], and i,j are

multi-indices such thatij<m, |j|=m. Then for anyuOH’3 ©), we have

¢PDiu0CcEO,R%), ™" D0 CYO ,RY),

fil+6/p i ‘ +| m+v+8/p i | <
‘l/j D uC(O RY) w D UCV(O RY) T C” L"HS;&(O) )

(i) @D, Dy :HJE©O) - H/;?©) are bounded linear operators, and for any
udHZ4©)

4
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"u”Hgfh(O) s N||wl'l<||HlV;§f(o) + N" lMHVu'gf(o) < M' L"HVp“’q(o)’

"u HV“’(o) N” L"HVM(O) '\" LMH”(O

H”’(O) = N||(zﬂu) |

(iv) Foranyv,yOR, ¢'H}G©)=H,i™©O) and

o0, S MU 0, % Mt
(v) If yO(y,,y,) and 60(6,.6,), then

"u"nggl(o) < £||u||H;{g(o) + N(y’ p,e‘)" L"H;%f(o) ’
"u”Hgfh(o) S £||u||H;‘§(O) + N(y’ p,e‘)" L"H;E(O) '
Lemma22. (i) let s=|){ if y isaninteger, ands>|)| otherwise, then

"aU"H;:ﬁl(o) < N(d, SV)| 41(50) " I"H;:‘ZI(O)'
(i) If y=0,1,2;--, then
Jaul 0, < N0l I 00+ NI 1

where N, =0 if y=0.
(i) If O<r<s,then

|a|£0) < N(d, r, S)(Sud 4) (| *(0))r/s
(0]
The assertions also holds far, -valued functionsa (see [18, 19]).
Remark 2.3. By Lemma 2.2 for anyv=0, ¢'is a point-wise multiplier inH7©).

Thus if g <6, then

"u”ng?l ©) < N"lﬂ(gz_gl)/pl'l H”i(o) " llH”}l(O
Lemma2.4. Let {&} be asequence of, (O) functions such that

D , suppf, 0 00 :e"% < p(x)< 6™}

for some k, >0. Then for anyu [ H{,;ﬁl ©),

en€
>

E(EYUE Y

:;‘dl <N HJH);:‘;(OV
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If in addition
Z|gn|" >0>0,

then the inverse inequality also holds(see Thed@énin [19]).
For 0<T <o, we also use some common notation from Stochpatital differential
equations which were not mentioned here.

HY (M) =H Y (R T) = L(Qx(0,TIP , Hy ),
H e (T 0)= L (QxOTIP L (5)) U, =Ly (QF6 HIE),
H6©.T)=L,(@x(O.TLP H{ O),

HZ90.T.0,)=L,(Qx (TP HS © .1,)),

Lyss©.T)=H 24 (0,T),UL50)=¢ g o(Q.Fo HLEP (),
Iull, o =EJ, Il dt, ol o, =Ef Il dt,
"u"H”(o T) _EI "u"H” "g"H”(ow J. "u"HV" © 0,

Finally, we show the following Banach spaeg/;*(T) which is modified from the

R -valued version in [7] to therR* -valued version.

Definition 2.5. For a D -valued functiom = (u', v?,---, f* )OH + (T), we say
ubH Y 2(Mif ulgH 2O ,T), uO,00U;20), and there existf Oy ™H )5 (©.T),
gOH 3 (©,T,4,) such that, for anypOCy

(1) = (D) +[( £ 6D) dor Y. [\( d (D9) dW k=1 (9)
holds for all t0[0,T] with probability 1. In this case, we writ¢ =Du and g=Su.

The norm of uin H/3*(T) is written as

(10)

+lwoy

Ju

HY/Z70.T) = ”w_lu HY200 ) H2GO.T) ”S L"H SACR ) +" L(O’DI ure’o)”
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We also defineH /i*7(,T)=H /O, T)N{u/u0,(1=0} . Equation (9) can be written in

the following simplified ways

du = fdt+ g, dw",
and we say thatu= fdt+ g, dy holds in the sense of distributions.

Remark 2.6. (i) Remember that for anyr, yOR,

HEG ©) [y o)

Thus, the spaceH7“(©,T) is independent of the choiceyof

(i)t is easy to check (see Remark 3.2 of [7] tiwtails) that for anypOC;(© )and
gOHZL?(O,T,0,), we havezk 1J' (g",9)°ds<» , and therefore the series of stochastic

integral Z::lj;(gk,w)de\( converges in probability uniformly ¢mT].

