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Abstract. Scholars usually focus on the single valued stochastic differential equations in 

the study of Sobolev space theory. In this paper, we consider the non-divergence form of 

stochastic parabolic systems on arbitrary domains d⊂ ℝO . By localization technique and 
continuity method the existence and uniqueness are proved in the weighted Sobolev 

space allowing the derivatives of the solutions to blow up near the boundary. Furthermore, 

an a priori estimate of the solution is also obtained. 
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1. Introduction 
The second order parabolic equations on smooth domains have been almost completely 

studied over the last couple of decades. Recently, scholars are trying to study the partial 

differential problem under the minimal smoothness assumption of the domains. We only 

refer to [1] for a brief survey of recent works on non-smooth domains such as Lipshitz 

domains, non-tangentially accessible domains twisted holder domains and John domains. 

Inspired by such works on non-smooth domains, in this paper, the authors consider a 

certain type of stochastic partial differential problem. At the same time, the authors also 

find that more and more scholars who study the partial differential equation (not 

stochastic type) are interested in extending their theories to 1d
ℝ -valued version (see 

[2-5]). Hence, we consider the following 1d
ℝ -valued stochastic parabolic equation 

(called stochastic parabolic system)   
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( ) ( )0
,

0

d d d , ( , ) [0, ],

( ,0) ( ),   ,

k i k m
k i k k k m m tu L u D f f t u g w x t T

u x u x x

 = + + + Λ + ∈ ×


= ∈

O

O
         (1) 

where  

ij r i r r
k kr i j kr i krL u a D D u b D u c u= + + , , , ,

i r r
k m kr m i kr mu D u uσ µΛ = + . 

Here, the summation convention with respect to , 1,2, ,i j d= ⋯ , 11,2, ,r d= ⋯  

and 1,2,m = ⋯  is enforced. ( , , )PΩ F  is a complete probability space and { , 0}t t ≥F  be 

a filtration such that 0F  contains all P -null sets of Ω . Denote by P  the predictable 

σ -algebra on [0, ]TΩ×  associated with{ , 0}t t ≥F . Let { }
1

m
t m

w
∞

=
 be one-dimensional 

{ }tF -adapted Wiener processes and independent defined on ( , , )PΩ F  and 

1
0 0 ( , )ddC C∞ ∞= ℝ ℝ  denote the set of all 

1dℝ -valued infinitely differentiable functions with 

compact support in d
ℝ . Denote byD the space of 1d

ℝ -valued distributions on0C∞ . 

Precisely, we define ( , ) du φ ∈ℝ with components ( , ) ( , )k k
ku uφ φ= , 11,2, ,k d= ⋯  for 

u∈D  and 0Cφ ∞∈ . Here, each ku is a usual ℝ -valued distribution defined 

on ( , )dC∞
ℝ ℝ . d⊂ ℝO is arbitrary bounded domain (we do not assume thatO is smooth ).  

If 1 1d = , the system (1) on smooth domains degenerates to the stochastic parabolic 

equation which has been well studied by many authors (see [6-10]). An pL -theory of this 

kind of stochastic parabolic equation with space domain d
ℝ  was first presented by 

Krylov in [7] (cf. see [8] for 2L -theory), and since then the results have been extended 

which were defined on arbitrary 1C -domains Ω  in d
ℝ  by Krylov and many other 

mathematicians (see [11-12]). If1 3d = , the motion of a random string with a small mass 

can be modeled by a stochastic parabolic partial differential system (see [13-14]). 

The main guidelines we follow are quite common: getting a priori estimates and using 

the localization technique and method of continuity. The method of continuity requires a 

starting point, which in our case is the solvability of the following single equations 

( )0
,d d d .k ij k i i k k m

kk i j k i k kk m i m tu a D D u f D f t D u g wσ = + + + +                (2) 

Here, we only use summation notation on ,i j . Denote ,0
1

( )d
tik i m

t kk m s
m

x s wσ
∞

=

=  for each 
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,i k  and 1 2( , , , )k k k dk
t t t tx x x x= ⋯ . By using the Itô-Wentzell formula (see Lemma 4.7 in [7]) 

to ( , ) ( , )k k k
tu t x u t x x= − , one gets 

2 2

01
d ( , ) ( , ) d d

2
k ij i j r i i k k m

kk kk kk i j k i k kk i m tu a D D u f D f D g t g wσ σ σ  = − + + − +  
  

ℓ ℓ
,      (3) 

where 0 0( , ) ( , )k
k k tf t x f t x x= − , ( , ) ( , )i i k

k k tf t x f t x x= − ,  ( , ) ( , )k k k
tg t x g t x x= − . The Eq.(3) 

can be decomposed into two parts(for details, see Reference [7], Definition 3.1 and 

Definition 3.5) . The first part is a set of single stochastic parabolic equation whose pL  
theory have already been well studied. The second part is a deterministic system whose 

pL  theory can also be found in [12].One of the main difficulties is that most of the first 
derivatives of the solutions in the stochastic part still exist after using the Ito-Wentzell 

formula. With an extra condition imposed on Theorem 2.1 or Remark 3.5 we construct an 
pL theory of the system by adopting the strategy from [7] in which the theory of 

stochastic partial differential equations is constructed. 

 

2. Main results 

Throughout the article the coefficients( ; )ij
kra t ω , ( ; )i

kra t ω , ( ; )i
krb t ω , , ( ; )i

kr m tσ ω , ( ; )krc t ω  

and , ( ; )kr m tµ ω  are assumed to be measurable with respect to ( )d× ℝP B , where 

( )d
ℝB is the Borel σ-field on d

ℝ . And 1d
ℝ  is a Banach space with the norm 

1

1

0
1

( )
d p

k p

k

u u
=

 
=  
 
  which satisfies 

1 1

2 1 1 10
1 1

( ) ( )
d d

k k

k k

N d u u N d u
= =

≤ ≤  .                       (4) 

To be more specific we will introduce some notations. 1( , )dd
pL ℝ ℝ denotes the space of 

all 1d
ℝ -valued functions u  which satisfies 

1

1( , ) 0 ( )( )
1

dd dd
p pp

d
p pp k

L LL
k

u u u
=

= = < ∞ℝ ℝ ℝℝ
. 

For ( , )γ ∈ −∞ ∞ ,1 p≤ < ∞ , we set 

{ }1 1

1 1

2
, , ( ; ) (1 ) ( , )d dd d

p d p d pH H u u Lγ γ γ= = − ∆ ∈ℝ ℝ ℝ ℝ , 
1

, 1

2

( , )
(1 )

dd
p d p

H L
u uγ

γ= − ∆
ℝ ℝ

.  (5) 
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1,p dH γ is the Bessel potential Space. And 
1,p dH γ equipped with the norm 

, 1p dH γ⋅ is a Banach 

space ( see [7]). For a non-negative integer 0,1,2,γ = ⋯ , we also have  

{ }1 1

1, ( ; ) ( ; ),d dd d
p d p pH W u D u Lγ γ α α γ= = ∈ ∀ ≤ℝ ℝ ℝ ℝ .             (6) 

By 2ℓ  we denote the set of all real-valued sequences 1 2( , , )e e e= ⋯ with the inner product 

2
1

( , ) m m
m

e f e f
∞

=

=ℓ
 and ( )

22

1 2
,e e e=

ℓℓ
. If 11 2( , , , )dg g g g= ⋯  and 2

kg ∈ ℓ , we define 

2, 121

2

( )
( ; )

(1 )
ddp d

p

p
p k

H
L

g gγ
γ= − ∆

ℓ ℓ
ℝ ℝ

. 

