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1. Introduction.

Atanassov [2] introduced and studied the concepintiitionistic fuzzy sets as a
generalization of fuzzy sets. Motivated by the idéatuitionistic fuzzy sets Alaca et al.
[1] define the concept of intuitionistic fuzzy mietspaces using continuous t-norms and
continuous t-conorms. Turkoglu et al. [14] formelht the definition of weakly
commuting and R-weakly commuting mappings in inbuistic fuzzy metric spaces.
Turkoglu et al. [15] introduced the concept of catiile maps and compatible maps of
types &) and @) in intuitionistic fuzzy metric spaces and gave eamlations between
the concepts of compatible maps and compatible mapypes ¢) and @). On the other
hand, Bhaskar and Lakshmikantham [3], Lakshmikanttemd Ciric [8], gave some
coupled fixed point theorems in partially orderedtric spaces. In 2010, Sedghi et al.
[12] proved common coupled fixed point theoremsdamtraction in fuzzy metric spaces
for commuting mappings. Motivated by the result$-ahg [4], Hu [6] proved a coupled
fixed point theorem for compatible mappings satigfyp-contractive conditions in fuzzy
metric spaces with continuous t-norm of H-type gaderalized the result of Sedghi et al.
[12]. Inspired by the work of Hu [6], Hu et al. [%})e prove common coupled fixed point
theorems for pair of mappings satisfying a geneoakractive condition in intuitionistic
fuzzy metric space, by using the notion of semi-patibility.
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2. Preliminaries
First, we start with some basic definitions.

Definition 2.1. [11] A binary operatior¥: [0,1]x [0,1] — [0,1] is continuous t-norm if
is satisfying the following conditions:

® * iS associative and commutative;

(i) * is continuous;

(i) a*1=aforall a&[0,1];

(iv) a*b < cxdwhenever & c and b< d, foreach a, b, c,d][0, 1].

Definition 2.2. [11] A binary operatiord: [0,1]x [0,1] — [0,1] is continuous t-conorm if
¢ is satisfying the following conditions:

(D 0 is associative and commutative;
(i) 0 is continuous;
(iii) a0 =aforall & [0,1];

(iv)a® b < c ¢ d whenever & cand b< d, for each a, b, c,d]0, 1].

Definition 2.3. [5] Let supg«i<1A(t,t) = 1. A t-norm A is said to be of H-type if the
family of functions{A™ (t)}; =, iS equicontinuous at t = 1, where
AL(t) = tAt, A™H() = tA(A™(Y), m=12,..,te [01]. (2.1)
The t-normAy; = min is an example of t-norm of H-type, but thare some other t-
normsA of H-type.
Obviously, A is a t-norm of H-type if and only if for any € (0, 1), there exists
3(\) € (0, 1) such thaa™(t) > 1—A for all me N, when t > 18.

Definition 2.4. [13] Let infy<; ¢ (t,t) = 1. A t-conorm¢ is said to be of H-type if the
family of functions{0™ (t)}y=1 iS equicontinuous at t = 0, where
Nt =t0t, 0™ ®=t0(0™®), m=12..,te[01] (2.2)
The t-conormyy; = max is an example of t-conorm of H-type, butr¢hare
some other t-conormisof H-type.
Obviously,0 is a t-conorm of H-type if and only if for aye (0, 1), there
existsd(}) € (0, 1) such thag™(t) <A for all me N, when t <6.

Definition 2.5. [1] A 5-tuple (X,M,N,*,0) is said to be an intuitionistic fuzzy metric
space if X is an arbitrary nonempty selis a continuous t-norm,is a continuous t-
conorm and M,N are fuzzy sets ¥f x [0, +) satisfying the following conditions:

() M(x, y, t) + N(x, y, )< 1 forall x, y, ze X and t > O;

(i) M(x, y, t) =0 for all X, y, z€ X;

(i) M(x,y,t)=1forallx,y,ze Xandt>0ifand only if x = y;

(iv) M(x,y,t) = M(y,x,t) for all x, y, ze Xand t > 0;

