Abstract. A word, mathematically expressed, is a sequence of symbols in a finite set, called an alphabet. Parikh matrix is an ingenious tool providing information on certain subsequences of a word, referred to as subwords. On the other hand, based on subwords of a word, the notion of precedence matrix or p-matrix of a word has been introduced in studying a property, known as fair words. In this paper we consider p-matrices for words especially over binary and ternary alphabets and obtain several algebraic properties of the p-matrix.

Keywords: Combinatorics on words, subwords, precedence matrix

AMS Mathematics Subject Classification (2010): 68R15

1. Introduction
The theory of formal languages [6] is one of the fundamental areas of theoretical computer science. Combinatorics on words [2] is one of the topics of study and research (see, for example, [3, 7]) in the theory of formal languages but is a comparatively new area of research in Discrete Mathematics, with applications in many fields. The concept of Parikh vector [6], which gives counts of the symbols in a word, has been an important notion in the theory of formal languages. Extending this concept Mateescu et al. [5] introduced the notion of Parikh matrix of a word which gives numerical information about certain subwords of the word, including the information given by the Parikh vector of the word. Cerny [1] introduced another notion called precedence matrix or p-matrix of a word which is motivated by the notion of a fair word. Here we consider p-matrices and derive certain algebraic properties of binary and ternary words.

2. Preliminaries
A word is a finite sequence of symbols taken from a finite set called an alphabet. For example the word $abaabb$ is over the binary alphabet $\{a, b\}$. An ordered alphabet is an
alphabet with an ordering on its elements, denoted by the symbol \(<\). For example, the ternary alphabet \(\{a, b, c\}\) with an ordering \(a < b < c\) is an ordered alphabet, denoted as \(\{a < b < c\}\). For a word \(w\), the mirror image or reversal of \(w = a_1a_2\cdots a_n\), \(n \geq 1\), is the word \(m\!(w) = a_n\cdots a_2a_1\) where each \(a_i\) is a symbol in an alphabet. A subword \(u\) of a given word \(w\) is a subsequence of \(w\). We denote the number of such subwords \(u\) in a given word \(w\) by \(|w|_u\). For example, if the word is \(w = ababaab\) over \(\{a < b\}\), the number of subwords \(ab\) in \(w\) is \(|w|_{ab} = 7\). The Parikh vector \([6]\) of a word \(w\) gives the number of occurrences of each of the symbols in the word. For example, \((3, 4, 2)\) is the Parikh vector of the word \(ababaab\) over the ternary alphabet \(\{a, b, c\}\). An extension of the notion of Parikh vector is the Parikh matrix \([5]\) of a word. For a word \(w\) over an ordered alphabet \(\Sigma\), the Parikh matrix \(\text{M}(w)\) of \(w\) is a triangular matrix, with \(1's\) on the main diagonal and \(0's\) below it but the entries above the main diagonal provide information on the number of certain subwords in \(w\). For a binary word \(u\) over the ordered binary alphabet \(\{a < b\}\), the Parikh matrix is

\[
\text{M}(u) = \begin{pmatrix}
1 & |u|_a & |u|_{ab} \\
0 & 1 & |u|_b \\
0 & 0 & 1
\end{pmatrix}.
\]

The notion of precedence matrix or p-matrix of a word over an alphabet has been introduced in \([1]\). Given the square matrices \(A, B\) of the same order and with integer entries, the matrix \(A \circ B\) is defined as follows: the \((i,j)th\) entry of \(A \circ B\) is given by

\[
(A \circ B)_{ij} = \begin{cases}
A_{ii} & \text{if } i = j \\
A_{ij} + B_{ij} & \text{if } i \neq j
\end{cases}
\]

where \(A_{ij}, B_{ij}\) are the \((i,j)th\) entries of \(A, B\) respectively.

Definition 2.1. \([1]\) Let \(\Sigma = \{a_1, a_2, \cdots, a_k\}\) be an alphabet. For a symbol \(a_i \in \Sigma\) for \(1 \leq i \leq k\), let \(E_{a_i}\) be the k\(\times\)k matrix defined as \((E_{a_i})_{i,j} = 1\) if \(i = j = s\) and \((E_{a_i})_{i,j} = 0\), otherwise. The precedence morphism or p-morphism on \(\Sigma\) is the morphism \(\varphi_{a_i}\) given by \(\varphi_{a_i}(a_j) = E_{a_i}\). For a word \(w = a_1a_2\cdots a_m\), \(a_j \in \Sigma\) for \(1 \leq j \leq m\), we have \(\varphi_w(w) = \varphi(a_{a_1}) \circ \varphi(a_{a_2}) \circ \cdots \circ \varphi(a_{a_m})\). In other words \(\varphi_w(w)\) is computed by the operation \(\circ\) on matrices as defined earlier. The resulting matrix \(\varphi_w(w)\) is called the precedence matrix or p-matrix of \(w\).