Denote ( ) ( , )x dist xρ = ∂O  and fix a bounded infinitely differentiable function ψ  

defined in O  such that (see (2.6) in [15]) 

( ) ( ) ( )x N x N xρ ψ ρ≤ ≤ , ( )m m
xD N mρ ψ ≤ < ∞ .                 (7) 

Let 0 ( )Cς ∞
+∈ ℝ  be a nonnegative function satisfying 

( ) 0n t

n

e cς
∞

+

=−∞

> > , t∀ ∈ℝ .                         (8) 

Note that any nonnegative smooth 0 ( )Cς ∞
+∈ ℝ so that 0ς > on 1[ , ]e e− satisfying (8). For 

x∈O  and { }0, 1, 2,n∈ = ± ±ℤ ⋯ , we define  

( )( ) ( )n
n x e xς ς ψ= . 

Then { }0 0supp : ( ) :n k n k
n nx e x e Gς ρ− − − +⊂ ∈ < < =O  for some integer 0 0k > , 

( ) 0n
n

xς δ
∞

=−∞

≥ > , 0 ( )n nC Gς ∞∈ , ( ) ( , )m mn
nD x N m eς ς≤ . 

For 1p ≥  and γ ∈ℝ . By 
1

,
, ( )p dH γ θ O  we denote the set of all distributions u  on O  

such that  

,
, 1 , 1

( )
: ( ) ( )

p d p d

pp n n n
nH H

n

u e e u eγ θ γ
θ ς

∞

−
=−∞

= ⋅ ⋅ < ∞O
. 

We also use the above notation for 2ℓ -valued functions 1 2( , , )g g g= ⋯ that is  

,
2, 21 , 1

( , ) ( )
: ( ) ( )

p d p d

pp n n n
nH H

n

g e e u eγ θ γ
θ ς

∞

−
=−∞

= ⋅ ⋅ℓ ℓO
. 

Also if nγ = is a nonnegative integer then  
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1 1

1

0,
, ,( , ) : ( ) ( , , d )d d d

p p d pL H L xθ θ
θ ρ −= =ℝ ℝO O O , 

{ }1

1

,
, ,( ) : , , , ( , )dn n n

p d pH u u Du D u Lθ
θρ ρ= ∈⋯ ℝO O , 

1

,
, 1

( )
1

dn
p d

d pp k d

H
k n

u D u xθ
α α θ

α
ρ ρ −

= ≤
 ∼

O
O

. 

Denote ( , ) ( ) ( )x y x yρ ρ ρ= ∧ . For (0,1]v∈  and 0,1,2,k = ⋯as in [16], we define  
(0) (0)

,[ ] [ ] sup ( ) ( )k
k k

x
k

f f x D f xβ

β

ρ
∈

=

= =O
O

, 

(0)

,

( ) ( )
[ ] sup ( , )k v

k v v
x y

k

D f x D f y
f x y

x y

β β

β

ρ +
+

∈
=

−
=

−O

, 

(0) (0)
,

0

[ ]
k

jk
j

f f
=

= O , (0) (0) (0)
,

0

[ ] [ ]
k

j k vk v
j

f f f ++
=

= + O . 

The above notations are used also for 1d
ℝ  valued functions 11 2( , , , )du u u u= ⋯  and 2ℓ  

valued functions 1 2( , , )g g g= ⋯ . For instance,  

(0)

0
[ ] sup ( ) ( )k

k
x

k

u x D u xβ

β

ρ
∈

=

=
O

,
2

(0)[ ] sup ( ) ( )k
k

x
k

g x D g xβ

β

ρ
∈

=

=
ℓO

. 

Here are some other properties of the space 
1

,
, ( )p dH γ θ O  taken from [17]. 

Lemma 2.1. ( )ⅰ  The space 1
0 ( , )dC∞

ℝO  is dense in
1

,
, ( )p dH γ θ O . 

( )ⅱ  Assume that d p m vγ − = + for some 0,1,m = ⋯  and (0,1]v∈ , and ,i j  are 

multi-indices such that i m≤ , j m= . Then for any 
1

,
, ( )p du H γ θ∈ O , we have  

1( , )i p diD u Cθψ + ∈ ℝO , 1( , )dm v p j vD u Cθψ + + ∈ ℝO , 

,
11 , 1

( )( , )( , )
dvd

p d

i p i m v p j

HCC
D u D u C u γ θ

θ θψ ψ+ + ++ ≤
ℝℝ OOO

. 

( )ⅲ  Dψ , Dψ :
1 1

, 1,
, ,( ) ( )p d p dH Hγ θ γ θ−→O O  are bounded linear operators, and for any 

1

,
, ( )p du Hγ θ∈ O  
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, 1, 1, ,
, , , ,1 1 1 1

( ) ( ) ( ) ( )p d p d p d p d
xH H H H

u N u N u N uγ θ γ θ γ θ γ θψ − −≤ + ≤
O O O O

, 

, 1, 1, ,
, , , ,1 1 1 1

( ) ( ) ( ) ( )
( )

p d p d p d p d
xH H H H

u N u N u N uγ θ γ θ γ θ γ θψ − −≤ + ≤
O O O O

. 

( )ⅳ  For any ,v γ ∈ℝ , 
1 1

, ,
, ,( ) ( )v pv

p d p dH Hγ θ γ θψ −=O O  and  

, ,,
, ,1 1, 1

( ) ( )( )
pv pv

p d p dp d

v

H HH
u N u N uγ θ γ θγ θψ− −

−≤ ≤
O OO

. 

( )ⅴ  If 0 1( , )γ γ γ∈  and 0 1( , )θ θ θ∈ , then  

,,, 01
, , ,1 1 1

( ) ( ) ( )
( , , )

p d p d p dH H H
u u N p u γ θγ θγ θ ε γ ε≤ +

O O O
, 

, ,, 0 1
, , ,1 1 1

( ) ( ) ( )
( , , )

p d p d p dH H H
u u N p uγ θ γ θγ θ ε γ ε≤ +

O O O
. 

Lemma 2.2.  ( )ⅰ  let s γ=  if γ  is an integer, and s γ>  otherwise, then  

, ,
, ,1 1

(0)

( ) ( )
( , , )

p d p dH s H
au N d s a uγ θ γ θγ≤

O O
. 

( )ⅱ  If 0,1,2,γ = ⋯ , then  

, , 1,
, , ,1 1 1

(0)

0( ) ( ) ( )
sup

p d p d p dH H H
au N a u N a uγ θ γ θ γ θγ −

 ≤ + 
 O O O

O

, 

where 0 0N =  if 0γ = . 

( )ⅲ  If 0 r s≤ ≤ , then 

( )
1

(0) (0)
( , , ) sup

r s r s

r s
a N d r s a a

−
 ≤  
 O

. 

The assertions also holds for 2ℓ -valued functions a  (see [18, 19]).  

Remark 2.3. By Lemma 2.2 for any 0v ≥ , vψ is a point-wise multiplier in ,
,1 ( )pH γ θ O . 

Thus if 1 2θ θ≤  then  

2 1
, ,2 1, 1
, ,1 1, 1

( )

( ) ( )( )p d p dp d

p

H HH
u N u N uγ θ γ θγ θ

θ θψ −≤ ≤
O OO

. 

Lemma 2.4. Let { }nξ  be a sequence of 0 ( )C
∞

O functions such that  

( )m mn
nD C m eξ ≤ , 0 0supp { : ( ) }n k n k

n x e x eξ ρ− − − +⊂ ∈ < <O  

for some 0 0k > . Then for any 
1

,
, ( )p du H γ θ∈ O ,  

,
, 1, 1

( )
( ) ( )

p dp d

p pn n n
n HH

n

e e x u e x N u γ θγ
θ ξ− ≤ O

. 
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If in addition  

0
p

n
n

ξ δ> > , 

then the inverse inequality also holds(see Theorem 2.2 in [19]). 