(V) M(x, y, )=xM(y, z, s)< M(x,z,t+s) forall x, y, 2 X and s, t > O;

(vi) for all x, y, ze X, M(X, v, *) : [0,0) = [0,1] is left continuous;

(vii) lim,_,,M(x,y,t) =1 forall x,y,zZ X and t > 0;

(viii) N(x, y, 0) =1 for all x, y, z= X;

(iX) N(x,y,t)=0forall x,y, ZZ Xandt >0 ifand only if x = y;
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(X) N(X, ¥, t) = N(y, x, t) forall x, y, EX and t > 0;
(i) N(x, y, ) ON(y, z, 8)= N(x, z, t+ s) forall x, y, EX and s, t > O;
(xii) for all x, y, ze X, N(X, y;) : [0,0) = [0,1] is right continuous;
(xiii) lim,_,N(X, y, t) =0 for all x, y, = X.
Then (M, N) is called an intuitionistic fuzzy metron X. The functions M(X, v,
t) and N(x, vy, t) denote the degree of nearnesstandegree of non-nearness between x
and y with respect to t, respectively.

Remark 2.1. [9] Every fuzzy metric space(X, M) is an intuitionistic fuzzy metric
space of the form (X,MM,*,0) such that t-norm and t-conorn® are associated,
e, Xy=1-((1—x)* (1 —y)) for all x, ye X.

Remark 2.2. [9] In intuitionistic fuzzy metric space X, M(x,-y), is non-decreasing and
N(X, y, ) is an non-increasing for all x,&/X.

Example 2.1. [12] Let (X, d) be a metric space. Define t-normba= min{a, b} and t-
conorm &b = max{a, b}and for all x, ¥ X and t > 0,

_t _ d&xy)
M(X’ y: t) t+d(xy) ’ N(X’ Y t) _t+d(x,y)'
Then (X, M, Nx,0) is an intuitionistic fuzzy metric space inducedtbg metric d.

It is obvious that N(x, y, t) =2M(X, v, t).

Definition 2.6. [1] Let (X, M,N,*,0) be an intuitionistic fuzzy metric space.
(i) A sequencex,}in X is said to be convergent to a poineX if, for allt > 0
lim,_,,M(x,,x,t) = 1, lim,_,,N(x,,x,t) = 0.
(i) A sequencex,}in X is said to be Cauchy sequence if, for any0 and p > 0,
limye M (Xp4p, Xn, ) = 1, limyo N Xp4p, Xp, 1) = 0.
Sincex* and ¢ are continuous, the limit is uniquely determinednf (vii) and
(xiii) respectively.

Definition 2.7. [1] An intuitionistic fuzzy metric space (X, M,x0) is said to be
complete if and only if every Cauchy sequence iis ¥onvergent.

Definition 2.8. [1] An intuitionistic fuzzy metric space (X, M,x0) is said to be
compact if every sequence in X contains a convérgdrsequence.

Lemma 2.1. [1] Let (X, M,N,*,0)be an intuitionistic fuzzy metric space and}{ppe a
sequence in X. If there exists a number(,1) such that

M(Yn+21 Yn+1tkt) 2 M(Yn+1t Yns t),

NGns2 Yne1, Kt) < N(Vngq, Yoo t) forallt>0andn=1,2,...,
then {y,} is a Cauchy sequence in X.

Lemma 2.2. [1] Let (X, M\N,x,0) be an intuitionistic fuzzy metric space and fdraly

€ X, t>0 and if for a number& (0,1),
M(X, y, k)= M(x, y, t) and N(x, y, Kt N(x,y,t) then x = y.
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Wedefine ® ={@: R* - R*}, whereR* = [0,+x) and eachp € ®@ satisfies the
following conditions:
(A1) 0 is non-decreasing,
(A2) @ is upper semi continuous from the right,
(A3 Xr_o@"(t) < +wforallt > 0, where @"*1(t) = (8"(t)),n € N.
It is easy to prove that i € @, then@(t) < t forallt > 0.
We define n-property in intuitionistic fuzzy metspaces.

