First-principles Study of the Correlation between Host Components and Properties of IAIIA_3F_3 Cubic Perovskite Compounds

Zuo Li 1, Yang Wang2 and Dong-xu Liu3

Department of Mathematics and Physics
Chongqing University of Posts and Telecommunications
Chongqing - 400065, Chongqing, China.

1E-mail: wuxilijinling@sina.com; 2E-mail: 1020002547@qq.com
3E-mail: 2583773463@qq.com

Received 12 November 2017; accepted 30 November 2017

Abstract. For the first time the structural, elastic and band gap properties of 10 perovskite crystals IAIIA_3F_3 (IA=K, Rb; IIA=Be, Mg, Ca, Sr, Ba) were calculated systematically using the CRYSTAL09 program. Several trends in the variation of these properties in relation to the Ionic radius R of the alkaline-earth metals ions were found. In particular, the lattice parameter of these compounds increases with R, whereas the elastic constants and band gap decrease. The Research of above properties will be very helpful in order to further improve their performances on the high-technology applications.

Keywords: Perovskite structural and elastic properties First-principle calculations

1. Introduction

Fluoroperovskites is a common name for a large group of crystals with the general chemical formula IAIIA_3F_3 where the IA are the univalent cations of the alkali-metals and IIA are the divalent cations of the alkaline-earth metals. All chosen compounds crystallize in the $\text{Fm\text{-}3m}$ structure (Space Group No. 225). Those types of compounds have attracted increasing attention recently because of its excellent physical and chemical properties. Also, its application covers the ferroelectric [1] piezoelectric [2], catalytic action [3], colossal magnetoresistance [4] and iron [5, 6], superconductor [7-9], battery electrode [10] and other aspects. Moreover, perovskite crystal structure is one of the most common type of structure of inorganic solid state chemistry, and most of the perovskite compounds are oxide and fluoride, so it’s easy to synthesis in the laboratory. Based on these special properties, perovskite halide has great potential in new materials application fields.

In fact, those types of compounds have been partially researched before, but never at such scale. In the early 80s, Brauch and Durr proved that the KMgF_3: Cr$^{3+}$ and CsCaF_3: V$^{2+}$ crystal could be used as a near infrared spectral region of tunable laser active element in Ref. [12]. The pressure effects on the elastic, electronic and optical properties of KCaF_3 were studied in Ref. [13] using the WIEN2K code. The KCaF_3 and RbCaF_3 perovskites were considered in Refs. [14, 15]. The structural, electronic and optical properties of KCaF_3 and KCaCl_3 were calculated in Ref. [16]. Finally, various approaches
to study CsCaF$_3$ at ambient pressure were employed in Refs. [17-20]. It also can be noticed that the spectroscopic properties of various impurities in these perovskites were studied, for example, Ni$^{2+}$ [21] and Gd$^{3+}$ [22] in RbCaF$_3$, V$^{2+}$ [23] and Cr$^{3+}$ [24] in CsCaF$_3$, Pr$^{3+}$ and Ce$^{3+}$ in KCaF$_3$ [25].

With the development of technology and economy, it has been gradually become an urgent work to seek new cubic perovskite materials. It’s unrealistic to synthesize all of them because of enormous workloads to synthesize all of them, which restricted the perovskite compounds application prospect in the field of new materials. However, with the developing of CPU performance and the decline of cost, it’s fortunate to know that it is gradually possible to use theoretical software, such as CRYSTAL09 based on first-principles calculation, to compute and design new materials. This method has been gradually become a popular way to study the new compounds. Thus, in the present work, the CRYSTAL09 software was used to calculate and determine the reality structure of cubic perovskite crystals from two possible structures. Also, the properties of elastic and electronic were considered. This work could provide a reference to the experiment to some extent.

The structure of the paper is as follows: the method and details of calculations are described in Section 2. All calculated results along with corresponding discussions are collected in Section 3 (which is divided into several subsections for easier reading). Section 4 contains the main conclusions of the presented calculations.

2. Details of calculations

For the geometry optimization calculation: The convergence criteria on the root-mean-square (RMS) of the gradient and the nuclear displacement (TOLDEG and TOLDEX) were set to 0.00006 Hartree/Bohr and 0.00012 Bohr, respectively. The energy calculation precision setting was chosen as follows: the hybrid exchange-correlation functional WC1PBE consisting of a PBE correlation part and a Wu-Cohen exchange part with a fractional mixing (16%) of the nonlocal Hartree-Fock (HF) exchange was adopted in this study. An “extra large” pruned DFT integration grid (XXLGRID) was adopted. The Monkhorst-Pack scheme for 14×14×14 k-point mesh in the Brillouin zone (BZ) was applied; the truncation criteria for bielectronic integrals (Coulomb and HF exchange series) were set to 9, 9, 9, 9 and 18; Bipolar expansion approximation control was set as follows: 27 for Coulomb and 21 for exchange. The maximum cycle number was set to 900. The tolerance of the energy convergence on the self-consistent field (SCF) iterations (TOLDEE) was set to 10^{-10} Hartree. For the elastic constant calculation.