For 0 T< < ∞ , we also use some common notation from Stochastic partial differential 

equations which were not mentioned here. 

( )
1 1 1, , ,( ) ( , ) (0, ], ,d

p d p d p p dT T L T Hγ γ γ= = Ω×ℝ PH H , 

( )
1 1, 2 , 2( , ) (0, ], , ( )p d p p dT L T Hγ γ= Ω ×ℓ ℓPH , ( )

1 1

2
, 0 ,, , p

p d p p dU L Hγ γ −= Ω F , 

( )
1 1

, ,
, ,( , ) (0, ], , ( )p d p p dT L T Hγ θ γ θ= Ω×O P OH , 

( )
1 1

, ,
, 2 , 2( , , ) (0, ], , ( , )p d p p dT L T Hγ θ γ θ= Ω×ℓ ℓO P OH , 

 
1 1

0,
0, , ,( , ) ( , )d p dT Tθ

θ =O OL H ,
1 1

2
1

, 2
, 0 ,( ) ( , , ( ))pp

p d p p dU L F Hγ θ γψ
−

−= ΩO O , 

, ,1 1
( ) 0

d
p d p d

Tp p

T H
u u tγ γ= H

E , 
2 2, ,1 1

( , ) ( )0
d

p d p d

Tp p

T H
g u tγ γ= ℓ ℓH

E , 

, ,
, ,1 1

( , ) ( )0
d

p d p d

Tp p

T H
u u tγ θ γ θ= O OH

E , , ,
2 2, ,1 1

( , , ) ( , )0
d

p d p d

Tp p

T H
g u tγ θ γ θ= ℓ ℓO OH

E . 

Finally, we show the following Banach space 
1

2
, ( )p d Tγ +H  which is modified from the 

ℝ -valued version in [7] to the 1d
ℝ -valued version. 

Definition 2.5. For a D -valued function 1

1

1 2 2
,( , , , ) ( )d

p du u u u Tγ += ∈⋯ H , we say  

1

2
, ( )p du Tγ +∈H if 

1

2
, ( , )p du Tγψ +∈ OH , 

1

2
,(0, ) ( )p du Uγ +⋅ ∈ O , and there exist 

1

1 ,
, ( , )p df Tγ θψ −∈ OH , 

1

1
, 2( , , )p dg Tγ +∈ ℓOH  such that, for any 0Cφ ∞∈  

( ) ( ) ( ) ( )
0 0

1

( , ), (0, ), ( , ), d ( , ), d
t tk k k k m

m s
m

u t u f s s g s wφ φ φ φ
∞

=

⋅ = ⋅ + ⋅ + ⋅  , 11, ,k d= ⋯ .  (9) 

holds for all [0, ]t T∈  with probability 1. In this case, we write f u= D  and g u= S . 

The norm of u in 
1

2
, ( )p d Tγ +H  is written as 

2, , , 2,2,
2, , , ,1 1 1 1, 1

1

( , ) ( , ) ( , , ) ( )( , )
(0, )

p d p d p d p dp d
T T T UT

u u u u uγ θ γ θ γ θ γ θγ θψ ψ+ ++

−= + + + ⋅
ℓH O O O OO H HH

D S .   (10) 
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We also define 
1 1

2, 2
, ,0 ,( , ) ( , ) { (0, ) 0}p d p dT T u uγ θ γ+ += ⋅ =∩H O H O . Equation (9) can be written in 

the following simplified ways  

d d d m
m tu f t g w= + , 

and we say that m
m tdu fdt g dw= + holds in the sense of distributions.  

Remark 2.6. (i) Remember that for any ,,
, 1, 1

( )( )
, , ~ p

p dp d
HH

u u γ θ αγ θ
αα γ ψ +∈ℝ

OO
 

Thus, the space 
1

2,
, ( , )p dH Tγ θ+ O  is independent of the choice ofψ . 

(ii)It is easy to check (see Remark 3.2 of [7] for details) that for any 0 ( )Cφ ∞∈ O and 

g
1

1,
, 2( , , )p dH O Tγ θ+∈ ℓ , we have 2

1 0
( , )

T k

k
g dsφ∞

=
< ∞  , and therefore the series of stochastic 

integral 
2

1 0
( , )

t k k
tk

g dwφ∞

=   converges in probability uniformly on[0, ]T .  

Lemma 2.7. Let 
1

2,
, ( , ), 1,2,n p du T nγ θ+∈ = ⋯H O and 2,

, 1
( , )p d T

u Kγ θ+ ≤
H O

, where K  is a finite 

constant. Then there exists a subsequence kn and a function 
1

2,
, ( , )p du Tγ θ+∈H O  so that  

( )ⅰ  
knu , (0, )

knu ⋅ ,
knuD ,

knuS converges weakly to u , (0, )u ⋅ , uD , uS  in 
1

2,
, ( , )p d Tγ θ+ OH , 

1

2,
, ( )p dU γ θ+ O , 

1

,
, ( )p d

γ θ OH  and 
1

1,
, 2( , )p d

γ θ+
ℓOH , respectively.  

( )ⅱ  For any 0 ( )Cφ ∞∈ O  and [0, ]t T∈ , we have ( ) ( )( , ), ( , ),
knu t u tφ φ⋅ → ⋅ weakly in 

( )pL Ω . 

Proof: The proof is identical to that of Theorem 3.11 in [7], where the theorem is proved 

when d= ℝO , 1 1d = .□ 

Lemma 2.8. ( )ⅰ  Let 2 1p α β< < ≤  and 
1

2,
, ( , )p du Tγ θ+∈H O , then  

2,2 ,2 1
,, 11

1 ( ) 2

( , )([0, ], ( ))
[ ] p

p dp d

p p

TC T H
E u NT u γ θγ β θα

β β αψ ++ −−
− −≤

H OO
 

where ( , , , , , )N N d p Tγ θ= O is non-decreasing function of T . In particular for any 

t T≤ , 
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1, 2 ,
, ,1 1

( , ) ( , )0
d

p d p d

tp p

t s
u N u sγ θ γ θ+ +≤ O H OH

 

Lemma 2.9. The space 
1

,
, ( , )p d Tγ θH O  and 

1

,
, ,0( , )p d Tγ θH O are Banach space with norm (10). 

In addition if t T< , when T  is a finite constant, then for 
1

,
, ( , )p du Tγ θ∈H O  

, ,
, ,1 1

( , ) ( , )
( , )

p d p dt t
u N d T uγ θ γ θ≤

O H OH
, 2, ,

, ,1 1
( ) ( , )

sup ( , ) ( , )
p d p d

p

H
s t

t
E u s N d T uγ θ γ θ−

≤
⋅ ≤

O H O
. 

Proof: It is enough to repeat the proof of theorem 3.7 in [7], where the lemma is proved 

when d
+= ℝO , 1 1d = .□ 

This explains the sense in which Cauchy problem (1) is understood. Of course, we still 

need to impose the following assumption for the system (1). 

 
Assumption 2.10.    ( )ⅰ The coefficients of L  and Λ  are measurable and dominated by 

a constant K < ∞ . We also assume that the matrices ( )ij
kr kra a=  are, perhaps, 

nonsymmetric and satisfy 

2

1, , 1,2, ,ij i j
kra k r dλ λ κ λ≥ = ⋯  

for all dλ ∈ℝ  and all possible values of arguments. Here 0κ > is a fixed constant. 
( )ⅱ There exists a constant 0δ > such that 

2 * ( )ij ij
i jAδ ξ ξ ξ≤ − A , 

where  

( )ij ij
krA a= , ( )ij ij

krα=A , ( )
1

21

1
, ,

2

d
ij i j
kr lk lr

l

α σ σ
=

= 
ℓ

, 

ξ  is any (real) 1d d× matrix, iξ  is the thi  column of ξ , ∗ denotes the matrix 

transpose, and again the summations on ,i j  are understood. 