Definition 2.9. Let (X, M, N,*,0) be an intuitionistic fuzzy metric space. M and ¢ a
said to satisfy the n-property orf X [0, «) if

limy,_,0 [M(x,y, K*)]™ = 1,lim,,_,,[N(x, v, k*0)]*" = 0
whenever x, ¥ X, k>1and p > 0.

Lemma 2.3. [5] Let (X,M,*) be a fuzzy metric space and M satisfy the n-pitgpthen
lim,_ M(x,y,t) =1, for all x, ye X. (2.3)
We give the following lemma in intuitionistic fuzzygetric spaces.

Lemma 2.4. Let (X, M, N,*,0) be an intuitionistic fuzzy metric space and M awd
satisfies the n-property; then

lim,_ M(x,y,t) =1,

lim,_ N(x,y,t) = 0,forall x,y € X.
Proof: If not, since M(x, ¥, is non-decreasing andkOM(x,y,’) < 1,
and N(X, y;) is non-increasing,= N(x,y,) = 0, there existsx,, y, € X such that
lim_, ;oM (Xg,Vo.t) =A < 1,and lim,,,N(Xq, yo.t) =A > 1
then for k > 1,k™t - +o when m»> was t > 0 and we gelim,,_,.,[M(x, y, k"t)]™ = 0,
andlim,_,,[N(x,y,k"t)]* = 1,which is a contradiction.

Lemma 2.5. [5] Let (X, M, *) be a fuzzy metric space, wherds a continuous t-norm of
H-type. If there exist® € @ such that if

M(x, W (1)) = M(x,y,t), forallt>0,thenx=y.
We give following lemma in intuitionistic fuzzy mat spaces.

Lemma 2.6. [5] Let (X, M, N, *,0) be an intuitionistic fuzzy metric space, wherand®
is a continuous t-norm and continuous t-conormHdfpe. If there exist® € ® such
that if

M(x, W () = M(x,y, 1),

N(x, ¥(t)) < N(x,y,t), forallt > 0, then x = y.

Definition 2.10. [8] An element (x, y)e X X X is called a coupled fixed point of the
mappings F: X X — X if F(x, y) =x, F(y, X) = .

Definition 2.11. [8] An element (X, Y)E X X X is called a coupled coincidence point of
the mappings F: XX - Xand g: X - X if F(X,y) =9(x), F(y, X) = g(y).
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Definition 2.12. [8] An element (X, yYE X x X is called a common coupled fixed point of
the mappings F: XX -» Xand g: X - X if x=F(X, ¥) =g(X), y = F(y, X) = g(y).

Definition 2.13. [8] An element »€ X is called a common fixed point of the mappings
F:XxX->XandgX - Xif x=g(X)=F(X, x).

Definition 2.14. [13] The mappings F: XX - X and g: X — X are said to be compatible
if
limy, o, M(gF (Xn, ), F(g(xn), g(yn)), t) = 1,
limn—moM(gF(Yn:Xn):F(g(Yn):g(Xn)):t) =1 and
limp_..N(gF (¢n, yn), F(8(xn), (), t) = 0,
limy, ..N(gF (yn, xn), F(g(yn), g(xn)),t) = 0
for all t > 0 whenever {§ and {y,} are sequences in X, such that

limy o F(Xp, yn) = limpLg8(x,) = %, limpL o F(yn, Xn) = limy_.0(y,) =y
for all x, y€ X are satisfied.

Definition 2.15. [8] The mappings F: X X — X and g: X>X are called commutative if
9(F(x, y)) = F(gx, gy), for adl y € X.

Definition 2.16. [7]The mappings F: XX —>X and g: XX are called weakly
compatible mappings if F(x, y) = g(x), F(y, X) =y@implies that gF(x, y) = F(gx, gy),
gF(y, x) = F(gy, gx) for all x, ¥ X.

We introduced the concept of semi-compatible maggpiim intuitionistic fuzzy metric
spaces.