Lemma 2.7. Let u,0OH /?°(0,T),n=1,2;--andju <K, where K is a finite

HY290.T)
constant. Then there exists a subsequem@nd a functionuOH V*”(O T) so that

(i) u, ,u,(0,0,Du, ,Su, converges weakly tou,u(0,)J,Du,Su in H!P°O,T),
ureeO), HYG©) and H)3°(©O,¢,), respectively.

(i) For any ¢0C;©) and tO[0,T], we have (u, (t0ig) - (u(tDig) weakly in

L,(Q).
Proof: The proof is identical to that of Theorem 3.114h where the theorem is proved
whero =R?,d, =1.[J

Lemma28. (i) Let 2/p<a<p<1 and udH/;*°(0,T), then

B-1 P B-a)p/2
Ely u]c"/z'yp([o,n,Hgfjl’/?*"(o D) < NT " LHH 2fom

where N = N(d, py,8,0 ,T)is non-decreasing function of . In particular for any
t<T,
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t
"u":{;;f(o t) s NJ.()" q':;*;" ©.s) ds

Lemma 2.9. The spaceH ;y(©,T) and H)J (O ,T)are Banach space with norm (10).
In addition if t<T, when T is a finite constant, then fon OH p(;fi(o ,T)

N, oy S N(d, ) ‘"H;g(o,t)' ESSLSJH|U(S, zgjglﬂ@) < N(d, T} %H;g(o,t) '
Proof: It is enough to repeat the proof of theorem 3.[7Jnwhere the lemma is proved
whero =R?,d, =1.1
This explains the sense in which Cauchy problenigl)nderstood. Of course, we still

need to impose the following assumption for theéesps(1).

Assumption 2.10. (i) The coefficients ofL and A are measurable and dominated by
a constant K <o . We also assume that the matriceg =(a!) are, perhaps,

nonsymmetric and satisfy
AN 2k|A” k=12 d,

forall AOR? and all possible values of arguments. Hare 0is a fixed constant.
(ii) There exists a constard > 0such that

e[ <& (A -A)E,

where
dl

A=), A=), =23 (da), .

1=1
& is any (real) d, xd matrix, & is the ith column of &, Odenotes the matrix
transpose, and again the summationsi gn are understood.

(iii) The coefficientsy,, o, are uniformly continuous inx, that is, for anye >0

there existsd = d(¢) > 0so that foranyw,t >00,t>0, i, j,k,r,

lal (@t 0= d, (@t X} +|d,, @t 0=, @t x|, <e,if [x-yf<3.

Denote ..~' =(d,) with g, =(q,

kr,m?

m=12,-)0¢, and ~'='-c' where
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< 'is the diagonal part of /', < :(5k,d'kr). Using the assumption, we will elaborate
our main result of the article.
Theorem 2.11. Letu, DU{Lf, fOHJ, (T)andgOH J(T,¢,). Then under Assumption

2.10, there exists a constant0 depending only od,,d,K ,T and B>0 such that if
suq;/itux,x}ﬁ <g, i=1,2,-d, (11)

wt,x

for any ¢0(d-p,d+p) the system (1) admits a unique solutiarH /:*°(O,T)with
the estimate

"u”H pkgfv“’(o ) S N("l/j fo

whereN depends only ond,,d ,K ,T,0 .

d
2l
HGOT) le

= H ?51‘5(0 T +|| g"H gf;lﬂ(o T.05) +" %"u;fjlﬂ (o)) '
Remark 2.12. In Remark 4.5 we will show that Theorem 2.1 carektended to the case

that . ~'s are diagonalizable by an orthogonal mairiw,x). That is, the main result

still holds if 0". ~'0 is diagonal for each, where existsF,xB (R,)-measurable

d,xd, orthogonal matri® (w,x).

3. Auxiliary results
Before we start our main problem, we firstly comsithe following Cauchy problem with
the coefficients independentof

{du" =(alDDu+ D f + {)dt+(g,,, D + §) AW ,
u“(0,01= us 0.