( )ⅲ The coefficients ij
kra , i

krσ  are uniformly continuous in x , that is, for any 0ε >  

there exists ( ) 0δ δ ε= > so that for any , 0tω > ω, t > 0, i , j , k , r , 

2

( , , ) ( , , ) ( , , ) ( , , )ij ij i i
kr kr kr kra t x a t x t x t xω ω σ ω σ ω ε− + − <

ℓ
, if x y δ− < . 

Denote ( )i i
krσ=M with ( ), 2, 1,2,i i

kr kr m mσ σ= = ∈⋯ ℓ  and i i i= −G M Q  where 
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iQ is the diagonal part of iM , ( )i i
kr krδ σ=Q . Using the assumption, we will elaborate 

our main result of the article. 

Theorem 2.11. Let
1

2
0 2,du U γ +∈ ,

12, ( )df Tγ∈ H and 1
2 2( , )g Tγ +∈ ℓH . Then under Assumption 

2.10, there exists a constant0ε >  depending only on1d , d , K ,T  and 0β >  such that if 

2, ,
sup ( , , )i

t x
t x

ω
ω ε≤

ℓ
G , 1,2, ,i d= ⋯ ,                       (11) 

for any ( , )d dθ β β∈ − +  the system (1) admits a unique solution
1

2,
, ( , )p du Tγ θ+∈H O with 

the estimate 

2, 1, 2,, 1,
2, , ,1 1 1, ,1 1

0
0( , ) ( , , ) ( )( , ) ( , )

1

( )
p d p d p dp d p d

d
i

T T UT T
i

u N f f g uγ θ γ θ γ θγ θ γ θψ+ + ++

=

≤ + + + ℓH O O OO O HH H
, 

whereN depends only on 1d , d , K ,T ,O . 

 
Remark 2.12. In Remark 4.5 we will show that Theorem 2.1 can be extended to the case 

that iM s are diagonalizable by an orthogonal matrix( , )xωO . That is, the main result 

still holds if * iO OM  is diagonal for eachi , where exists 0 ( )d× ℝF B -measurable 

1 1d d×  orthogonal matrix ( , )xωO . 

 
3. Auxiliary results 
Before we start our main problem, we firstly consider the following Cauchy problem with 
the coefficients independent ofx : 

( ) ( )0
,

0

d d d ,

(0, ) ( ).

k ij i i r k m
kr i j i k k kr m i m t

k k

u a D D u D f f t D u g w

u u

σ = + + + +


⋅ = ⋅

            (12) 

The summation convention with respect to, 1,2, ,i j d= ⋯ , 11,2, ,r d= ⋯ , 1,2,m = ⋯ is 

enforced which we have already mentioned previously .  A pWγ -theory for the system 

(12) will be shown. We start with a theorem which easily follows from the results for 

single equations. Assume thatijA is a 1 1d d×  diagonal matrix and all entries of iM are 

zero for each,i j . The system (12) can be written as  

( )0

0

d d d ,

(0, ) ( ).

k ij k i k m
kk i j i k k m t

k k

u a D D u D f f t g w

u u

 = + + +


⋅ = ⋅

                  (13) 
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We see that the system (13) is a set of 1d  number of independent single equations. 

Hence we can prove the Theorem 3.1 

 
Theorem 3.1. Let [2, )p∈ ∞ , [0, )γ ∈ ∞ , T < ∞ . Then there exists 0β >  for any 

( , )d dθ β β∈ − + , 
1 1

2, 0 1 ,
0 , ,, , ( , )i

p d p du U f f Tγ θ γ θψ+ −∈ ∈ OH and 
1

1,
, 2( , , )p dg Tγ θ+∈ ℓOH the system 

(13) with initial condition 0(0)u u= has a unique solution 
1

2,
, ( , )p du Tγ θ+∈H O  satisfying 

2, 1, 2,, 1,
2, , ,1 1 1, ,1 1

0
0( ) ( , , ) ( )( , ) ( , )

1

( )
p d p d p dp d p d

d
i

T T UT T
i

u N f f g uγ θ γ θ γ θγ θ γ θψ+ + ++

=

≤ + + + ℓH O OO O HH H
,        (14) 

whereN only depends ond , 1d , p ,γ , ,δ κ , K ,T . 

Proof: By Theorem 5.1 in [7], one gets  

( ) 0d d dk ij k i k m
i kk j i k k m tu D a D u D f f t g w = + + +  , 0(0, ) ( )k ku u⋅ = ⋅  

has a unique solution 2,
,1 ( , )k

pu Tγ θ+∈H O satisfying 

1,2, 2,
2,1,1 ,1,

,1

1,, , 2,
2,1,1 ,1 ,1

0
0( , , )( , ) ( ,)

1 ( , )

0
0( , , )( , ) ( , ) ( ,)

1

                    

pp p

p

pp p p

d
k i k

k i k k TT U
i T

d
i k

k i k k TT T U
i

u N f D f g u

N f D f g u

γ θγ θ γ θ
γ θ

γ θγ θ γ θ γ θ

ψ

ψ ψ

++ +

+ +

=

=

   ≤ + + +    

 ≤ + + +
 





ℓ

ℓ

OH O O
O

OO O O

H
H

HH H
.

   (15) 

Using Lemma 2.1 ( )ⅲ , one gets  

, 1,
,1 ,1( , ) ( , )p p

i i
i k kT T

D f fγ θ γ θψ +≤
O OH H

.                 (16) 

(15) and (16) easily lead to  

1,2, , 1, 2,
2,1,1 ,1 ,1 ,1

0
0( , , )( , ) ( , ) ( , ) ( ,)

1

.
pp p p p

d
k i k

k k k TT T T U
i

u N f f g uγ θγ θ γ θ γ θ γ θψ ++ + +

=

 ≤ + + + 
 

 ℓOH O O O OHH H
 

Add up to the inequalities from 1 to1d , one gets  
1

2, 2,
,1, 1

1, 2,, 1,
2, ,1 1, ,1 1

( , ) ( , )
1

0
0( , , ) ( ,)( , ) ( , )

1

                    .

pp d

p d p dp d p d

d
k k

T T
k

d
i

T UT T
i

u u

N f f g u

γ θ γ θ

γ θ γ θγ θ γ θψ

+ +

+ ++

=

=

≤

 ≤ + + + 
 



 ℓ

H O H O

O OO O HH H

 

Hence, the theory is proved. □ 

Next, we try to remove the restrictions that ijA s are diagonal. 
 

Theorem 3.2. The system (12) has a unique solution 
1

2
, ( , )p du Tγ +∈H O with the estimate 
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(14) even if we remove the assumption thatijA  is a diagonal matrix for each,i j . 

Proof: Firstly, we assume 0γ = . For each fixedω the system  

0

d ( ) d ,

(0)

ij
ij i jw A I D D w t

w u

δ  = −  


=
                       (17) 

is a deterministic system. Hence, by Section 10, Chapter 7 in [4], the system (17) has a 

unique solution 
1

2,
, ( , )p dw Tθ∈H O  with  

2, 2,
, ,1 1

0( ) ( )
.

p d p dT U
w N uθ θ≤

H O
                      (18) 

Now, we introduce a change of variables to transform our problem into a set of 1d  

number of independent single equations. If we let 
( , ) ( , ) ( , )v x t u x t w x t= − . 