The Gaussian-type basis sets were employed as follows: K_pob_TZVP_2012 was used for K. Rb_SC_schoenes_2008 was used for Rb. Be_5-11G_lichanot_1992 [26] was used for Be. Mg_8-511d1G_valenzano_2006 [27] was used for Mg. Ca_86-511d21G_valenzano_2006 [28] was used for Ca. Sr_HAYWSC-311(1d) G_piskunov_2004 [29] was used for Sr. Ba_HAYWSC-311(1d) G_piskunov_2004 [30] was used for Ba. F_7-311G_nada_1993 was used for F [31].

After the crystal structures were optimized with the above-given computational settings, the electronic, elastic properties were calculated, all these results are presented below.
First-principles Study of the Correlation Between Host Components and Properties of $\text{IAIIA}_3\text{Cubic Perovskite Compounds}$

3. Results of calculations

3.1. Structural properties

All 10 perovskites were considered in the present paper, the first and the second cations are 12- and 6- fold coordinated by the fluorine ions, respectively. A summary of the structural data for the 10 perovskites are listed in table 1. As seen from the table, the lattice constants increase monotonically with increasing atomic number and ionic radii of the second cation (Be - Mg - Ca - Sr - Ba). The values of the lattice constants for those perovskites, for which we did not find any experimental data, are the theoretical estimations, which can be tested by experiment in future.

The relationship between optimized lattice constant of perovskites and the ionic radius r was shown in Fig. 1. The data could be fitted as the linear functions $a = 3.10181 + 1.4058 \cdot r$ and $a = 2.9369 + 1.5179 \cdot r$, with the correlation coefficient 0.98 and 0.99, respectively. In these equations, the lattice constant a is expressed in Å.

Table 1: The optimized lattice constants a (Å) and volume V (Å3) of 10 ideal cubic perovskites. Experimental data (if available) are given in the parenthesis.

<table>
<thead>
<tr>
<th>Formula</th>
<th>Lattice constant a (Å)</th>
<th>Volume V (Å3)</th>
<th>Band gap E_g (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBeF3</td>
<td>3.6714</td>
<td>49.4871</td>
<td>10.6871</td>
</tr>
<tr>
<td>KMgF3</td>
<td>3.9847</td>
<td>63.2675</td>
<td>9.4961</td>
</tr>
<tr>
<td>KCaF3</td>
<td>4.4175</td>
<td>86.0439</td>
<td>8.4377</td>
</tr>
<tr>
<td>KSrF3</td>
<td>4.7010</td>
<td>103.8911</td>
<td>8.0754</td>
</tr>
<tr>
<td>KBaF3</td>
<td>5.0447</td>
<td>128.3836</td>
<td>7.2486</td>
</tr>
<tr>
<td>RbBeF3</td>
<td>3.7924</td>
<td>54.5425</td>
<td>9.9596</td>
</tr>
<tr>
<td>RbMgF3</td>
<td>4.0658</td>
<td>67.2130</td>
<td>9.2079</td>
</tr>
<tr>
<td>RbCaF3</td>
<td>4.4593</td>
<td>88.4885</td>
<td>8.7727</td>
</tr>
<tr>
<td>RbSrF3</td>
<td>4.7316</td>
<td>105.9327</td>
<td>8.2838</td>
</tr>
<tr>
<td>RbBaF3</td>
<td>5.0671</td>
<td>130.1028</td>
<td>7.4947</td>
</tr>
</tbody>
</table>
Figure 1. The optimized lattice constant (symbols) and their linear approximations as functions of ionic radius \(r \) for \(\text{IAIIA}_3 \) (\(\text{IA} = \text{K, Rb}, \ \text{IIA} = \text{Be, Mg, Ca, Sr, Ba} \)) crystals. Equation of a linear fit is also given in the graph.

3.2. Elastic properties

Only three elastic constants \(C_{11}, C_{12}, C_{44} \) are required to describe completely the elastic properties of cubic crystals. These constants have been calculated with the computational settings described above. Using these constants, one can then estimate quite a number of important characteristic of the solid, such as the bulk modulus \(B \), using the following equation

\[
B = \frac{(C_{11} + 2C_{12})}{3}
\]

Voigt's shear modulus \(G_V \) (an upper limit for \(G \) values) and Reuss's shear modulus \(G_R \) (a lower limit for \(G \) values) were calculated using the elastic constants \(C_{ij} \)

\[
G_V = \frac{(C_{11} - C_{12} + 3C_{44})}{5}
\]

\[
\frac{5}{G_R} = \frac{4}{C_{11} - C_{12}} + \frac{3}{C_{44}} [32].
\]

All the above referenced quantities are collected in Table 2, and the presenting trends in the groups of the perovskites studied in this work are visualized in Fig. 2. With
First-principles Study of the Correlation Between Host Components and Properties of \textit{IAIIA}_3\textit{F}_3 Cubic Perovskite Compounds

Increasing ionic radius (increasing lattice constants) elasticity modulus B decreases monotonously, which can be well fitted using the linear function.