Definition 2.17. The mappings F: X X— X and g: X>X are called semi compatible if
limn—mM(gF(xm Yn): F(x, Y): t) =1, hmn—»ooM(gF(Yn: Xn): F(y, %), =1
and limy, . N(gF(xp,, V), Fx,¥),t) =0, lim,_ N(gF(yy,, Xn), F(y,%),t) = 0.
for all t > 0 whenever {§ and {y,} are sequences in X, such that
limy o, F(Xn, yn) = limy8(Xp) = X, limy . F(yn, Xp) = limp.g(yn) = .
for all x, ye€ X.

Theorem 2.1. (1 of [6]). Let (X, M, ) be a complete FM-space, where a continuous
t-norm of H-type satisfying (2.1). Let F: X x %X and g: X—X be two mappings, and
there exist® € ® such that

M(F(x, y), F(u, ¥(t)) = M(g(x), g(w), t) * M(g(y), g(v), t)
forall x,y, u, ve Xand t > 0.

Suppose that F(XX) < g(X), g is continuous, F and g are compatible. Then
there exist x, ¥ X such that x = g(x) = F(x, X); that is, F and@vh a unique common
fixed point in X.

Now we give our result in intuitionistic fuzzy mietspaces.

Theorem 2.2. (3.2 of [7]). Let (X, M, %) be FM-space, whergs a continuous t-norm of

H-type satisfying (2.1). Let F : X x XX and g : X—X be two weakly compatible
mappings, and there exigis= ® such that
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M(F(x, y), F(u, vii(t)) = M(g(x), g(u), t) * M(g(y),g(v), 1)
forall x,y, u, ve Xand t > 0.
Suppose that F(XX) < g(X), and F(X%X) or g(X) is complete. Then F and g
have a unique common fixed point in X.

3. Main results
For simplicity, denote
My, 0]" =Mx,y,0) * M(x,y,0) * ... x M(x,y, 1)

n
[Ny, D]" = Nx,y,t) O Nx,y,1) 0 ... 0 N(X, ¥, t) for all i€ N.

n
Now we give our main results in intuitionistic fyzmetric spaces.
Theorem 3.1. Let (X, M, N,*,0)be an intuitionistic fuzzy metric space, wherés a
continuous t-norm ané is a continuous t-co-norm of H-type defined byt &t and
1-1) 01 —-1t) < —1t) satisfying(2.4). Let F:XX—X and g:X>X be two mappings
and there exist® € ® such that

M(F(x, y),F(u, vi(t)) = M(g(x),9(u),t) *M(g(y),g(v).1);

N(F(x,y),F(u,vp(t)) < N(9(x),g(u).t) ON(g(y),g(V).1); (3.1)
forall x, y, u, ve Xandt > 0.

Suppose that FX) < g(X), and g is continuous, F and g are semi-corafgtthen
there exist x, ¥ X such that x = g(x) = F(x, x), that is, F and ¢véa unique common
fixed point in X.

Proof: Letxy,y, € X be two arbitrary points in X. Since F¢X) < g(X), we can choose
X1,¥1 € X such that ;) = F,y0) and gg;) = F(yo, Xo)- Continuing in this way we
can construct two sequences,f and {y,} in X such that

96n+1) = F(n.¥n) 0pe1) = F(Yy o), forall n > 0.
The proof is divided into four steps.
Step I. First we Prove {gx} and{gy, } are Cauchy sequences.

Sincex and¢ is a t-norm and t-conorm of H-type, for akhy O, there exists @ > 0
such that

A-p*xA-wW*..xA-pw=1-A

And(l—p)O(l—J)o...<>(1—u)s1—x (3.2)

k
for all ke N. Since M(X, y;) and N(x, y,) is continuous and
iMoo MY, t) =1 and lim, . N(x,y,t) =0, for all x, ye X, there existsgt> 0
such that
M (9%, 9%1, o) = 1 —p, and N (9%, 9%, to) <1 —p
M(9Yp 9y to) = 1 —pand N(gy, gy, to) <1—p (.3
On the other hand, sin@ec @, by condition (A), we have