The summation convention with respecti,fo=1,2;--d ,r=1,2;--d, , m=12,--is

(12)

enforced which we have already mentioned previousiA W/ -theory for the system
(22) will be shown. We start with a theorem whidsigy follows from the results for
single equations. Assume thds a d, xd, diagonal matrix and all entries of~"'are
zero for each j . The system (12) can be written as

{duk =(al DD, + D f + £°)dt+ ddw’,

(13)
u“(0,0=u; O

22
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We see that the system (13) is a setdpfnumber of independent single equations.
Hence we can prove the Theorem 3.1

Theorem 3.1. Let pO[2,0), yO[0,»), T<eo . Then there existsg>0 for any

60(d-B,d+B), u,OULZ? f°,f 0 H %0, T)and gOH3°©,T,/,) the system
(13) with initial conditioru(0) = u,has a unique solutiom OH /{*°(0,T) satisfying

(14)

d .
"u"H gl m < N("l/j e HYGO.T) +|Z:;" F HZRO©O.T) +|| g"H i S| +|| lb"u;fff (O)) !

whereN only depends oa, d,, p,y,d,k,K,T.
Proof: By Theorem 5.1 in [7], one gets

du* =[ D, (g} D)+ D f + ] dt+ ddwW, u*(.0=u (@

has a unique solutiari OH /2?0, T) satisfying

o

+|| gk Hg;lﬂ(o T.05) +||Lg Uylzs(o )
Hyfom " (15)

d
0 i
H Y20 .T) s N[Hw[ f, +i2=1: D fk)

d .
= N("w i Hi7Om +iz=1:||wDi f Hy©Om) +"gk"HS?'€<° Til2) +”L€ SHAC ,J'
Using Lemma 2.1(iii) , one gets
"wDi fki HY©.T) _” kl HYL20T) " (16)

(15) and (16) easily lead to
d .
"uk HY20.T) = N["l/l ka HYf©.T) +|Z:1:|| fkl

Add up to the inequalities from 1dp, one gets

urPf o ,)J'

Hy©0.m) +lad, FCRUY +|| 4

Hy”OT)

d .
-N[nwf° SRS o [1

Hence, the theory is proved.
Next, we try to remove the restrictions that s are diagonal.

HY/2f 0 T)

cvon Tohggio . 18lggo, |

Theorem 3.2. The system (12) has a unique solutioH /> ,T) with the estimate

23



Yu-dong Surand HuaWang

(14) even if we remove the assumption #atis a diagonal matrix for each .

Proof: Firstly, we assumg=0. For each fixed the system

{dwz[(A" -5,1)D D w]dt, (17)
W(0) = u,
is a deterministic system. Hence, by Section 1@p@r 7 in [4], the system (17) has a

unique solutionwOH 2/ (©,T) with

"W"H 2am s N"Lb"u;il(o) ) (18)

Now, we introduce a change of variables to tramsf@ur problem into a set ofl,

number of independent single equations. If we let
V(X ) =u(x - wx9.

Then, v will satisfy the following stochastic partial déffential equation

dvk :(aﬂk Di Dj\}( + D f(' + fko)dH' d(ndV\T, (19)
v(0)=0.

By Theorem 3.1, Cauchy problem (19) admits the wmigolution vO H>3 (O, T) with

the estimate

d .
"V"H ) = N("lﬂ fO”L,D‘M(o T) +;" fkl HY, O +" le.%,M(O ,TVVZ)J ! (20)

Hence, u=v+ w is the unique solution of our Cauchy problem and gets the estimate
(14) for y=0 by combining (18) and (20).
Secondly, we prove that the claim of Theorem 3.lheven ify20. It is clear that

@-Ay7Z:HY% - HL L is an isometry for anyy,#OR when pO(2,©). Hence,
ulH /3%, T) is a solution of system (12) if and only ifii:= (1-A)?ud H2% O , T)is

a solution of system (12) wheri-A)"2f°, @1-A)Y?f',i=12:--d,@-A)"?g,

(1-A)"u, is used instead off°, f',g,uy, respectively. And we have already proved that

U isthe unique solution in the cage=0. Since, one gets
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"u"H rafo.m = "U"H Sao.T)

Ve © J

+|a-ay?g

uzf:ﬂmj'

< N["w(l—A)V/z £0 )+|| a-AY'2y

d
+Y|a-ay”> s,
Lpas@©.T) IZ:;# ( ) k H% ©.T) H% 0T,

d
2
HYG©O.T) ;

HYA©.T) +lad ba ©T!2) +" 4

Az

The theorem is proved.]
Previously, we always assume that =0. Now, we try to weaken it. Recall that

4

7'=./"-<" where,' is the diagonal part of ', < ' =(g,0, ).