Table 2: The calculated elastic constants C_{ij} (GPa), bulk moduli B (GPa), and shear moduli GV (GPa) for 10 cubic perovskites.

<table>
<thead>
<tr>
<th>Formula</th>
<th>C_{11}</th>
<th>C_{22}</th>
<th>C_{44}</th>
<th>B</th>
<th>GV</th>
</tr>
</thead>
<tbody>
<tr>
<td>KBeF$_3$</td>
<td>145.257</td>
<td>94.828</td>
<td>111.017</td>
<td>111.638</td>
<td>76.696</td>
</tr>
<tr>
<td>KMgF$_3$</td>
<td>143.068</td>
<td>40.902</td>
<td>49.835</td>
<td>74.957</td>
<td>50.334</td>
</tr>
<tr>
<td>KCaF$_3$</td>
<td>124.083</td>
<td>18.878</td>
<td>19.226</td>
<td>53.946</td>
<td>32.577</td>
</tr>
<tr>
<td>KSrF$_3$</td>
<td>107.709</td>
<td>13.818</td>
<td>11.301</td>
<td>45.115</td>
<td>25.559</td>
</tr>
<tr>
<td>KBaF$_3$</td>
<td>87.565</td>
<td>11.029</td>
<td>6.261</td>
<td>36.541</td>
<td>19.064</td>
</tr>
<tr>
<td>RbBeF$_3$</td>
<td>131.126</td>
<td>94.045</td>
<td>109.573</td>
<td>106.405</td>
<td>73.160</td>
</tr>
<tr>
<td>RbMgF$_3$</td>
<td>129.365</td>
<td>44.910</td>
<td>55.704</td>
<td>73.062</td>
<td>50.313</td>
</tr>
<tr>
<td>RbCaF$_3$</td>
<td>115.753</td>
<td>20.200</td>
<td>22.154</td>
<td>52.051</td>
<td>32.403</td>
</tr>
<tr>
<td>RbSrF$_3$</td>
<td>101.763</td>
<td>14.156</td>
<td>13.031</td>
<td>43.358</td>
<td>25.340</td>
</tr>
<tr>
<td>RbBaF$_3$</td>
<td>84.168</td>
<td>11.091</td>
<td>7.431</td>
<td>35.450</td>
<td>19.074</td>
</tr>
</tbody>
</table>

3.3. Electronic properties

Table 1 contains a summary of the band gaps data for the 10 studied perovskites. As seen from the comparison with the available experimental structural data, it is consistent with the experimental lattice constants. Also, all the band gaps data are exhibited in Fig. 3. It is observed that band gaps reveal a monotonic decrease with increasing atomic number.

Figure 2. Calculated values of the elastic constants (symbols) and their linear fits (lines) of ionic radius r for \textit{IAIIA}_3\textit{F}_3 (IA= K, Rb, \textit{IIA}= Be, Mg, Ca, Sr, Ba) crystals. Equations of the linear fits and the correlation coefficients are also given in the graph.
Zuo Li, Yang Wang and Dong-xu Liu

Figure 3. Calculated values of the band gap (symbols) and their linear fits (lines) of ionic radius r for $IAIIA_F_3$ ($IA = K, Rb; IIA = Be, Mg, Ca, Sr, Ba$) crystals. Equations of the linear fits and the correlation coefficients are also given in the graph.

4. Conclusions
Detailed ab initio calculations of the structural, electronic and elastic properties of 10 fluoroperovskites $IAIIA_F_3$ ($IA = K, Rb; IIA = Be, Mg, Ca, Sr, Ba$) have been performed in the present paper. Aggregate analysis of the above-mentioned properties exhibited correlation between the lattice constants, elastic constants, band gaps and atomic number of alkaline-earth metals: increasing of the atomic number of Be, Mg, Ca, Sr and Ba is followed by the linear growth of lattice constants, linear decrease of elastic constants and decline of band gaps. Hence, the alkaline-earth metals element which is in the center of crystal are the main factors for the structural, elastic and electronic properties of perovskite.

Acknowledgements. This work was supported by Chongqing Innovation Program of Postgraduate Students (Grant no. CYS16159).

REFERENCES
First-principles Study of the Correlation Between Host Components and Properties of IIAF₃ Cubic Perovskite Compounds

