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Abstract. The theory of generalized neighborhood system-based approximation operators 
plays an important role in the theory of generalized rough sets since it includes both the 
neighborhood-based approximation operators and the covering-based approximation 
operators as its special circumstances. The theory of reduction is one of the most 
significant directions in rough sets. In this work, the reduction of rough set based on 
generalized neighborhood system operator is defined and discussed. In particular, the 
conditions for two generalized neighborhood system operator to generate the same lower 
or upper approximation are provided. 
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1. Introduction 
Rough set theory, proposed by Pawlak [9], is an effective mathematical approach to deal 
with uncertainty, granularity and incompleteness of knowledge. It has been successfully 
applied to intelligent control, economic, biology, data mining, medical diagnosis, and 
elsewhere [10,11,25,26]. 

The classical Pawlak's rough sets are based on partition or equivalent relation. This is 
too restrictive for many applications of Pawlak's rough sets. To address this problem, 
many extensions of a partition or equivalence relation have been proposed, such as 
tolerance relation [13], binary relations [17,22], similarity relations [14], coverings 
[1,7,12,19,21,24], neighborhood systems [2,18]. 

The rough sets based on generalized neighborhood system is introduced by Lin -Yao 
[3,4], and then researched by Yao [18], Lin-Michael [2,8], Syau- Lin [15] and Zhang et 
al. [27]. It is observed in [27] that the generalized neighborhood system-based rough sets 
is more general than the neighborhood-based (binary relation-based) rough sets and 
covering-based rough sets.  It is well known that reduction theory is an important part of 
rough set theory [20,23]. However, as to our knowledge, there is no work in the reduction 
of generalized neighborhood system-based rough sets. The main objective of this paper is 
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to serve such a purpose. 
This paper is organized as follows. In Section 2, we recall some notions and results 

about generalized neighborhood system-based rough sets. In Section 3, we present the 
theory of reduction of rough sets based on generalized neighborhood system operator. 
In Section 4, we make a conclusion. 

 
2. Preliminaries 
In this section, we will introduce some basic concepts about generalized  neighborhood 
system and rough sets based on generalized neighborhood system. 
 
Definition 2.1. [2] Let U be the universe of discourse, and 2U denote the power set of U. 

Then a function 2: 2
U

N U →  is called a generalized neighborhood system operator on U. 
For any x U∈ , ( )N x  is non-empty. Usually, ( )N x is called generalized neighborhood 

system of x and any ( )K N x∈ is called neighborhood of x. 
 
Definition 2.2. Let N be a generalized neighborhood system operator of U and .x U∈  
Then the set family  

( ) { ( ) ( ) }NMD x K N x V N x V K K V= ∈ ∀ ∈ ∧ ⊆ ⇒ =  
is called the minimal description of N at x. 
 
Definition 2.3. [5,6] Let N be a generalized neighborhood system operator of U . For 
each subset X of U , the lower and upper approximations of X , N and N , respectively, 
are defined as follows: 

( ) { ( ), }N X x U K N x K X= ∈ ∃ ∈ ⊆ , ( ) { ( ), }N X x U K N x K X= ∈ ∀ ∈ ≠ ∅∩ . 

3. Reduction of rough sets based on generalized neighborhood system 
In this section, we shall present the theory of reduction of rough sets based on generalized 
neighborhood system. 

Definition 3.1. Let N be a generalized neighborhood system operator of a universeU and 
.x U∈  
(1) For any ( )K N x∈ , we say K is a reducible element ofN at pointx if there exists 

an ( )V N x∈ such thatV K⊂ (i.e., V K⊆  and V K≠ ) otherwiseK is an irreducible element 
of N at point x. 

(2) If for any ( )K N x∈ , K is irreducible element ofN at pointx , then we sayN is 
irreducible at point x, otherwiseN is reducible at point x. 

Let N be a generalized neighborhood system operator of a universeU .  For any 

reducible elementK of N at pointx , we define a operator 2: 2
U

KN U → as 

( ) , ;
( )

( ), .K

N z K z x
N z

N z others

− =
= 


 

It is easy to observe that the family( ) ( )KN x N x K= − is still non-empty sinceK is 
reducible element ofN at pointx . This shows that KN is also a generalized neighborhood 
system operator of the universeU . 
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Proposition 3.1. Let N be a generalized neighborhood system operator of a universe 
U andK be a reducible element ofN at pointx . Then for any 1 ( )KK N x∈ , 1K is a reducible 
element ofN at pointx  if and only if it is a reducible element ofKN  at pointx . 
Proof. ( )⇐  It is obviously since ( ) ( )KN x N x⊆ . 

( )⇒  Let 1K  be a reducible element ofN at pointx . Then there exists an ( )M N x∈ such 
that 1M K⊂ . If M K≠ then ( )KM N x∈ and it follows that 1K is a reducible element ofKN at 
point x . If =M K , from thatK is a reducible element ofN at pointx , there exists 
an ( )H N x∈ such that 1H K M K⊂ = ⊂ . Obviously, ( )KH N x∈ , it follows that 1K is a 
reducible element ofKN at pointx . 