Then, v  will satisfy the following stochastic partial differential equation 

( )0d d d ,

(0) 0.

k ij k i k m
kk i j i k k m tv a D D v D f f t g w

v

 = + + +


=
               (19) 

By Theorem 3.1, Cauchy problem (19) admits the unique solution 
1

2,
, ( , )p dv H Tθ∈ O  with 

the estimate  

2, 11,
, , 2, 1, ,1 ,1 1

0

( ) ( , , )( , ) ( , )
1

p dp d p d p d

d
i

kT TT T
i

v N f f gθ θ θθ
ψ

=

 ≤ + + 
 

 ℓH OO O HL H
.           (20) 

Hence, u v w= +  is the unique solution of our Cauchy problem and one gets the estimate 
(14) for 0γ =  by combining (18) and (20).  

Secondly, we prove that the claim of Theorem 3.1 holds even if 0γ ≠ . It is clear that 

1 1

2 , ,
, ,(1 ) : p d p dH Hµ γ θ γ µ θ−− ∆ →  is an isometry for any ,γ µ ∈ℝ  when (2, )p∈ ∞ . Hence, 

1

2,
, ( , )p du Tγ θ+∈H O  is a solution of system (12) if and only if  

1

2 2,
,: (1 ) ( , )p du u H Tγ θ= − ∆ ∈ O is 

a solution of system (12) when 2 0(1 ) fγ− ∆ , 2(1 ) ifγ− ∆ , 1,2, ,i d= ⋯ , 2(1 ) gγ− ∆ , 

2
0(1 ) uγ− ∆  is used instead of 0

0, , ,if f g u  respectively. And we have already proved that 

u  is the unique solution in the case 0γ = . Since, one gets  
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2, 2,
, ,1 1

1, 1, 2,
, , 2, , ,1 1 1 1

1,, 1,
2, 1, ,1 1

( , ) ( , )

2 0 2 2 2
0( , ) ( , ) ( , , ) ( )

1

0

( , , )( , ) ( , )
1

(1 ) (1 ) (1 ) (1 )

p d p d

p d p d p d p d

p dp d p d

T T

d
i

kT T T U
i

d
i

k TT T
i

u u

N f f g u

N f f g u

γ θ θ

θ θ θ
θ

γ θγ θ γ θ

γ γ γ γψ

ψ

+

++

=

=

=

 ≤ − ∆ + − ∆ + − ∆ + − ∆ 
 

= + + +





ℓ

ℓ

O O

O O O O

OO O

H H

L H H

HH H 2,
, 1

0 ( )
.

p d

k

U γ θ+

 
 
 O

 

The theorem is proved. □ 

Previously, we always assume that 0i =M . Now, we try to weaken it. Recall that 

i i i= −G M Q  where i
dQ  is the diagonal part of iM , ( )i i

kr krδ σ=Q . 

 
Theorem 3.3. Assume that if iM s are diagonal matrices. There exists a 

coefficient 0β > , the system (12) admits a unique solution
1

2,
, ( , )p du Tγ θ+∈H O and the 

estimate (14) holds for all ( , )d dθ θ θ∈ − + . 

Proof: As in the proof of Theorem 3.2 we may assume0γ = . According to the 

assumption, one gets ( ) ( )i i
kr krt σ δ=M  and system (12) can be changed to  

( ) ( )0
,d d d ,k ij r i i k k m

kr i j k i k kk m i m tu a D D u f D f t D u g wσ= + + + +               (21) 

with the initial condition 0 1( ,0) ( ), 1,2, , .k ku x u x k d= = ⋯  Define the process 

,0
1

( )
tik i m

t kk m s
m

x s dwσ
∞

=

=  for each ,i k  and 1 2( , , , )k k k dk
t t t tx x x x= ⋯ . Also, we define  

( , ) ( , )k k k
tu t x u t x x= − , 0 0( ) ( )k k k

tu x u x x= − , 0 0( , ) ( , )k
k k tf t x f t x x= − , 

( , ) ( , )i i k
k k tf t x f t x x= − ,  ( , ) ( , )k k k

tg t x g t x x= − . 

Using the Itô-Wentzell formula (see Lemma 4.7 in [7]), system (21) can be written as 

2 2

0

0 1

1
d ( , ) ( , ) d d

2

(0, ) ( ), 1,2, , ,

k ij i j r i i k k m
kr kk kk kr i j k i k kk i m t

k k

u a D D u f D f D g t g w

u x u x k d

σ σ δ σ
   = − + + − +   

  
 = =

ℓ ℓ

⋯

 

or  
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* 0

0 1

1
d ( ) d d ,

2

(0, ) ( ), 1,2, , ,

ij i j i i m
i j i i m tu A D D u f D f D g t g w

u x u x k d

   = − + + − +   
  

 = = ⋯

M M M
    (22) 

where 11 2( , , , )du u u u= ⋯ . By Theorem 3.2, the problem (22) has a unique solution 

1

2,
, ( , )p du Tθ∈H O   with  

( )2, 1, 2,
2, , ,1 1 1, ,1

1, 2,
2, ,, , 1 11

, ,1

0
0( ) ( , , )( , )

0
0( , , )( , )

1 ( , )

              .

p d p d p dp d

p d p dp d

p d

i i
i iT T UT

d
i i

i i T UT
i T

u N f D f D g g u

N f D f D g g u

θ θ θ
θ

θ θ
θ

θ

ψ

ψ ψ
=

 ≤ + − + + 
 

   ≤ + + + +    


ℓ

ℓ

H OO

OO
O

M

M

HL

HL
L

 (23) 

Using Lemma 2.1 ( )ⅲ , one gets  

1,
, , 2 2,1, , 2 11

( , , ) ( , , )( , , ) p d p dp d

i
i i T TT

D g K D g K g θ
θθ

ψ ψ≤ ≤
ℓ ℓℓ O OO

M
L HL

.        (24) 

Let 1 max{ , }N N KN= . (16), (23) and (24) easily lead to  

2, 1, 2,1,
2, , ,, , 21 1 1,1 1

0
1 0( ) ( , , )( , ) ( , , )

1

.
p d p d p dp d p d

d
i

T T UT T
i

u N f f g uθ θ θθ
θ

ψ
=

 ≤ + + + 
 

 ℓℓH OO O HL H
 

According to the definition of Bessel potential space and its norm, The upper inequality 

can be easily changed to the estimate (14). Hence the theory is proved. □ 

  In the next theory, we only assume that iM s are close to diagonal matrices which 
satisfying: there exists a constant0ε >  depending on1d , p , γ , ,δ κ , K ,T such that for 

anyω ∈ Ω , [0, ]t T∈  one gets 

0
,1 ,

[0, ]

: sup ( , )i

i d
t T

k t
ω

ω ε
∈Ω ≤ ≤

∈

= ≤G .                        (25) 

Theorem 3.4. Under the assumption (25), there exists a coefficient 0β > , the system (12) 

admits a unique solution
1

2,
, ( , )p du H Tγ θ+∈ O , and the estimate (14) holds for 

all ( , )d dθ β β∈ − + . 

Proof: As in the proof of Theorem 3.2 we may assume0γ = . Also, as usual we assume 

0 0u =  (see the proof of Theorem 5.1 in [7]). By Assumption 2.10, for any 1d d×  matrix 

ξ  , one gets  

2 2* *1
2 ( )

2 2
ij i j

i jK A
δξ ξ ξ ξ ≥ − ≥ 

 
M M  

and on the other hand  
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( )

* *

* * * * * *

1
( )

2

1 1
( ) ( ) ( ) ( ) .