Theorem 3.3. Assume that if .~' s are diagonal matrices. There exists a

coefficient3>0, the system (12) admits a unique solutiarH ;*°(0,T) and the

estimate (14) holds for alb0(d-6,d+6).
Proof: As in the proof of Theorem 3.2 we may assym® . According to the

assumption, one getg’' (t) = (0,,J,) and system (12) can be changed to
du =(g/ DD U + {+ D { )di+ (0, D + ) dW, (21)
with the initial condition u*(x0)=y(X,k=1,2;--,d Define the process
X :2I;Uikk,m(5) dwW foreachik and x=(x* x* -, x*).Also, we define
Tt ) = U (L x= ), TE () = §(x= %), Rt = ftx=X),

Rt)=fiEx=%), g tx=g(tx ).
Using the It6-Wentzell formula (see Lemma 4.7 i}),[8ystem (21) can be written as
o =| (4 -3 .00, 2, DO + £+ 0T -@,,08), ot gk
U 0,x) =1 (%, k=1,2;-- ,d,

or
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dU:KA‘i —%(,//‘)*,//1J|3,D1U+_f°+ Df-/ D@}dﬁ@d@.

U0,0=1 (M k=12 ,d,

(22)

whered = (T, 0%,--,u*). By Theorem 3.2, the problem (22) has a uniqueitieol
UOH2/©O,T) with

[

HoaM = N(”w(?o * D'?I = D,@) HL (0 .T.05) +||_L6

26
Upﬁl)

on

(23)
N o 3 3
: N[Hw( eaSor| oo oy, +||%||U5@J-
. Lpga© 1) @ ‘ :
Using Lemma 2.1(iii) , one gets
||w //i Di g"vadlvB(O T.05) < K"wD' g"'—p,dl,ﬁ(o T.l5) s K||§||H é’il © ,T,/’z)' (24)

LetN, = max{N, KN} . (16), (23) and (24) easily lead to

— d — — —
PRI (723 WED » L IR | T 11

According to the definition of Bessel potential spand its norm, The upper inequality
can be easily changed to the estimate (14). Héwctheory is proved]

In the next theory, we only assume that's are close to diagonal matrices which
satisfying: there exists a constant0 depending od,, p,y,d,x,K,T such that for
anyw0Q,t0[0,T] one gets

k,:= sup ’//i@,t}s‘s. (25)

1Q,1<i<d,
t[0,T]

Theorem 3.4. Under the assumption (25), there exists a coeffi@ >0, the system (12)
admits a unique solutiomOH,'2°(0,T) , and the estimate (14) holds for

allgd(d-4,d+p).

Proof: As in the proof of Theorem 3.2 we may assym® . Also, as usual we assume
u, =0 (see the proof of Theorem 5.1 in [7]). By Assuropt?.10, for anyd, xd matrix

& ,one gets

K| 26 (-2 ez O

and on the other hand
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Ef(A” —%(. AY. A ij
=ff[A” —%(z i)*z*jfj —%EI (Y 2i ()t +(2") 21 )E,
There exists a constagt>0 such that ik, < ¢,, then
4KHF2$(N—%(/WJWJ522MF
can be hold. Hence, by the result of Theorem 2B,eAchulH 27 ,(©,T) one can

definev:=.~ulH Zd’jo(o T) as the solution of

{dv:(/-\ij DD v+ f+ D_fi)dt+ (G Qu+ 7, Qut g)dW, (26)

v(0)=0.

If we assumek,<¢ , the map~:H? (O.,T) - H4©,T) is well defined and

bounded. We plan to show that’" is a contraction for some large integer with a

further restriction ok, . Note that fotr<T and anyu,,u,0H /¢ ,© ,T)one gets

| =Wl oy < No 7 DU W)

CEACENAN
where N, depends only od, p,y,d,K,T. By the inequalitiju||Lp < N(||ul“||p +|d| )
for eacht one gets

)
|~

p

it S NEIU= Wl on* NEJu= Y oy
S NkOp" L‘h( U H”(o ) Nl{;" y- L%I“)p,dlﬁ(ox)

iDi(u1_u)

By the Lemma 2.8, one gets

p t
[ 00 < NI
H¥ 0. 0

Hence, it follows that

P
H Y (0.9)

ds, k=12, d,.