As an illustration, let \(\Sigma = \{a, b, c\}\) with \(a < b < c\), so that \(k = 3\). Then

\[
\begin{align*}
\varphi_a(a) &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \varphi_b(b) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, & \varphi_c(c) &= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \\
\varphi_{abc}(abcb) &= \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.
\end{align*}
\]
In fact the p-matrix φ_3 for a ternary word w over \{a, b, c\} is given by

$$
\varphi_3(w) = \begin{pmatrix}
|w|_a & |w|_{ab} & |w|_{ac} \\
|w|_{ba} & |w|_b & |w|_{bc} \\
|w|_{ca} & |w|_{cb} & |w|_c \\
\end{pmatrix}
$$

while the p-matrix $\varphi_2(w)$ for a binary word w over \{a, b\} is given by

$$
\varphi_2(w) = \begin{pmatrix}
|w|_a & |w|_{ab} \\
|w|_{ba} & |w|_b \\
\end{pmatrix}
$$

3. Properties precedence matrices of binary and ternary words

We mainly consider only binary and ternary words and derive properties of p-matrices of these words.

For a binary word w over \{a < b\}, using the well-known identity \[4\], namely, $|w|_{ab} + |w|_{ba} = |w|_a \times |w|_b$, we note that the p-matrix of w can be formed, if the Parikh matrix of w is known. This remark cannot be extended to ternary words.

Analogous to the notion of M-ambiguity \[7\] of a word defined in terms of Parikh matrix, we can define p-matrix ambiguity of a word.

Definition 3.1. Let $\Sigma = \{a,b,c\}$. A ternary word w over Σ is said to be p-matrix ambiguous if there exists another ternary word v over Σ such that $\varphi_3(v) = \varphi_3(w)$. Otherwise, w is said to be p-matrix unambiguous.

For a binary word, p-matrix ambiguity can be similarly defined.

As an illustration, the ternary word $u = acbaabcc$ is p-matrix ambiguous since both the words u, $v = aabccbac$ have the same p-matrix

$$
\begin{pmatrix}
3 & 4 & 4 \\
2 & 2 & 7 \\
2 & 2 & 3 \\
\end{pmatrix}
$$

Extending an observation in \[4\], we consider the following rules A, B, C, D, E, F and obtain conditions for p-matrix ambiguity of a ternary word. The rules A to F are given below:

$(A): ab \rightarrow ba$ $(B): ba \rightarrow ab$; $(C): bc \rightarrow cb$ $(D): cb \rightarrow bc$; $(E): ac \rightarrow ca$ $(F): ca \rightarrow ac$

Theorem 3.1. Let $\Sigma = \{a,b,c\}$ with $a < b < c$. If any of the following sets (1) to (3) of rules is applicable to a ternary word w with the p-matrix M, then the application of
the rules in (1), (2) or (3) to the word \(w \) yields another ternary word with the same p-matrix \(M \).

(1) Rule A followed by B or B followed by A;

(2) Rule C followed by D or D followed by C;

(3) Rule E followed by F or F followed by E;

As a consequence the word \(w \) is p-matrix ambiguous.

Proof: If rule (A) is applied to the word \(w \), then in the resulting word, the number of subword \(ab \) is decreased by 1 while if rule (B) is applied to the word \(w \), then the number of subword \(ab \) is increased by 1 so that application of the rules as in (1), on yielding a new word does not change the number of subword \(ab \) and also the number of subword \(ba \). Similar arguments can be made for (2) and (3).

A notion of weak-ratio property is considered in [8], which we recall here.

Two ternary words \(u, v \) over \(\{a, b, c\} = \Sigma \) are said to satisfy weak-ratio property and we write \(u \sim w r \), if \(|v|_x = k |u|_x \), for \(x \in \{a, b, c\} \) and for some rational constant \(k > 0 \).

In [3], conditions are derived for the equality of the Parikh matrices of the words \(uv \) and \(vu \), where the words \(u, v \) are over \(\Sigma = \{a, b, c\} \) while in [8], given two words \(u, v \) over \(\Sigma = \{a, b, c\} \), conditions are obtained for the equality of p-matrices of the words \(uv \) and \(vu \). The following Theorem 3.3 has been established in [8].