2 2

ij i j
i j

ij i i i i i i i i
i j i j

A

A

ξ ξ

ξ ξ ξ ξ

 − 
 

 = − − + + 
 

M M

Q Q Q G G Q G G

 

There exists a constant1 0ε >  such that if 0 1k ε≤ , then  

2 2* *1
4 ( )

2 2
ij i j

i jK A
δξ ξ ξ ξ ≥ − ≥ 

 
M M  

can be hold. Hence, by the result of Theorem 3.3, for each 
1

2,
, ,0( , )p du Tθ∈H O  one can 

define
1

2,
, ,0: ( , )p dv u Tθ= ∈H OR  as the solution of  

( )0d d ( )d ,

(0) 0.

ij i i i m
i j i m i m i m tv A D D v f D f t D u D u g w

v

 = + + + + +


=

Q G
            (26) 

If we assume 0 1k ε≤ , the map
1 1

2, 2,
, ,0 ,: ( , ) ( , )p d p dT Tθ θ→H O H OR  is well defined and 

bounded. We plan to show that nR  is a contraction for some large integer n  with a 

further restriction on0k . Note that fort T≤  and any 
1

2,
1 2 , ,0, ( , )p du u Tθ∈H O one gets 

2, 1,
, 21 , 1

1 2 0 1 2( , ) ( , , )
( )

p d p d

pp i
iT t

u u N D u uθ θ− ≤ −
ℓH O O

R R G
H

, 

where 0N  depends only on1d , p ,γ ,δ , K ,T . By the inequality
1,

( )xxp p p
Du N u u≤ + , 

for each t  one gets  

1,
, , , ,1 12, 1

2,
, ,, 11

1 2 0 1 2 0 1 2( , ) ( , )( , , )

0 1 2 0 1 2( , ) ( , )

( ) ( )

                                   ( ) .

p d p dp d

p dp d

p p pi p p
e i xx T Tt

p pp p
xx t T

D u u Nk u u Nk u u

Nk u u Nk u u

θ θ θ

θ
θ

− ≤ − + −

≤ − + −

ℓ O OO

H O O

G
L LH

L

 

By the Lemma 2.8, one gets  

1, 1,
,1 ,1( , ) ( , )0

d
p p

tp pk k

t s
u N u sγ θ γ θ+ +≤ O H OH

, 11,2, ,k d= ⋯ . 

Hence, it follows that 
1 1

1, 1, 1, 1,
, ,1 ,11 , 1

( , ) ( , ) ( , ) ( , )0 0
1 1

d d
p d p p p d

d d
t tp p pp k k k

t t s s
k k

u u N u s u sγ θ γ θ γ θ γ θ+ + + +

= =

= ≤ =  O O H O H OH H
.         (27) 

By (27), one gets 
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2,
, 1

2,
, 1

2, 2,
, ,1 1

1 2 ( , )

0 0 1 2 0 0 1 2( , ) 0

0 0 1 2 0 0 1 1 2( , ) ( , )0

( ) ( ) d

d ,

p d

pp d

p d p d

p

t

tp pp p

t L

tpp p

t s

u u

N Nk u u N Nk E u s u s s

N Nk u u N Nk N E u u s

θ

θ

θ θ

−

≤ − + −

≤ − + −





H O

H O

H O H O

R R

            (28) 

where 1N  depends only on 1d , d , p ,T . Hence, by introduction,  

2,2,
, 1, 1

2, 2,
, 1 , 1

2,
, 1

1 2 0 0 1 2 ( , )( , )

1

0 0 0 0 1 1 2 1 2( , ) ( , )0
1

0 0 0 0 1 1 2 ( , )
0

( )

( )
( )( ) ( ) d

( 1)!

( )( ) ( ) !

2

p dp d

p d p d

p d

p pn n p n

tt

kn t pn p n k p k n n
k s T

k

n
n p n k p k
k T

k

n

u u N Nk u u

t s
N Nk N Nk N u u s u u

k

N Nk TN Nk N k u u

θθ

θ θ

θ

−
−

=

−

=

− ≤ −

−+ − −
−

≤ −

≤

 



H OH O

H O H O

H O

R R

R R

{ } 2,
, 1

0 0 1 1 2 ( , )
( ) max ( ) ! .

p d

p n k

Tk
N Nk TN k u u θ−

H O

 

This allows us to find 0k depending only on ,d p , ,δ κ  and K , so that the operator 

nR  is a contraction with coefficient 1 2. Of course, this yields all our assertion. The 

theorem is proved. □  

For the last theory of Cauchy problem (12), we remove the restriction that iM s are 

close to diagonal matrices. Assume *( , ) ( ) ( , ) ( )i it tω ω ω ω=M T M T for some 

0F -measurable orthogonal matrixT , where ( , )ijA tω , ( , )i tωM s satisfy assumption 2.10, 

iM s satisfy the condition (25) in Theorem 3.4. Hence the following theory holds. 

 
Corollary 3.5. Then the assertion of Theorem 3.3 holds for the system (6) with iM in 
place of iM , 1,2, ,i d= ⋯ . 

Proof: Firstly we consider the following problem  

( ) ( )* 0
0d ( ) d d , (0) .ij i i m

i j i m i m tv A D D v f D f t D v g w v u= + + + + =uT T T T M T  

Because T  is orthogonal, *( )ijAT T and iM ( , 1,2, ,i j d= ⋯ ) satisfy the same 

conditions which ijA and iM satisfy. Note thatε in (25) is independent of the choice of 

T . By Theorem 3.4 there exists a unique solution
1

2
, ( , )p dv Tγ +∈H O  satisfying  
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2 1, 2,
2, , ,1 1 1,

, 1

1, 2,,
2, ,1 1, ,1

, 1

0
0( , ) ( , , ) ( )

1 ( , )

0
0( , , ) ( )( , )

1 ( , )

                

   

p d p d p d

p d

p d p dp d
p d

d
i

iT T U
i T

d
i

i T UT
i T

v N f D f g u

N f D f g u

γ γ θ γ θ
γ θ

γ θ γ θγ θ
γ θ

ψ ψ

ψ ψ

+ + +

+ +

=

=

 
 ≤ + + +
 
 

 
 ≤ + + +
 
 





ℓ

ℓ

H O O O
O

O OO
O

T T T T

T T T T

H
H

HH
H

1, 2,, 1,
2, ,1 1, ,1 1

0
0( , , ) ( )( , ) ( , )

1

             .
p d p dp d p d

d
i

T UT T
i

N f f g uγ θ γ θγ θ γ θψ + ++

=

 ≤ + + + 
 

 ℓO OO O HH H

 

(29) 

Secondly, we define *u v=T . It is clear that u  is the unique solution of  

( )0

0

d d ( )d ,

(0)

ij i i m
i j i m i m tu A D D u f D f t D u g w

u u

 = + + + +


= u

M
 

and the estimate (14) follows from (29). Hence the corollary is proved. □ 

 

4. Proof of Theorem 2.11 
We closely follow the proof of Theorem 5.10 of [7]. As usual we assume0 0u = . For 

simple, let’s us define 

1 1

1 , 1,
, , 2( , ) ( , ) ( )) ,( , ,p p d p dT Tg Tf γ γ θ γ θψ − += ×∈ ℓO O OH HF , 

and 

, 1,
2, ,1 1

( , ) ( , ) ( , , )
( , )

p p d p dT T T
f gf g γ θ γ θγ ψ += +

ℓO O OH HF
. 

Definition 4.1. Assume that for ω ∈Ω and 0t ≥ , we give the following operators  

1 1

2, ,
, ,( , ) : ( ) ( )p d p dL t H Hγ θ γ θ+⋅ →O O , 

1 1

2, 1,
, , 2( , ) : ( ) ( , )p d p dt H Hγ θ γ θ+ +Λ ⋅ → ℓO O , 

where
11 2( , ) ( ( , ), ( , ), , ( , ))dL t L t L t L t⋅ = ⋅ ⋅ ⋅⋯ ,

11 2( , ) ( ( , ), ( , ), , ( , ))dt t t tΛ ⋅ = Λ ⋅ Λ ⋅ Λ ⋅⋯ . 