H“g(o 1) ZJ. "uk

"u"H“g(o ) HY(0.9) dS_I "

H“"(o s)

By (27), one gets
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| ~u-—~u

H”(o 1)
<NNK[u=uff o+ NNE B (s WOR d s (28)
SNOng"L!L_ L&H;fl(o,t)-i- NJng N_[O Eﬁ Y 'JH;‘;(O,S)d "

where N, depends only ord,,d, p,T . Hence, by introduction,

U, Hze(Ot) ( ONK;)) "L{ uZ"H”(Ot)

-

p

n n
H“(Os)d#/ W 44H”(OT)

SN N T -
z (N NKE™ (TN N N ] 4= W
2 (N NKD)" mao TN/ K 4= il -
This allows us to findk,depending only ond, p,d,x and K, so that the operator
" is a contraction with coefficient/2. Of course, this yields all our assertion. The

theorem is proved[]
For the last theory of Cauchy problem (12), we reenthe restriction that ~'s are

close to diagonal matrices. Assume ' (wt)=. (w). 7' (wt) (w) for some

F, -measurable orthogonal matrix , whereA’ (w,t),. /' (wt) s satisfy assumption 2.10,

_7"'s satisfy the condition (25) in Theorem 3.4. Heteefollowing theory holds.

Corollary 3.5. Then the assertion of Theorem 3.3 holds for tretesy (6) with.~'in
place of /', i=1,2,--d.
Proof: Firstly we consider the following problem

=((~ A DDV P f)dt( 4 Qv g )AL WO)=uy.

Because.~ is orthogonal, (.~ A.~")and ../ (i,j=1,2;--d) satisfy the same

conditions which A’and .~ satisfy. Note thatin (25) is independent of the choice of

~. By Theorem 3.4 there exists a unique solution /;*(©,T) satisfying
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d
oy O +./‘(/IZ D f'
=1

"V"H;;f(o T) s N[

<N [”./‘lﬂ fo

d .
(725 S o 1}

Secondly, we define=. ~"v. It is clear thatu is the unique solution of

{du:(Aij DD u+ O+ D_fi)dt‘*(/{ni Du+ g, )dW,
u(0) =u,

[, 100 1.05) - Lb"UﬁTng ‘O)J

v.e
HYS©.T)

+ ./‘[ﬂi D| f!
i=1

H g;gl(o )

L )
9 HG 0 T.0p) b urafo)

H g;gl(o )

*[ .. * oz, |
HEA0.T) gH;;f(o,Tmz) Uoug;f(m

(29)

and the estimate (14) follows from (29). Hencedbmollary is proved.[]

4. Proof of Theorem 2.11
We closely follow the proof of Theorem 5.10 of [As usual we assunag=0. For
simple, let's us define

(f,g9)OF YO .T)=¢H [ (O, T)xH /"7 (0,T,¢,),
and
GRS N 7 WP 1< N
Definition 4.1. Assume that forwOQ andt > 0, we give the following operators

LED:HEZ70) ~ HIE0), AGD:IHIZO) -~ HIP(O.1,),

whereL (1) = (L (1), L, C1),+- Ly @), AGY) = (A C1).A, G- Ay (1))

Assume that
(i) For any w andt, the operatorsL(u,t) and A(u,t) are continuous with respect to
u.

(i) Forany uOH,?°©), the operatorsL(u,t) and A(u,t) are predictable.
(iii) ForanywOQ, t=0 and uOH!??©), one gets

WL 0, NGO e, = Nt )
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where N, _, is a constant.

Then for aR® valued functiom = (u, u,,---,y, )0 HZ? O ), we write
(LA u=~(f,9),
if (f,g)0F©.,T), and by the virtue of definition , fortO[0,T], one gets

Du=L(ut)+ f, Su=A(ut)+g.