Theorem 3.2. Let \(\Sigma = \{a, b, c\} \) and let \(w_1, w_2 \) be ternary words over \(\Sigma \) such that \(w_1 \sim w r \). Then \(\varphi_3(w_1, w_2) = \varphi_3(w_2, w_1) \).

As a consequence of Theorem 3.3, we have the following result.

Theorem 3.3. Let \(\Sigma = \{a, b, c\} \).

(i) For any ternary word \(w \) over \(\Sigma \), \(\varphi_3(w, mi(w)) = \varphi_3(mi(w), w) \).

(ii) For any two ternary words \(w_1, w_2 \) over \(\Sigma \) having the same Parikh vector, \(\varphi_3(w_1, w_2) = \varphi_3(w_2, w_1) \).

Proof: Statements (i) and (ii) follow from Theorem 3.3, since

\[
|mi(w)|_x = |w|_x, \quad x \in \{a, b, c\} \quad \text{so that} \quad mi(w) \sim w r \quad \text{and} \quad |w_1|_x = |w_2|_x, \quad x \in \{a, b, c\} \quad \text{so that} \quad \text{again} \quad w_1 \sim w r \quad w_2.
\]

Theorem 3.4. Let \(\Sigma = \{a, b, c\} \) and let \(w_1, w_2 \) be ternary words over \(\Sigma \) such that \(w_1 \sim w r \). Then \(\varphi_3(\alpha w_1, \beta w_2, w_1 \gamma) = \varphi_3(\alpha w_2, \beta w_1, w_2 \gamma) \).

Proof: We have by Theorem 3.3, \(\varphi_3(w_1, w_2) = \varphi_3(w_2, w_1) \). Hence
Precedence Matrices of Binary and Ternary Words and their Algebraic Properties

$$\varphi_3(w_1w_2) = \varphi_3(w_1w_2)$$

Motivated by Theorem 3.3, we obtain conditions for the equality of p-matrix of uv and the transpose of the p-matrix of vu.

Theorem 3.5. Let $\Sigma = \{a, b, c\}$ and let w_1, w_2 be ternary words over Σ such that

(i) $|w_1|_{ab} + |w_2|_{ab} = |w_1|_{ba} + |w_2|_{ba},$

(ii) $|w_1|_{ac} + |w_2|_{ac} = |w_1|_{ca} + |w_2|_{ca}$ and

(iii) $|w_1|_{bc} + |w_2|_{bc} = |w_1|_{cb} + |w_2|_{cb}.$

Then $\varphi_3(w_1w_2) = \varphi_3(w_1w_2)^T$ where M^T is the transpose of the matrix M.

Proof: For $i = 1, 2$, let $|w_i|_a = p_i, |w_i|_b = q_i, |w_i|_c = r_i,$

$|w_i|_{ab} = s_i, |w_i|_{ba} = t_i, |w_i|_{ac} = x_i, |w_i|_{ca} = y_i, |w_i|_{bc} = h_i, |w_i|_{cb} = k_i.$

Then

$$\varphi_3(w_i) = \begin{pmatrix} p_i & s_i & x_i \\ t_i & q_i & h_i \\ y_i & k_i & r_i \end{pmatrix}, i = 1, 2.$$

Now $\varphi_3(w_1w_2) = \begin{pmatrix} p_1 + p_2 & s_1 + s_2 + p_1q_2 & x_1 + x_2 + p_1r_2 \\ t_1 + t_2 + q_1p_2 & q_1 + q_2 & h_1 + h_2 + q_1r_2 \\ y_1 + y_2 + r_1p_2 & k_1 + k_2 + r_1q_2 & r_1 + r_2 \end{pmatrix}$

By hypothesis, $s_1 + s_2 = t_1 + t_2, x_1 + x_2 = y_1 + y_2, h_1 + h_2 = k_1 + k_2$. On using these relations, we have
4. Conclusion

Properties of precedence matrices of binary and ternary words have been studied in this paper. It will be interesting to make a study of such matrices in the context of picture arrays taking motivation from corresponding studies of Parikh matrices of picture arrays [11].

Acknowledgement. The authors thank the reviewers for useful comments. The first author K.G. Subramanian is grateful to University Grants Commission, India, for the award of Emeritus Fellowship (No.F.6-6/2016-17/EMERITUS-2015-17-GEN-5933 / (SA-II)) to him to execute his work in the Department of Mathematics, Madras Christian College.

REFERENCES

Precedence Matrices of Binary and Ternary Words and their Algebraic Properties