Assume that  
( )ⅰ  For any ω  andt , the operators ( , )L u t  and ( , )u tΛ  are continuous with respect to 

u . 

( )ⅱ  For any 
1

2,
, ( )p du H γ θ+∈ O , the operators ( , )L u t  and ( , )u tΛ  are predictable.  

( )ⅲ  For anyω ∈ Ω , 0t ≥  and 
1

2,
, ( )p du H γ θ+∈ O , one gets  

, 1, 2,
2, , ,1 1 1

,( ) ( , ) ( )
( , ) ( , ) (1 )

p d p d p d
LH H H

L u t u t N uγ θ γ θ γ θψ + +Λ+ Λ ≤ +
ℓO O O

, 
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where ,LN Λ  is a constant. 

Then for a d
ℝ  valued function

1 1

2,
1 2 ,( , , , ) ( )d p du u u u Hγ θ+= ∈⋯ O , we write  

( , ) ( , )L u f gΛ = − , 

if ( , ) ( , )pf g Tγ∈ OF , and by the virtue of definition , for [0, ]t T∈ , one gets 

( , )u L u t f= +D , ( , )u u t g= Λ +S . 

 
Remark 4.2. According to our condition on L  and Λ , one gets  

( ( , ), ( , )) ( , )pL u t u t TγΛ ∈ OF  for any 
1

2,
, ( , )p du Tγ θ+∈H O . Also,  

( , ) ( ( , ) , ( , ) )L u L u t u u t uΛ = − Λ −D S . In particular, the operator ( , )L Λ  is well defined on 

1

2,
, ( , )p d Tγ θ+H O , and , as follows easily from Definition 4.1( )ⅲ   

2,
, 1

1
, ,( , ) ( , )

( , ) (1 2 ) 2
p p d

p
L LT H T

L u N u N Tγ θγ +Λ ΛΛ ≤ + +
O OF

. 

In term of Definition 4.1, Theorem 3.4 can be written with the following version 

 
Theorem 4.3. Let a  and σ  satisfy the assumptions from the beginning section 2. 

Define  

1

0 0 0 0
1 2( , ) ( ( , ), ( , ), , ( , ))dL t L t L t L t⋅ = ⋅ ⋅ ⋅⋯ , 0 ij r

k kr i jL a D D u= , 

1

0 ,0 ,0 ,0
1 2( , ) ( ( , ), ( , ), , ( , ))m m m

dt t t tΛ ⋅ = Λ ⋅ Λ ⋅ Λ ⋅⋯ , 0
, ,

i r
k m kr m iD uσΛ = . 

Then the operator 0 0( , )L Λ  is a one-to-one operator from 
1

2,
, ( , )p d Tγ θ+H O  to ( , )p Tγ OF  

and the norm of its inverse is less than a constant depending only on , , ,d p δ κ and 

K (thus independent of T ). 

Next, we prove a perturbation result because we do not allow ε  depending on T . 

 

Theorem 4.4. Take the operators 0L  and 0Λ  from Theorem 4.3, and let some operators 
1L  and 1Λ  satisfy the requirements from Definition 4.1. We assert that there exists a 

constant (0,1)ε ∈  if, for a constant 1K  and any 
1

2,
,, ( )p du v Hγ θ+∈ O , one gets  

( ) 1,,
,, 11

, 1,
, ,1 1

( )( )

1( ) (

1 1 1

)

1( , ) ( , ) ( , ) )

,

( ,
p dp d

p d p d
xx

HH

H Hxx

L u t L v t u t v t

u v u vK

γ θγ θ

γ θ γ θε

ψ +

+

− + Λ − Λ

−+−≤

OO

O O

             (30) 
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then, for any( , ) ( , )pf g Tγ∈ OF , there admits a unique solution 
1

2,
, ( , )p du Tγ θ+∈H O  of the 

system  

0 1 0 1( , ) ( , )L L u f g+ Λ + Λ = − ,                           (31) 

where ε  depending only on , , ,d p δ κ  and K . Furthermore, for this solutionu , there 

exists a constant 0β >  for any ( , )d dθ β β∈ − +  satisfying 

2,
, 1

1 1

( , ) ( , )
( ( ,0) , ( ,0) )

p d p
T T

u N L f gγ θ γ+ ≤ ⋅ + Λ ⋅ +
H O OF

,                 (32) 

where N  depends only on 1,, , , ,d p K Kδ κ and T ( N  is dependent of T  if 1 0K = ).  

Proof: Firstly, by Lemma 2.1 ( )ⅴ , one gets  

1, , ,
, , ,1 1 1

( ) ( ) ( )
( , , ) .

p d p d p d
x HxH H

u u N d p uγ θ γ θ γ θε ε+ ≤ +
O O O

 

Therefore without loss of generality we use the following inequality instead of (30) 

, 1,
, ,1 1

, ,
, ,1 1

1

( ) ( )

1(

1 1 1

) ( )

( , ) ( , ) ( , )

.

( , )
p d p d

p d p d
x

H

xx H Hx

H
L u t L v t u t v t

u v uK v

γ θ γ θ

γ θ γ θε

+− + Λ − Λ

− −≤ +

O O

O O

 

Now fix ( , ) ( , )pf g Tγ∈ OF . Take
1

2,
, ,0 ( , )p du Tγ θ+∈H O , note that 1 1( ( ), ( )) ( , )pL u u TγΛ ∈ OF  and, 

by using Theorem 4.3, define 
1

2,
, ,0 ( , )p dv Tγ θ+∈H O  as the unique solution of the equation  

0 0
1 1( , ) ( ( ), ( ))L v f L u g uΛ = − + + Λ . 

By denotingv u=R , we defining an operator
1 1

2 2
, ,: ( , ) ( , )p d p dT Tγ γ+ +→H O H OR . System (31) is 

equivalent to the equationu u= R . Therefore, to prove the existence and uniqueness of 

solutions to (31), we only need to show that, for an integer 0n > , the operator nR is a 

contraction in 
1

2
, ,0( , )p d Tγ +H O . By using the Theorem 4.3 and Minkowski inequality, 

for t T≤ ,  

2,
, 1

2, ,
, ,1 1

( , ) (

1 1 1

, )

0 0 1( , ) ( )0

1

                              

( , ) ( , ), ( , ) ( ,

  ( ) ( ) d

)

,

p d p

p d p d

pp

t T

tp pp p

t H

u v L u t L vN

N u v N K E u s v s s

t u t v tγ θ γ

γ θ γ θε

+

+

− ≤

≤

− Λ −

− +

Λ

−

H O O

H O O

F
R R

 

where 0N N p= . This gives the desired result if 1 0K = . Also in this case estimate (32) 

follows obviously with N  independent of T .  
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When 1 0K ≠ , by Lemma 2.9, one gets  

2, 2,
, ,1 1

1( ) ( , )
( ) ( )

p d p d

p p

H s
E u s v s N u vγ θ γ θ+ +− ≤ −

O H O
, 

where s T≤  and 1N  depends only on ,d p  and T . Define 0: pNµ ε= . Hence for all 

t T≤ , one gets  

2, 2, 2,
, , ,1 1 1

2 1 2( , ) ( , ) ( , )0
d ,

p d p d p d

tp p p

t t s
u v u v N u u sγ θ γ θ γ θµ+ + +− ≤ − + −H O H O H O

R R  

where 2N  depends only on 1, , , , ,d p K Kδ κ  and T . Hence, by introduction,  

{ }

2,2,
, 1, 1

2, 2,
, 1 , 1

2,
, 1

2,
, 1

1 2 1 2 ( , )( , )

1

2 1 2 1 2( , ) ( , )0
1

2 1 2 ( , )
0

2 1 2 (

( )
( ) d

( 1)!