Remark 4.2. According to our condition orL. and A, one gets
(L(u,t),A(u,))0F Y ©,T) forany uOH /;>?©,T). Also,
(L,A)u=(L(u,t)-D u,A(u, )-S u). In particular, the operato¢L,A) is well defined on

H p(;fﬂ(o ,T), and , as follows easily from Definition 4iii)

”(L’/\)u"FpV(o T) s Q@+ 2NL,/\ )”l‘"ngjf(o ) + 2N_,/\ L

In term of Definition 4.1, Theorem 3.4 can be veritiwith the following version

Theorem 4.3. Let a and o satisfy the assumptions from the beginning secflon
Define

L) = (L), L @), Ly @), L, =a, DDy,
A1) = (A @Q)APC), - AS°@)), AL, =0, DU

Then the operatoL’,A°) is a one-to-one operator froid p(;fﬂ(o ,T) to FY©,T)

and the norm of its inverse is less than a constapending only ond, p,d,« and

K (thus independent off ).
Next, we prove a perturbation result because weodallow ¢ depending onT .

Theorem 4.4. Take the operators® and A° from Theorem 4.3, and let some operators
' and A" satisfy the requirements from Definition 4.1. Wasext that there exists a

constante0(0,1) if, for a constantK, and any u,vO Hgfdfﬁ(o ), one gets

o) AU =AM v

| (w1 - (v, 0) »

< Elun = Vodugg 0) KU o)

Hia ©)

(30)
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then, for anyf,g)0F *(©,T), there admits a unique solutiomCH V*“’(O T) of the

system
(L+NA+AYu=—(F,9), (31)

where &£ depending only ond, p,d,« and K. Furthermore, for this solutian there
exists a constanig >0 forany 60(d-4,d+ ) satisfying

"u"HJBf"’(o ) < N||(L1(ED)+ f’/\l(DO)+ gj (32)

Fro.m'’

where N depends only ord, p,d,«,K,K . and T (N is dependent off if K, =0).

Proof: Firstly, by Lemma 2.(v), one gets

"u"H;f;lﬂ(o) < 5"%",.‘;@1(0) + N d p)" "MH;’ZI(O)'

Therefore without loss of generality we use théfeing inequality instead of (30)
e -t +AMu =AY v D

H.G ©)

< £fus = Vilrs 0y * KU~y o)

HIY©)
Now fix (f,g)0F /(O ,T). TakeuOH /;*/(0,T), note that (L'(u),A*(u)) OF Y(© ,T) and,

by using Theorem 4.3, define0H /;?7(0,T) as the unique solution of the equation
(LA ==(f + L (u), g+ A (W)

By denoting/ =R u, we defining an operatar:H /(O ,T) - H*(O,T). System (31) is

equivalent to the equation=R u. Therefore, to prove the existence and uniqueng&ss
solutions to (31), we only need to show that, forimtegein >0, the operatorR "is a

contraction inH (O ,T). By using the Theorem 4.3 and Minkowski inequality
fort<T,

Ru-R V" < NE(u )= Bwt)A @) -AN, t)

q2fon Fy©O.T)

<N€p"u \'"HV“(OU NOKip_[ E"L(E) v}HH“’(O)

whereN, = N/ p. This gives the desired result K, =0. Also in this case estimate (32)
follows obviously with N independent ofT .
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WhenK;, #0, by Lemma 2.9, one gets

Eflu(s - \($||Hyze(o < N w H{«J;;fﬂ(o,s)’

where s<T and N, depends only ord, p and T. Definex:=N, ". Hence for all
t<T, one gets

”Ru R\'”HV”(oo—'u"u \"HV”Ot NI”Q lé"H““’OS $
where N, depends onIy ond, p,d,«,K,K and T. Hence, by introduction,
||R u, -R "u,

Hyzs(o[) 'u"ul uZ"HV”(on

- (t S) N o _n P
+Z( )N f (k=11 ||ul_u2||H;;fﬂ<o,s)d5”'/ 4= Yz om

n

<> O TN) K|y -

k=0

2 'un mkax{ (I—NZ/'U)!(/k}"q_ L5"H'§;§l(o T

26
H280.T)

IN

This allows us to finde depending only ond, p,d,x and K, so that the operatoR "

is a contraction inH i2,(0,T) with coefficient /2. Of course, this yields all our

assertion. The theorem is proved.