Z @®"(ty) < . Then for any t > 0,
n=1
There existg E N such that

{5, 0 (t0) (3.4)
From condition (3.1), we have
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M (9%, 9%, @ (to)) = M(F(Xo,Y,), F(x1. Y, ), O(t))
= M (9%, 9%, to) * M(QYy, 9y, to),
and  N(@% g%, 8(to)) = N(F(Xo,Y,), F(X1, Y, ), B(to))
< N(9x%0, 9%1, to) ¢ N(9y,, 9y, to),
M (9y;, Y, B(to)) = M(F(y, Xo), F(yy, X1), B(to))
= M(9Yy 9Y3, to) * M (9%, 9%y, o).
and N (gy, gy, ®(to)) = N(F(y, Xo), F(y1, 1), 8(to))
< N(9y,, 9Y,, to) ¢ N(g%o, 9%, to)-
Similarly, we can also get

M (g)@; X3, ®2(t0)) =M (F(Xl' yl): F(Xz, yz)' ®2(t0))
= M(g%1, 9%o, (D(to)) *M(gy,, 9y, D(to)),
> [M(gXo, 9%, t)]% * [M (gyo, ay,, to)1%,
and N (g¥' X3, Q)Z(tO)) - N(F(Xll yl)’ F(Xz, y2) (Z) (tO))
< N(gxq1, 9%, (D(to)) 0 N(gy,, gy, 2(to)),
< [N(gXo, 9%, to)]? N(gyo. gy, to)1?
M (gy, gy3.¢2(to)) = M(F(y,, x1), F(yz. X2), 9%(to))
[M(9Yy, 9Yy, t0)1? * [M (90, 91, to)]? -
and N (9y, 9y, 9%(to)) = N(F(yl, x1), F(Y,r Xz) 0?(to))
< [N(9Y, 9y, to)]1% ¢ [N(gX0, 9%y, to)]?
Continuing in this process, we can get
n—1 n-1
M (9%, O%+1, " (1)) = [M(9%0, 01, t)1? ~ * [M(ayp Oy, t0)1?
n—l n—l
and  N(g¥, %1, 8"(t0)) < [N(9%o, 9%, to)]? N(gyo. ay,, to)1?
M(aY, 9Y,,, 1 8"(t0)) = [M(ay,, 9y, to) [M (9%, 9%1, to)]
and N(gy, 9y, 8"(t)) < [N(9y, 9, )17 0 [N(9%, 9%, 1)]%"
So, from (3.3) and (3.4), for ;i n = ngp, we have
M (9% 9%m, ) = M (9%, 9%, 2= no(b (to)
> M (g%, P 2 8% (to))
> M (g%, 9Xn1, O" (to)) % M(Q%n41,9%0+2, 0" (1)) *
* M (gxm_l.gxm, g™ (to))
> [M(@yy 9yt * IM(9%, 9%, t)]?" [IVI (9Yo 9y, to)]
[M (9%, 9%1, t0)]%" * .. x [M(aY,, Oy, )12 * [M(9%, 9%, t)]?"
> [(1- W)+ [(1 - u)]zl_z [(L - W] » [(1 = 1"
«[1-w]* "+ [1-w]?
> (1l-w*+A-wW+*.x(l-—p =21-2,

22(m+2n—3)

Similarly

N@X% X ) <1 - 01 - 0.0 (1-—p<1-2
22(m+2n-3)

which implies that
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M(gxg%n ) >1—1,
and N(g%g%m, 1) <1—2A

For all m, re N with m > n= npand t > 0, so {g(x} is a Cauchy sequence.