( ) ( ) !

2 max ( ) !

p dp d

p d p d

p d

p d

p pn n n

tt

kn t pn n k k n n
k s T

k

n
n n k k
k T

k

n n k

k

u u u u

t s
N u u s u u

k

TN k u u

TN k u u

γ θγ θ

γ θ θ

θ

θ

µ

µ

µ

µ µ

++

+

−
−

=

−

=

− ≤ −

−+ − −
−

≤ −

≤ −

 



H OH O

H O H O

H O

H

R R

R R

, )
.

TO

 

This allows us to find ε depending only on ,d p , ,δ κ  and K , so that the operator nR  

is a contraction in 
1

2
, ,0( , )p d Tγ +H O  with coefficient 1 2 . Of course, this yields all our 

assertion. The theorem is proved. □ 

 
Lemma 4.5. Let Assumption 2.10 be satisfied. Then there exists ( , , , , , ) 0d p Kε ε γ δ κ= >  

and 0β > such that system (1) admits a unique solution 
1

2,
, ,0 ( , )p du Tγ θ+∈H O  of 

Furthermore, for this solution u , one gets  

2,
, 1

( , ) ( , )
( , )

pp d

p

T T
u N f gγ θ γ+ ≤

H O OF
, 2,

, 1
( , ) ( , )

( , )
pp d

p

T T
u N L uγ θ γ+ ≤ Λ

H O OF
,           (33) 

for all ( , )d dθ β β∈ − + , where N depends only on , , , ,d p Kδ κ and T . 

 
Proof: We have already proved the Theorem 4.4 for the system with coefficients 

independent ofx . The only proof we need is to extend the Theorem 4.4 to the version that 

the condition have already mentioned in Assumption 2.10. This is very similar with the 

proof of Theorem 6.6 in [7] where the theorem is proved when d= ℝO , 1 1d = . The only 

difference is that one needs to use Theorem 4.4 in this article in place of Theorem 6.4 in 

[1]. Hence the theorem is proved. □ 
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Proof of Theorem 2.11: For [0,1]λ ∈  we consider the operation  

,d ( )d ( )dk m m m
k k tu L u f t u g wλ λ= + + Λ +                     (34) 

with zero initial condition, where 

0 (1 )k k kL L Lλ λ λ= + − ,
11 2( , , , )dL L L Lλ λ λ λ= ⋯ , 

0
, , ,(1 )k m k m k m

λ λ λΛ = Λ + − Λ , 
11, 2, ,( , , , )m m d m

λ λ λ λΛ = Λ Λ Λ⋯  

and ( , )f g  is an arbitrary element in ( , )p Tγ OF . Take a 0 [0,1]λ ∈  and assume that for 

0λ λ=  system (34) with zero initial data admits a unique solution 
1

2,
, ,0 ( , )p du Tγ θ+∈H O . 

Actually, according to Theorem 3.4 this assumption is satisfied for 0 1λ = . Then the 

following operator  

0 1

2,
, ,0: ( , ) ( , )p p dT Tγ γ θ

λ
+→O H OR F  

can be hold, such that 
0
( , )f g uλ =R . From (33) one can found that  

2,0
, 1

( , )( , )
( , ) ( , )

pp d
TT

f g N f g γγ θλ + ≤
OH O F

R .                  (35) 

When 0λ λ≠ , the system (24) can be changed as follow  

( ) ( )0 0,0 0 ,0
0 0d ( )( ) d ( )( ) dmk i m m k m

k k k i k k k k k m tu L u L u L u D f f t u u u g wλ λλ λ λ λ= + − − + + + Λ + − Λ − Λ +  

or 

( ) ( )0 0,0 0 0
0 0d ( )( ) d ( )( ) dmi k

i tu L u Lu L u D f f t u u u g wλ λλ λ λ λ= + − − + + + Λ + − Λ − Λ + .   (36) 

Next, we solve the system (36) by iterations. Define 0 0u =  and  

( )
0 0

0
1 0 0 0 0( )( ) , ( )( )i k

j j j j i j ju L u Lu L u D f f u u gλ λ λ λ λ λ− = + − − + + − Λ − Λ +R . 

According to (35), one gets 

2,
, 1

2,
, 1

0
1 0 0 0( , ) ( , )

1 0 1 ( , )

( ) , ( )

                             ,

pp d

p d

i k
j j iT T

j j T

u u N Lu L u D f f u u g

N u u

γ θ γ

γ θ

λ λ

λ λ

+

+

+

+

− ≤ − − + + Λ − Λ +

≤ − −

H O O

H O

F
 

where 1N  is independent ofj , λ  and 0λ . If 1 0 1 2N λ λ− ≤ , then ju  is a Cauchy 

sequence in 
1

2,
, ( , )p d Tγ θ+H O , which converges by Lemma 2.9. Its limit satisfies 
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( )
0 0

0
0 0 0 0( )( ) , ( )( )i k

iu L u Lu L u D f f u u gλ λ λ λ λ λ= + − − + + − Λ − Λ +R , 

which is equivalent to (34). In this way we show that if (34) is solvable for 0λ , then it is 

solvable for λ  satisfying 1 0 1 2N λ λ− ≤ . In finite mumble of steps starting with 1λ = , 

we get to 0λ = . Hence the theorem is proved.□ 

 

Remark 4.6. Using Corollary 3.5 instead of Theorem 3.4 and following the proof of 

Theorem 2.11, we can extend Theorem 2.11 to the case when iM s are diagonalizable by 

an orthogonal matrix ( , )xωT , if * iT M T  is diagonal for each i  which is 

0 ( )d× ℝF B -measurable 1 1d d×  orthogonal matrix ( , )xωT . 
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Appendix 
In the appendix, we present the Ito-Wentzell formula to the following stochastic 

differential equation 

d ( ) ( )d ( )d ,k k
t t t tu x f x t g x w t T= + ≤ ,                       (37) 

where ,f u∈D , 2g ∈ ℓ . 

 
Definition A1 We say that the equality (37) holds in the sense of distributions if only if 

for any 0Cφ ∞∈ , with probability one we have  

0 0 0
( ( ), ) ( ( ), ) ( , )d ( , )d ,

t t k k
t s s tu x u x f t g w t Tφ φ φ φ= + + ≤  . 
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Let tx  be an d
ℝ -valued stochastic process given by  

0 0
1

d d
t ti i ik k

t s s s
k

x b s wσ
∞

=

= +  , 

where ( ), ( )i k ik
t t t tb b σ σ= = are predictable d

ℝ -valued processes such that for all ω  

and ,s T +∈ℝ  we have ( )trace sa < ∞  and  

( )( )
0

trace d ,
t

t sb a t+ < ∞  

where ( )ij
t ta a=  and 

2
2 ( , )ij i j

t t ta σ σ⋅ ⋅=
ℓ

, so that 

( ) 2

1 1

2 trace
d

ik
s t

i k

a σ
∞

= =

=  

Here is the Ito-Wentzell formula taken from Reference [7] (also see [20]). 

 
Theorem A2 (Ito-Wentzell formula) Let ,f u∈D , 2g ∈ ℓ . Introduce  

( ) ( )t t tv x u x x= +  

and assume that (1.2) holds (in the sense of distributions). Then 

( )
2

d ( ) ( ) ( ) ( ) ( ), d

( ) ( ) d .

ij i i
t t t t ij t t i t i t t t

k ik k
t t i t t t

v x f x x a D v x b D v x D g x x t

g x x D v x w

σ

σ

⋅ = + + + + +  

 + + + 

ℓ           (a1) 

Here, the summation convention over the repeated indices , 1, ,i j d= ⋯ (and 1,2,k = ⋯ ) is 

enforced. 