From Proposition 3.1 we observe easily that deleting a reducible element in a 
neighborhood system will not generate any new reducible elements or make other 
originally reducible element become irreducible elements of the new neighborhood 
system. Thus we can get the reduction of a neighborhood system of a universeU by 
deleting all reducible elements at each point in the same time or by deleting one reducible 
element at each point in a step. The remainder still consists of a neighborhood system of 
the universeU , and it is irreducible. Thus we give the definition of neighborhood system 
reduction as follows: 
 
Definition 3.2. Let N be a generalized neighborhood system operator of a universeU . 
The generalized neighborhood system operator generated by deleting all reducible 
elements at each point, is called the reduct ofN , and denoted by ( )reduct N . 
 
Lemma 3.1. Let N be a generalized neighborhood system operator of a universeU and 
x U∈ . ThenK is a reducible element ofN at pointx if and only if ( )NK MD x∉ .  
Proof. ( )⇒  LetK be a reducible element ofN at pointx , then there exists an ( )V N x∈  
such thatV K⊂ , by the definition 2.2 , we have ( )NK MD x∉ . 
( )⇐  Let ( )K N x∈  but ( )NK MD x∉ , then by the definition 2.2, there exists an ( )S N x∈ such 

thatS K⊂ , henceK is a reducible element ofN at pointx .  
By Lemma 3.1 and Definition 3.2 we get the following theorem. 

 
Theorem 3.1. Let N be a generalized neighborhood system operator of a universeU . 
ThenN and ( )reduct N  have the same minimal description at allx U∈ . 

 
3.1. For lower approximation operator 
Lemma 3.1.1. Let N be a generalized neighborhood system operator of a universe 
U andK be a reducible element ofN at pointx .ThenN and KN generate the same lower 

approximation operator. That is, ( ) ( )KN X N X= for all X U⊆ . 

Proof. Let X U⊆ . Obviously, ( ) ( )KN X N X⊆ by ( ) ( )KN x N x⊆ for all .x X∈  Conversely, 

let ( )x N X∈ . By definition 2.3, there exists an ( )M N x∈ such that .M X⊆  If M K≠  then 

we have ( )KM N x∈ , and hence ( )Kx N X∈ . If ,M K= sinceK is a reducible element 



Fang-fang Zhao and Ling-qiang Li 

70 
 

 

of N at point ,x  then there exists an ( )V N x∈ such that ,V K M⊂ = which 

means ( )KV N x∈ , and so ( )Kx N X∈ . Thus ( ) ( )KN x N x⊇ . 

By Lemma 3.1.1, we get the following corollary. 
 
Corollary 3.1.1. Let N be a generalized neighborhood system operator of a universeU . 
Then   N and ( )reduct N  generate the same lower approximation operator. 
 
Proposition 3.1.1. Let 1N , 2N be two irreducibly generalized neighborhood system 
operators of a universeU generating the same lower approximation operator. 
Then 1 2=N N . 

Proof. For any 1( )K N x∈ , by definition 2.3, we have 1 2( ) ( )x N K N K∈ = , then there exists 

an 2' ( )K N x∈ such that 'K K⊆ . Similar to the above proof, there exists an 1'' ( )K N x∈ such 
that '' 'K K K⊆ ⊆ . Since 1N is irreducible, then we get''K K= , and then 2' ( )K K N x= ∈ . It 
follows immediately that 1 2K N K N∈ ⇔ ∈ . Hence 1 2=N N . 

By Corollary 3.1.1 and Proposition 3.1.1, we get the following theorem. 
 
Theorem 3.1.1. Let 1N , 2N be two generalized neighborhood system operators of a 
universeU . Then 1N , 2N generate the same lower approximation operator if and only if 

1 2( ) ( )reduct N reduct N= . 
 
3.2. For upper approximation operator 
By dualizing the results on lower approximation operator we get the following results on 
upper approximation operator. We omit the similar proofs. 
 
Lemma 3.2.1. Let N be a generalized neighborhood system operator of a universe 
U andK be a reducible element ofN at pointx . ThenN and KN generate the same upper 

approximation operator. That is, KN N= for all X U⊆ . 
 
Corollary 3.2.1. Let N be a generalized neighborhood system operator of a universeU . 
ThenN  and ( )reduct N generate the same upper approximation operator.  
        By Corollary 3.1.1 and 3.2.1, we get the following corollary. 
 
Corollary 3.2.2. Let N be a generalized neighborhood system operator of a universeU . 
ThenN and ( )reduct N  generate the same upper and lower approximation operators. 
 
Proposition 3.2.1. Let 1N , 2N be two irreducibly generalized neighborhood system 
operators of a universeU generating the same upper approximation operator. Then 

1 2N N= . 
By Corollary 3.2.1 and Proposition 3.2.1, we get the following theorem. 
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Theorem 3.2.1. Let 1N , 2N  be two generalized neighborhood system operators of a 
universe U . Then 1N , 2N generate the same upper approximation operator if and only if 

1 2( ) ( )reduct N reduct N= . 
From Theorem 3.1.1 and 3.2.1, we get the following corollary. 

 
Corollary 3.2.3. Let 1N , 2N be two generalized neighborhood system operators of a 
universe .U  Then 1N , 2N generate the same upper approximation operator if and only if 
they generate the same lower approximation operator. 
 
4. Conclusions 
In this paper, we discuss the theory of reduction of rough set based on generalized 
neighborhood system operator, and present the conditions for two generalized 
neighborhood system operator to generate the same generalized neighborhood system-
based lower or upper approximation operator. 
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