Similarly, we can get that {g(}} is also a Cauchy sequence.
Step I1: To prove F and g have coupled coincidence point;
i.e. F(x, y) =g(x), F(y, x) =g(y).
By the completeness of X, there exists ¥ X such that
”mn—mF(Xnv yn) = ”mn—mg(xn) =X ”mn—)ooF(ynv Xn) = ”mn—mog(yn) =y
Since F and g are semi compatible, we get
limp 6 M(GF (%0, ¥,),F(X,Y),t) = 1 andimy, . M(F(yn, Xn),F(Y, X),) = 1
limp_, o N(gF (%, ¥,), F(X,Y).t) = 0 andimy, L, N(gFn, xn), F(Y,X),t) = 0
By the continuity of the mapping g, we have
limn_o.gF (X, y,) = limy,..99(x,) = 9(X),
lim,.8F (yn, Xn) = liMn,99(y,) = 9(y)
Thus equation (3.6) and (3.7) yields that
limy,,M(9(x), F(x,¥),) =1 and  lim,M(g(y), F(x,y),t) =0,
and
lim-.,M(g(x), F(x,y), 1) = 1and lim,_.N(@(), F(x,y),1) = 0
which implies that gx = F(x, y) and gy = F(y, X)
Step I11. Now we prove that gx =y and gy = x.
Since* and¢ is a t-norm and t-conorm of H-type, by using (3.2)
Since M(x, y,) and N(x,y;) is continuous and
liMm_,MXy, ) =1 and lim,, Ny t) =0
for all x, y € X,there existsgt> 0 from equation (3.3)
On the other hand, singes @, by condition (A)
we have Y, 0"(to) <.
Then for any t > 0, there existg @ N such that
t >3, 8 (to)-
Since M (gx, gy,, @(to)) = M(F(X,y), F(y,.Xn), B(to))
> M(gx, 9y, to) * M(gy, 9%, to),

N(gx, gy, ,, D(to)) = N(F(X,Y), F(Y,:%n), D(t0))
< N(gx gy, to) ¢ N(gy, g%y, to)

and

letting N> oo, we get
M(gx, B(to)) = M(9x,Y, to) * M(9Vy, X, to),

and N(gx, 9(to)) = N(g% Y, to) ¢ N(gy, X, to)
Similarly, we can get

M(gy. X (1)) = M(gy, x,to) * M(g%,y, to),
and  N(gy, ¥(to)) < N(gy,x, to) ¢ N(gx,y, to).
From (3.8) and (3.9), we have

M(gx, Y (to)) * M(gy, X, B(to)) = [M(gx Y, ©0)]* * [M(gy, X, to)]?

and  N(gx, Y(to)) ¢ N(gy, %, B(to)) < [N(@% Y, t)]* ¢ [N(@Y, X, to)]?
By this way, we get for all & N,
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2
M(gx, Y0"(t0)) * M(@y, %, 8"(t0)) = [M (9%, 8" (1) )| * [M (gy,x, 2" (1) )12
> [M(g% Y, t9)]?" * [M(gy, X, 1)1
and
2
N(Gx, Y2"(t0)) 0 N(@Y, %, 8"(t0)) < [N (%Y, 8" (t) )] 0 [N gy % 0"(t) )1
< [N(@% Y, t)]?" 0 [N(gy, X, to)]*

Since t >¥i_, 8%(t), then, we have
M(gx, ¥, th M(gy, X, 1) = M(9x Y, Ziin, 04(t)) * M (@Y, X, Ziczn, 2% (to))

> M(gx, y, 9"(t5)) *M (g, x9"(t))

> [M(g% Y, 10)]?° * [M(@y, X, t0)]?°
>A-W*Q-pW*.x(l-p)=1-%

220

Similarly

N(x, ¥, O N@Ey,x,) < (1-wWo(@A-wW 0.0 Q1-—w=<1-n
220

So for anyih > 0 we have
M(ng A t) M(gy: X, t) 21_}\0 and N(gx’yao N(gy; X, t) Sl_}\':
for all t > 0. Hence we get gx =y and gy = x.
Step IV. To Prove x = y.
Using condition (3.2), (3.3) and (3.4) of step 1,
we have consider
M(9%111,9¥p4 1, D (t0)) = M(F(Xn, ¥,.), F(¥YXn), B(t0))
> M (g% 9,y to) * M (Y, 9% to),
and
N(9%141,9Yp4 1, D (t0)) = N(F(Xn, ¥,), F(Yp ), (1))
< N(9% 9,y to) 0 N(gy,, 9% to)
Letting n> o yields
M(x, yB(to)) = M(X, Y, 1) * M(Y, X, to).
and N(x, YB(to)) < N(X,Y,t0) ¢ N(¥, X, to)
Thus, we have
M(x, ¥, B M(,Y, Zicen, 0 (to)
= M(x,y, @™(ty))
> [M(xY, 10)]>° * [M(y, % t)]*°
>1l-wW+*Q-wW=*..xQ—-—pw=1-Ax
220

and
N(X, y, 9 N(X,Y, Ticen, 0% (1))
SNXY, @no(ton)) )
< INOGY, 10)]27 0 [N(Y, %, t)]2°
<SA-wWoil-wo.01l-pw=<1-n
220

which implies that x = y.
Thus we have proved that f and g have a uriquamon fixed point in X.
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This completes the proof.