Lemma 4.5. Let Assumption 2.10 be satisfied. Then there exist £(d, p,y,d.,x,K)> 0
and B>0 such that system (1) admits a unique solutiamH /i’/© ,T) of
Furthermore, for this solutioru, one gets

Ul 200 1) < NICE Dy 1y UK 200 1) < NICLAIY 0 1) (33)
forall 0(d-B,d+ ), where N depends only ond, p,d,x,Kand T.
Proof: We have already proved the Theorem 4.4 for thdesyswith coefficients

independent aof. The only proof we need is to extend the Theoretrtalthe version that
the condition have already mentioned in Assump8di®. This is very similar with the

proof of Theorem 6.6 in [7] where the theorem isved whe® =R, d, =1. The only

difference is that one needs to use Theorem 4tHisrarticle in place of Theorem 6.4 in
[1]. Hence the theorem is provef]
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Proof of Theorem 2.11: For A0[0,1] we consider the operation
du* = (Lu+ f)dt+ (A u+ g™)dw" (34)
with zero initial condition, where

Ly = AL +@-A)L,, L' = (4,15, L),
/\Q,m :A/\?Qm-'-(l_A)/\krr’ /\)I :(Af,m'/\;,m""'/\)(li,m)
and (f,g) is an arbitrary element iff (O ,T). Take a A,0[0,1] and assume that for

A=), system (34) with zero initial data admits a unig@ution uOH *:*°(©,T).

p.d;,0

Actually, according to Theorem 3.4 this assumpti®rsatisfied for A,=1. Then the

following operator
R, :F,O.T) - H/ZJ©O,T)

p.4.,0

can be hold, such tha, (f,g)=u. From (33) one can found that

WhenA # A, the system (24) can be changed as follow

R, (f.9)

oo SN L (35)
du =(LPu+ (A =A)(Lu= Gu+ D § + £)dt+(AT* ut (A= 4)AT -AT g+ ) d W
or
du=(LPu+ (A=) (Lu= LU+ D f+ ©)dtr (A™ ut A=A)A w=A° g+ §)dw.  (36)
Next, we solve the system (36) by iterations. Defig =0 and
Uy =R, (L +(A=A)(Ly - Ly)+ B f+ £,(0=A)Ay ~Agu)+ §).

According to (35), one gets
| < NJA-A[[(Lu- LY+ D f+ £, (AuwA )+ §

u

o= U
+1 +2.0
j J HF;d'l ©.T) F/©O.T)

s N1|/] _/]OH

™Y

H ;;fﬂ ©o.7)

where N, is independent of , A andj,. If N;|A-A|<¥2, then u, is a Cauchy

sequence inH /;*°(O,T), which converges by Lemma 2.9. Its limit satisfies
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u=R, (L ut(A=A)(Lu- LU+ D f+ £,(1=A)Au-A,Y+ §),
which is equivalent to (34). In this way we showattlf (34) is solvable forj,, then it is

solvable for A satisfying N,|1-4,/<1/2. In finite mumble of steps starting with =1,

we get to A =0. Hence the theorem is proved.

Remark 4.6. Using Corollary 3.5 instead of Theorem 3.4 andofeing the proof of
Theorem 2.11, we can extend Theorem 2.11 to theewvghen ..~ 's are diagonalizable by

an orthogonal matrix. .~ (w,x), if ..~ * .~'..~ is diagonal for eachi which is

F,*xB (R,)-measurabled, xd, orthogonal matrix. ~(w,x) .
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Appendix
In the appendix, we present the Ito-Wentzell forrtol the following stochastic
differential equation

du,(x) = f(¥dt+ ¢ (Ydw , &= T, (37)

where f,u0D ,gO/¢,.

Definition A1 We say that the equality (37) holds in the seffishstributions if only if

for any @OC;, with probability one we have

UO0P = (A9 +[ (Lot [ (¢ p)a, t< T.
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Let x be an R®-valued stochastic process given by
Pty 2 ot i
X, —IO Usds+;joa‘S av,
where b =(4),0 = (g*) are predictableR® -valued processes such that for all

ands, TOR, we have tracga )<~ and

[ (Jn]+trace(a,)) <o

where a =(g') and 2a’ =(g,", 0}"),,, so that

2tracqa,) :ii]ai"r

i=1 k=1

Here is the Ito-Wentzell formula taken from Refae(fi7] (also see [20]).

Theorem A2 (Ito-Wentzell formula) Let f,u0OD ,g0/, . Introduce
V(¥ =u(x+ x)
and assume that (1.2) holds (in the sense ofldligions). Then
v (0=] £(x+x)+ d Qy(3+ bPU X+ Pd x 3a"), |d
+[gf (x+ %)+ Dy(Ra* |d .
Here, the summation convention over the repeatdides i,j =1,--d (and k=1,2,--) is
enforced.

(al)
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