Theorem 3.2. Let (X, M, N,*,0) be an intuitionistic fuzzy metric space, wherés a
continuous t-norm ané is a continuous t-co-norm of H-type defined byt &t and
1-190(1—-1t)<( —1t) satisfying (2.1) and (2.2).Let FxX—X and g:X%>X be two
mappings and there exigiss ® such that

M(F(x, y),F(u, vI(t)) = M(g(x),9(u),t)*M(g(y),g(v).1),

N(F(x, y),F(u, vip(©) < N(g(x),g(u),t)oN(g(y).g(v).1)
forall x,y, u, ve X, t>0.

Suppose that FEXX) < g(X), and g is continuous, F and g are compatiliienr
there exist x, ¥ X such that x = g(x) = F(x, x), that is, F and géa& unique common
fixed point in X.

Theorem 3.3. Let (X, M, N,*,0) be an intuitionistic fuzzy metric space, wherés a
continuous t-norm ang is a continuous t-co-norm of H-type defined byt &t and
1-1) 00 —-1t)< (1 —1t) satisfying (2.1) and (2.2). Let F»XX—X and g:X%>X be two
weakly compatible mappings and there exists ® such that

M(F(x,y),F(u,v)p (1) = M(9(x),9(u),t)*M(g(y),9(v).1),

N(F(x, y),F(u, via(t)) < N(9(x),g(u),t)0N(g(y),g(v),1),
forall x, y, u, ve Xandt > 0.

Suppose that FX) € g(X), F(XxX) or g(X) is complete. Then F and g have a
unique common fixed point in X.
Taking g = | (the identity mapping) in Theorem 3a& get the following consequence.

Corollary 3.1. Let (X, M, N, %,0) be an intuitionistic fuzzy metric space, wher@nd¢ is
a continuous t-norm and continuous t-conorm of petgatisfying (2.1) and (2.2). Let
F:XxX—-X and there exist® € ® such that
M(F(x, y),F(u, vB() = M(X, u, t) xM(y,v.1),
and N(F(x, y),F(u, via(t)) < N(x,u,t) ON(y,v,t), forall x,y, u,\ve Xandt> 0.
Then there exist& X such that x = F(x, x), that is, F admits a unidixed point in
X.
Let @(t) = kt, where 0 < k < 1,the following by Lemma 1,we tet following
Proof:-If set g = | Identity map in Theorem 3.3 then theqd is complete.

Corollary 3.2. Let a= b > ab for all a, k& [0,1]and (X, M,Nx,0) be an intuitionistic fuzzy
metric space such that M and N has n-property. RzeXxX—X and g: X>X be two
functions such that

M(F(, y),F(u, v),Kt =M(gx,gu,t) *M(gy,gv.t),
and N(F(x, y),F(u, v),Bt< N(gx,gu,t)0N(gy,gv,t)
for all x, y, u, vé X, where 0 < k < 1, F(X X) € g(X) and g is continuous and
commutes with F. Then there exist a uniga&>such that x = g(x) = F(x, X).

4. Conclusion

Theorem 3.1 is a generalization of result of Huifgfuzzy metric spaces to intutitionistic
fuzzy metric spaces. Theorem 3.2 is a generalizaiforesult of Hu et. al. [7] in fuzzy
metric spaces to intutitionistic fuzzy metric spme@d corollary 3.1 is a generalization of
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corollary 3.3 of Hu et. al. [7] and corollary 3a generalization of corollary 2 of Hu
[6] and corollary 2.6 of Sedghi [12].
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